1 //===- Operation.cpp - Operation support code -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/IR/Operation.h"
10 #include "mlir/IR/BlockAndValueMapping.h"
11 #include "mlir/IR/BuiltinTypes.h"
12 #include "mlir/IR/Dialect.h"
13 #include "mlir/IR/OpImplementation.h"
14 #include "mlir/IR/PatternMatch.h"
15 #include "mlir/IR/TypeUtilities.h"
16 #include "mlir/Interfaces/FoldInterfaces.h"
17 #include <numeric>
18 
19 using namespace mlir;
20 
~OpAsmParser()21 OpAsmParser::~OpAsmParser() {}
22 
23 //===----------------------------------------------------------------------===//
24 // OperationName
25 //===----------------------------------------------------------------------===//
26 
27 /// Form the OperationName for an op with the specified string.  This either is
28 /// a reference to an AbstractOperation if one is known, or a uniqued Identifier
29 /// if not.
OperationName(StringRef name,MLIRContext * context)30 OperationName::OperationName(StringRef name, MLIRContext *context) {
31   if (auto *op = AbstractOperation::lookup(name, context))
32     representation = op;
33   else
34     representation = Identifier::get(name, context);
35 }
36 
37 /// Return the name of the dialect this operation is registered to.
getDialect() const38 StringRef OperationName::getDialect() const {
39   return getStringRef().split('.').first;
40 }
41 
42 /// Return the operation name with dialect name stripped, if it has one.
stripDialect() const43 StringRef OperationName::stripDialect() const {
44   auto splitName = getStringRef().split(".");
45   return splitName.second.empty() ? splitName.first : splitName.second;
46 }
47 
48 /// Return the name of this operation. This always succeeds.
getStringRef() const49 StringRef OperationName::getStringRef() const {
50   return getIdentifier().strref();
51 }
52 
53 /// Return the name of this operation as an identifier. This always succeeds.
getIdentifier() const54 Identifier OperationName::getIdentifier() const {
55   if (auto *op = representation.dyn_cast<const AbstractOperation *>())
56     return op->name;
57   return representation.get<Identifier>();
58 }
59 
getAbstractOperation() const60 const AbstractOperation *OperationName::getAbstractOperation() const {
61   return representation.dyn_cast<const AbstractOperation *>();
62 }
63 
getFromOpaquePointer(const void * pointer)64 OperationName OperationName::getFromOpaquePointer(const void *pointer) {
65   return OperationName(
66       RepresentationUnion::getFromOpaqueValue(const_cast<void *>(pointer)));
67 }
68 
69 //===----------------------------------------------------------------------===//
70 // Operation
71 //===----------------------------------------------------------------------===//
72 
73 /// Create a new Operation with the specific fields.
create(Location location,OperationName name,TypeRange resultTypes,ValueRange operands,ArrayRef<NamedAttribute> attributes,BlockRange successors,unsigned numRegions)74 Operation *Operation::create(Location location, OperationName name,
75                              TypeRange resultTypes, ValueRange operands,
76                              ArrayRef<NamedAttribute> attributes,
77                              BlockRange successors, unsigned numRegions) {
78   return create(location, name, resultTypes, operands,
79                 MutableDictionaryAttr(attributes), successors, numRegions);
80 }
81 
82 /// Create a new Operation from operation state.
create(const OperationState & state)83 Operation *Operation::create(const OperationState &state) {
84   return create(state.location, state.name, state.types, state.operands,
85                 state.attributes, state.successors, state.regions);
86 }
87 
88 /// Create a new Operation with the specific fields.
create(Location location,OperationName name,TypeRange resultTypes,ValueRange operands,MutableDictionaryAttr attributes,BlockRange successors,RegionRange regions)89 Operation *Operation::create(Location location, OperationName name,
90                              TypeRange resultTypes, ValueRange operands,
91                              MutableDictionaryAttr attributes,
92                              BlockRange successors, RegionRange regions) {
93   unsigned numRegions = regions.size();
94   Operation *op = create(location, name, resultTypes, operands, attributes,
95                          successors, numRegions);
96   for (unsigned i = 0; i < numRegions; ++i)
97     if (regions[i])
98       op->getRegion(i).takeBody(*regions[i]);
99   return op;
100 }
101 
102 /// Overload of create that takes an existing MutableDictionaryAttr to avoid
103 /// unnecessarily uniquing a list of attributes.
create(Location location,OperationName name,TypeRange resultTypes,ValueRange operands,MutableDictionaryAttr attributes,BlockRange successors,unsigned numRegions)104 Operation *Operation::create(Location location, OperationName name,
105                              TypeRange resultTypes, ValueRange operands,
106                              MutableDictionaryAttr attributes,
107                              BlockRange successors, unsigned numRegions) {
108   // We only need to allocate additional memory for a subset of results.
109   unsigned numTrailingResults = OpResult::getNumTrailing(resultTypes.size());
110   unsigned numInlineResults = OpResult::getNumInline(resultTypes.size());
111   unsigned numSuccessors = successors.size();
112   unsigned numOperands = operands.size();
113 
114   // If the operation is known to have no operands, don't allocate an operand
115   // storage.
116   bool needsOperandStorage = true;
117   if (operands.empty()) {
118     if (const AbstractOperation *abstractOp = name.getAbstractOperation())
119       needsOperandStorage = !abstractOp->hasTrait<OpTrait::ZeroOperands>();
120   }
121 
122   // Compute the byte size for the operation and the operand storage. This takes
123   // into account the size of the operation, its trailing objects, and its
124   // prefixed objects.
125   size_t byteSize =
126       totalSizeToAlloc<BlockOperand, Region, detail::OperandStorage>(
127           numSuccessors, numRegions, needsOperandStorage ? 1 : 0) +
128       detail::OperandStorage::additionalAllocSize(numOperands);
129   size_t prefixByteSize = llvm::alignTo(
130       Operation::prefixAllocSize(numTrailingResults, numInlineResults),
131       alignof(Operation));
132   char *mallocMem = reinterpret_cast<char *>(malloc(byteSize + prefixByteSize));
133   void *rawMem = mallocMem + prefixByteSize;
134 
135   // Create the new Operation.
136   Operation *op =
137       ::new (rawMem) Operation(location, name, resultTypes, numSuccessors,
138                                numRegions, attributes, needsOperandStorage);
139 
140   assert((numSuccessors == 0 || !op->isKnownNonTerminator()) &&
141          "unexpected successors in a non-terminator operation");
142 
143   // Initialize the results.
144   for (unsigned i = 0; i < numInlineResults; ++i)
145     new (op->getInlineResult(i)) detail::InLineOpResult();
146   for (unsigned i = 0; i < numTrailingResults; ++i)
147     new (op->getTrailingResult(i)) detail::TrailingOpResult(i);
148 
149   // Initialize the regions.
150   for (unsigned i = 0; i != numRegions; ++i)
151     new (&op->getRegion(i)) Region(op);
152 
153   // Initialize the operands.
154   if (needsOperandStorage)
155     new (&op->getOperandStorage()) detail::OperandStorage(op, operands);
156 
157   // Initialize the successors.
158   auto blockOperands = op->getBlockOperands();
159   for (unsigned i = 0; i != numSuccessors; ++i)
160     new (&blockOperands[i]) BlockOperand(op, successors[i]);
161 
162   return op;
163 }
164 
Operation(Location location,OperationName name,TypeRange resultTypes,unsigned numSuccessors,unsigned numRegions,const MutableDictionaryAttr & attributes,bool hasOperandStorage)165 Operation::Operation(Location location, OperationName name,
166                      TypeRange resultTypes, unsigned numSuccessors,
167                      unsigned numRegions,
168                      const MutableDictionaryAttr &attributes,
169                      bool hasOperandStorage)
170     : location(location), numSuccs(numSuccessors), numRegions(numRegions),
171       hasOperandStorage(hasOperandStorage), hasSingleResult(false), name(name),
172       attrs(attributes) {
173   assert(llvm::all_of(resultTypes, [](Type t) { return t; }) &&
174          "unexpected null result type");
175   if (!resultTypes.empty()) {
176     // If there is a single result it is stored in-place, otherwise use a tuple.
177     hasSingleResult = resultTypes.size() == 1;
178     if (hasSingleResult)
179       resultType = resultTypes.front();
180     else
181       resultType = TupleType::get(resultTypes, location->getContext());
182   }
183 }
184 
185 // Operations are deleted through the destroy() member because they are
186 // allocated via malloc.
~Operation()187 Operation::~Operation() {
188   assert(block == nullptr && "operation destroyed but still in a block");
189 
190   // Explicitly run the destructors for the operands.
191   if (hasOperandStorage)
192     getOperandStorage().~OperandStorage();
193 
194   // Explicitly run the destructors for the successors.
195   for (auto &successor : getBlockOperands())
196     successor.~BlockOperand();
197 
198   // Explicitly destroy the regions.
199   for (auto &region : getRegions())
200     region.~Region();
201 }
202 
203 /// Destroy this operation or one of its subclasses.
destroy()204 void Operation::destroy() {
205   // Operations may have additional prefixed allocation, which needs to be
206   // accounted for here when computing the address to free.
207   char *rawMem = reinterpret_cast<char *>(this) -
208                  llvm::alignTo(prefixAllocSize(), alignof(Operation));
209   this->~Operation();
210   free(rawMem);
211 }
212 
213 /// Return the context this operation is associated with.
getContext()214 MLIRContext *Operation::getContext() { return location->getContext(); }
215 
216 /// Return the dialect this operation is associated with, or nullptr if the
217 /// associated dialect is not registered.
getDialect()218 Dialect *Operation::getDialect() {
219   if (auto *abstractOp = getAbstractOperation())
220     return &abstractOp->dialect;
221 
222   // If this operation hasn't been registered or doesn't have abstract
223   // operation, try looking up the dialect name in the context.
224   return getContext()->getLoadedDialect(getName().getDialect());
225 }
226 
getParentRegion()227 Region *Operation::getParentRegion() {
228   return block ? block->getParent() : nullptr;
229 }
230 
getParentOp()231 Operation *Operation::getParentOp() {
232   return block ? block->getParentOp() : nullptr;
233 }
234 
235 /// Return true if this operation is a proper ancestor of the `other`
236 /// operation.
isProperAncestor(Operation * other)237 bool Operation::isProperAncestor(Operation *other) {
238   while ((other = other->getParentOp()))
239     if (this == other)
240       return true;
241   return false;
242 }
243 
244 /// Replace any uses of 'from' with 'to' within this operation.
replaceUsesOfWith(Value from,Value to)245 void Operation::replaceUsesOfWith(Value from, Value to) {
246   if (from == to)
247     return;
248   for (auto &operand : getOpOperands())
249     if (operand.get() == from)
250       operand.set(to);
251 }
252 
253 /// Replace the current operands of this operation with the ones provided in
254 /// 'operands'.
setOperands(ValueRange operands)255 void Operation::setOperands(ValueRange operands) {
256   if (LLVM_LIKELY(hasOperandStorage))
257     return getOperandStorage().setOperands(this, operands);
258   assert(operands.empty() && "setting operands without an operand storage");
259 }
260 
261 /// Replace the operands beginning at 'start' and ending at 'start' + 'length'
262 /// with the ones provided in 'operands'. 'operands' may be smaller or larger
263 /// than the range pointed to by 'start'+'length'.
setOperands(unsigned start,unsigned length,ValueRange operands)264 void Operation::setOperands(unsigned start, unsigned length,
265                             ValueRange operands) {
266   assert((start + length) <= getNumOperands() &&
267          "invalid operand range specified");
268   if (LLVM_LIKELY(hasOperandStorage))
269     return getOperandStorage().setOperands(this, start, length, operands);
270   assert(operands.empty() && "setting operands without an operand storage");
271 }
272 
273 /// Insert the given operands into the operand list at the given 'index'.
insertOperands(unsigned index,ValueRange operands)274 void Operation::insertOperands(unsigned index, ValueRange operands) {
275   if (LLVM_LIKELY(hasOperandStorage))
276     return setOperands(index, /*length=*/0, operands);
277   assert(operands.empty() && "inserting operands without an operand storage");
278 }
279 
280 //===----------------------------------------------------------------------===//
281 // Diagnostics
282 //===----------------------------------------------------------------------===//
283 
284 /// Emit an error about fatal conditions with this operation, reporting up to
285 /// any diagnostic handlers that may be listening.
emitError(const Twine & message)286 InFlightDiagnostic Operation::emitError(const Twine &message) {
287   InFlightDiagnostic diag = mlir::emitError(getLoc(), message);
288   if (getContext()->shouldPrintOpOnDiagnostic()) {
289     // Print out the operation explicitly here so that we can print the generic
290     // form.
291     // TODO: It would be nice if we could instead provide the
292     // specific printing flags when adding the operation as an argument to the
293     // diagnostic.
294     std::string printedOp;
295     {
296       llvm::raw_string_ostream os(printedOp);
297       print(os, OpPrintingFlags().printGenericOpForm().useLocalScope());
298     }
299     diag.attachNote(getLoc()) << "see current operation: " << printedOp;
300   }
301   return diag;
302 }
303 
304 /// Emit a warning about this operation, reporting up to any diagnostic
305 /// handlers that may be listening.
emitWarning(const Twine & message)306 InFlightDiagnostic Operation::emitWarning(const Twine &message) {
307   InFlightDiagnostic diag = mlir::emitWarning(getLoc(), message);
308   if (getContext()->shouldPrintOpOnDiagnostic())
309     diag.attachNote(getLoc()) << "see current operation: " << *this;
310   return diag;
311 }
312 
313 /// Emit a remark about this operation, reporting up to any diagnostic
314 /// handlers that may be listening.
emitRemark(const Twine & message)315 InFlightDiagnostic Operation::emitRemark(const Twine &message) {
316   InFlightDiagnostic diag = mlir::emitRemark(getLoc(), message);
317   if (getContext()->shouldPrintOpOnDiagnostic())
318     diag.attachNote(getLoc()) << "see current operation: " << *this;
319   return diag;
320 }
321 
322 //===----------------------------------------------------------------------===//
323 // Operation Ordering
324 //===----------------------------------------------------------------------===//
325 
326 constexpr unsigned Operation::kInvalidOrderIdx;
327 constexpr unsigned Operation::kOrderStride;
328 
329 /// Given an operation 'other' that is within the same parent block, return
330 /// whether the current operation is before 'other' in the operation list
331 /// of the parent block.
332 /// Note: This function has an average complexity of O(1), but worst case may
333 /// take O(N) where N is the number of operations within the parent block.
isBeforeInBlock(Operation * other)334 bool Operation::isBeforeInBlock(Operation *other) {
335   assert(block && "Operations without parent blocks have no order.");
336   assert(other && other->block == block &&
337          "Expected other operation to have the same parent block.");
338   // If the order of the block is already invalid, directly recompute the
339   // parent.
340   if (!block->isOpOrderValid()) {
341     block->recomputeOpOrder();
342   } else {
343     // Update the order either operation if necessary.
344     updateOrderIfNecessary();
345     other->updateOrderIfNecessary();
346   }
347 
348   return orderIndex < other->orderIndex;
349 }
350 
351 /// Update the order index of this operation of this operation if necessary,
352 /// potentially recomputing the order of the parent block.
updateOrderIfNecessary()353 void Operation::updateOrderIfNecessary() {
354   assert(block && "expected valid parent");
355 
356   // If the order is valid for this operation there is nothing to do.
357   if (hasValidOrder())
358     return;
359   Operation *blockFront = &block->front();
360   Operation *blockBack = &block->back();
361 
362   // This method is expected to only be invoked on blocks with more than one
363   // operation.
364   assert(blockFront != blockBack && "expected more than one operation");
365 
366   // If the operation is at the end of the block.
367   if (this == blockBack) {
368     Operation *prevNode = getPrevNode();
369     if (!prevNode->hasValidOrder())
370       return block->recomputeOpOrder();
371 
372     // Add the stride to the previous operation.
373     orderIndex = prevNode->orderIndex + kOrderStride;
374     return;
375   }
376 
377   // If this is the first operation try to use the next operation to compute the
378   // ordering.
379   if (this == blockFront) {
380     Operation *nextNode = getNextNode();
381     if (!nextNode->hasValidOrder())
382       return block->recomputeOpOrder();
383     // There is no order to give this operation.
384     if (nextNode->orderIndex == 0)
385       return block->recomputeOpOrder();
386 
387     // If we can't use the stride, just take the middle value left. This is safe
388     // because we know there is at least one valid index to assign to.
389     if (nextNode->orderIndex <= kOrderStride)
390       orderIndex = (nextNode->orderIndex / 2);
391     else
392       orderIndex = kOrderStride;
393     return;
394   }
395 
396   // Otherwise, this operation is between two others. Place this operation in
397   // the middle of the previous and next if possible.
398   Operation *prevNode = getPrevNode(), *nextNode = getNextNode();
399   if (!prevNode->hasValidOrder() || !nextNode->hasValidOrder())
400     return block->recomputeOpOrder();
401   unsigned prevOrder = prevNode->orderIndex, nextOrder = nextNode->orderIndex;
402 
403   // Check to see if there is a valid order between the two.
404   if (prevOrder + 1 == nextOrder)
405     return block->recomputeOpOrder();
406   orderIndex = prevOrder + ((nextOrder - prevOrder) / 2);
407 }
408 
409 //===----------------------------------------------------------------------===//
410 // ilist_traits for Operation
411 //===----------------------------------------------------------------------===//
412 
413 auto llvm::ilist_detail::SpecificNodeAccess<
414     typename llvm::ilist_detail::compute_node_options<
getNodePtr(pointer N)415         ::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
416   return NodeAccess::getNodePtr<OptionsT>(N);
417 }
418 
419 auto llvm::ilist_detail::SpecificNodeAccess<
420     typename llvm::ilist_detail::compute_node_options<
getNodePtr(const_pointer N)421         ::mlir::Operation>::type>::getNodePtr(const_pointer N)
422     -> const node_type * {
423   return NodeAccess::getNodePtr<OptionsT>(N);
424 }
425 
426 auto llvm::ilist_detail::SpecificNodeAccess<
427     typename llvm::ilist_detail::compute_node_options<
getValuePtr(node_type * N)428         ::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
429   return NodeAccess::getValuePtr<OptionsT>(N);
430 }
431 
432 auto llvm::ilist_detail::SpecificNodeAccess<
433     typename llvm::ilist_detail::compute_node_options<
getValuePtr(const node_type * N)434         ::mlir::Operation>::type>::getValuePtr(const node_type *N)
435     -> const_pointer {
436   return NodeAccess::getValuePtr<OptionsT>(N);
437 }
438 
deleteNode(Operation * op)439 void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
440   op->destroy();
441 }
442 
getContainingBlock()443 Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
444   size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
445   iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
446   return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
447 }
448 
449 /// This is a trait method invoked when an operation is added to a block.  We
450 /// keep the block pointer up to date.
addNodeToList(Operation * op)451 void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
452   assert(!op->getBlock() && "already in an operation block!");
453   op->block = getContainingBlock();
454 
455   // Invalidate the order on the operation.
456   op->orderIndex = Operation::kInvalidOrderIdx;
457 }
458 
459 /// This is a trait method invoked when an operation is removed from a block.
460 /// We keep the block pointer up to date.
removeNodeFromList(Operation * op)461 void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
462   assert(op->block && "not already in an operation block!");
463   op->block = nullptr;
464 }
465 
466 /// This is a trait method invoked when an operation is moved from one block
467 /// to another.  We keep the block pointer up to date.
transferNodesFromList(ilist_traits<Operation> & otherList,op_iterator first,op_iterator last)468 void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
469     ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
470   Block *curParent = getContainingBlock();
471 
472   // Invalidate the ordering of the parent block.
473   curParent->invalidateOpOrder();
474 
475   // If we are transferring operations within the same block, the block
476   // pointer doesn't need to be updated.
477   if (curParent == otherList.getContainingBlock())
478     return;
479 
480   // Update the 'block' member of each operation.
481   for (; first != last; ++first)
482     first->block = curParent;
483 }
484 
485 /// Remove this operation (and its descendants) from its Block and delete
486 /// all of them.
erase()487 void Operation::erase() {
488   if (auto *parent = getBlock())
489     parent->getOperations().erase(this);
490   else
491     destroy();
492 }
493 
494 /// Remove the operation from its parent block, but don't delete it.
remove()495 void Operation::remove() {
496   if (Block *parent = getBlock())
497     parent->getOperations().remove(this);
498 }
499 
500 /// Unlink this operation from its current block and insert it right before
501 /// `existingOp` which may be in the same or another block in the same
502 /// function.
moveBefore(Operation * existingOp)503 void Operation::moveBefore(Operation *existingOp) {
504   moveBefore(existingOp->getBlock(), existingOp->getIterator());
505 }
506 
507 /// Unlink this operation from its current basic block and insert it right
508 /// before `iterator` in the specified basic block.
moveBefore(Block * block,llvm::iplist<Operation>::iterator iterator)509 void Operation::moveBefore(Block *block,
510                            llvm::iplist<Operation>::iterator iterator) {
511   block->getOperations().splice(iterator, getBlock()->getOperations(),
512                                 getIterator());
513 }
514 
515 /// Unlink this operation from its current block and insert it right after
516 /// `existingOp` which may be in the same or another block in the same function.
moveAfter(Operation * existingOp)517 void Operation::moveAfter(Operation *existingOp) {
518   moveAfter(existingOp->getBlock(), existingOp->getIterator());
519 }
520 
521 /// Unlink this operation from its current block and insert it right after
522 /// `iterator` in the specified block.
moveAfter(Block * block,llvm::iplist<Operation>::iterator iterator)523 void Operation::moveAfter(Block *block,
524                           llvm::iplist<Operation>::iterator iterator) {
525   assert(iterator != block->end() && "cannot move after end of block");
526   moveBefore(&*std::next(iterator));
527 }
528 
529 /// This drops all operand uses from this operation, which is an essential
530 /// step in breaking cyclic dependences between references when they are to
531 /// be deleted.
dropAllReferences()532 void Operation::dropAllReferences() {
533   for (auto &op : getOpOperands())
534     op.drop();
535 
536   for (auto &region : getRegions())
537     region.dropAllReferences();
538 
539   for (auto &dest : getBlockOperands())
540     dest.drop();
541 }
542 
543 /// This drops all uses of any values defined by this operation or its nested
544 /// regions, wherever they are located.
dropAllDefinedValueUses()545 void Operation::dropAllDefinedValueUses() {
546   dropAllUses();
547 
548   for (auto &region : getRegions())
549     for (auto &block : region)
550       block.dropAllDefinedValueUses();
551 }
552 
553 /// Return the number of results held by this operation.
getNumResults()554 unsigned Operation::getNumResults() {
555   if (!resultType)
556     return 0;
557   return hasSingleResult ? 1 : resultType.cast<TupleType>().size();
558 }
559 
getResultTypes()560 auto Operation::getResultTypes() -> result_type_range {
561   if (!resultType)
562     return llvm::None;
563   if (hasSingleResult)
564     return resultType;
565   return resultType.cast<TupleType>().getTypes();
566 }
567 
setSuccessor(Block * block,unsigned index)568 void Operation::setSuccessor(Block *block, unsigned index) {
569   assert(index < getNumSuccessors());
570   getBlockOperands()[index].set(block);
571 }
572 
573 /// Attempt to fold this operation using the Op's registered foldHook.
fold(ArrayRef<Attribute> operands,SmallVectorImpl<OpFoldResult> & results)574 LogicalResult Operation::fold(ArrayRef<Attribute> operands,
575                               SmallVectorImpl<OpFoldResult> &results) {
576   // If we have a registered operation definition matching this one, use it to
577   // try to constant fold the operation.
578   auto *abstractOp = getAbstractOperation();
579   if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
580     return success();
581 
582   // Otherwise, fall back on the dialect hook to handle it.
583   Dialect *dialect = getDialect();
584   if (!dialect)
585     return failure();
586 
587   auto *interface = dialect->getRegisteredInterface<DialectFoldInterface>();
588   if (!interface)
589     return failure();
590 
591   return interface->fold(this, operands, results);
592 }
593 
594 /// Emit an error with the op name prefixed, like "'dim' op " which is
595 /// convenient for verifiers.
emitOpError(const Twine & message)596 InFlightDiagnostic Operation::emitOpError(const Twine &message) {
597   return emitError() << "'" << getName() << "' op " << message;
598 }
599 
600 //===----------------------------------------------------------------------===//
601 // Operation Cloning
602 //===----------------------------------------------------------------------===//
603 
604 /// Create a deep copy of this operation but keep the operation regions empty.
605 /// Operands are remapped using `mapper` (if present), and `mapper` is updated
606 /// to contain the results.
cloneWithoutRegions(BlockAndValueMapping & mapper)607 Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
608   SmallVector<Value, 8> operands;
609   SmallVector<Block *, 2> successors;
610 
611   // Remap the operands.
612   operands.reserve(getNumOperands());
613   for (auto opValue : getOperands())
614     operands.push_back(mapper.lookupOrDefault(opValue));
615 
616   // Remap the successors.
617   successors.reserve(getNumSuccessors());
618   for (Block *successor : getSuccessors())
619     successors.push_back(mapper.lookupOrDefault(successor));
620 
621   // Create the new operation.
622   auto *newOp = create(getLoc(), getName(), getResultTypes(), operands, attrs,
623                        successors, getNumRegions());
624 
625   // Remember the mapping of any results.
626   for (unsigned i = 0, e = getNumResults(); i != e; ++i)
627     mapper.map(getResult(i), newOp->getResult(i));
628 
629   return newOp;
630 }
631 
cloneWithoutRegions()632 Operation *Operation::cloneWithoutRegions() {
633   BlockAndValueMapping mapper;
634   return cloneWithoutRegions(mapper);
635 }
636 
637 /// Create a deep copy of this operation, remapping any operands that use
638 /// values outside of the operation using the map that is provided (leaving
639 /// them alone if no entry is present).  Replaces references to cloned
640 /// sub-operations to the corresponding operation that is copied, and adds
641 /// those mappings to the map.
clone(BlockAndValueMapping & mapper)642 Operation *Operation::clone(BlockAndValueMapping &mapper) {
643   auto *newOp = cloneWithoutRegions(mapper);
644 
645   // Clone the regions.
646   for (unsigned i = 0; i != numRegions; ++i)
647     getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
648 
649   return newOp;
650 }
651 
clone()652 Operation *Operation::clone() {
653   BlockAndValueMapping mapper;
654   return clone(mapper);
655 }
656 
657 //===----------------------------------------------------------------------===//
658 // OpState trait class.
659 //===----------------------------------------------------------------------===//
660 
661 // The fallback for the parser is to reject the custom assembly form.
parse(OpAsmParser & parser,OperationState & result)662 ParseResult OpState::parse(OpAsmParser &parser, OperationState &result) {
663   return parser.emitError(parser.getNameLoc(), "has no custom assembly form");
664 }
665 
666 // The fallback for the printer is to print in the generic assembly form.
print(Operation * op,OpAsmPrinter & p)667 void OpState::print(Operation *op, OpAsmPrinter &p) { p.printGenericOp(op); }
668 
669 /// Emit an error about fatal conditions with this operation, reporting up to
670 /// any diagnostic handlers that may be listening.
emitError(const Twine & message)671 InFlightDiagnostic OpState::emitError(const Twine &message) {
672   return getOperation()->emitError(message);
673 }
674 
675 /// Emit an error with the op name prefixed, like "'dim' op " which is
676 /// convenient for verifiers.
emitOpError(const Twine & message)677 InFlightDiagnostic OpState::emitOpError(const Twine &message) {
678   return getOperation()->emitOpError(message);
679 }
680 
681 /// Emit a warning about this operation, reporting up to any diagnostic
682 /// handlers that may be listening.
emitWarning(const Twine & message)683 InFlightDiagnostic OpState::emitWarning(const Twine &message) {
684   return getOperation()->emitWarning(message);
685 }
686 
687 /// Emit a remark about this operation, reporting up to any diagnostic
688 /// handlers that may be listening.
emitRemark(const Twine & message)689 InFlightDiagnostic OpState::emitRemark(const Twine &message) {
690   return getOperation()->emitRemark(message);
691 }
692 
693 //===----------------------------------------------------------------------===//
694 // Op Trait implementations
695 //===----------------------------------------------------------------------===//
696 
foldIdempotent(Operation * op)697 OpFoldResult OpTrait::impl::foldIdempotent(Operation *op) {
698   auto *argumentOp = op->getOperand(0).getDefiningOp();
699   if (argumentOp && op->getName() == argumentOp->getName()) {
700     // Replace the outer operation output with the inner operation.
701     return op->getOperand(0);
702   }
703 
704   return {};
705 }
706 
foldInvolution(Operation * op)707 OpFoldResult OpTrait::impl::foldInvolution(Operation *op) {
708   auto *argumentOp = op->getOperand(0).getDefiningOp();
709   if (argumentOp && op->getName() == argumentOp->getName()) {
710     // Replace the outer involutions output with inner's input.
711     return argumentOp->getOperand(0);
712   }
713 
714   return {};
715 }
716 
verifyZeroOperands(Operation * op)717 LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
718   if (op->getNumOperands() != 0)
719     return op->emitOpError() << "requires zero operands";
720   return success();
721 }
722 
verifyOneOperand(Operation * op)723 LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
724   if (op->getNumOperands() != 1)
725     return op->emitOpError() << "requires a single operand";
726   return success();
727 }
728 
verifyNOperands(Operation * op,unsigned numOperands)729 LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
730                                              unsigned numOperands) {
731   if (op->getNumOperands() != numOperands) {
732     return op->emitOpError() << "expected " << numOperands
733                              << " operands, but found " << op->getNumOperands();
734   }
735   return success();
736 }
737 
verifyAtLeastNOperands(Operation * op,unsigned numOperands)738 LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
739                                                     unsigned numOperands) {
740   if (op->getNumOperands() < numOperands)
741     return op->emitOpError()
742            << "expected " << numOperands << " or more operands";
743   return success();
744 }
745 
746 /// If this is a vector type, or a tensor type, return the scalar element type
747 /// that it is built around, otherwise return the type unmodified.
getTensorOrVectorElementType(Type type)748 static Type getTensorOrVectorElementType(Type type) {
749   if (auto vec = type.dyn_cast<VectorType>())
750     return vec.getElementType();
751 
752   // Look through tensor<vector<...>> to find the underlying element type.
753   if (auto tensor = type.dyn_cast<TensorType>())
754     return getTensorOrVectorElementType(tensor.getElementType());
755   return type;
756 }
757 
verifyIsIdempotent(Operation * op)758 LogicalResult OpTrait::impl::verifyIsIdempotent(Operation *op) {
759   // FIXME: Add back check for no side effects on operation.
760   // Currently adding it would cause the shared library build
761   // to fail since there would be a dependency of IR on SideEffectInterfaces
762   // which is cyclical.
763   return success();
764 }
765 
verifyIsInvolution(Operation * op)766 LogicalResult OpTrait::impl::verifyIsInvolution(Operation *op) {
767   // FIXME: Add back check for no side effects on operation.
768   // Currently adding it would cause the shared library build
769   // to fail since there would be a dependency of IR on SideEffectInterfaces
770   // which is cyclical.
771   return success();
772 }
773 
774 LogicalResult
verifyOperandsAreSignlessIntegerLike(Operation * op)775 OpTrait::impl::verifyOperandsAreSignlessIntegerLike(Operation *op) {
776   for (auto opType : op->getOperandTypes()) {
777     auto type = getTensorOrVectorElementType(opType);
778     if (!type.isSignlessIntOrIndex())
779       return op->emitOpError() << "requires an integer or index type";
780   }
781   return success();
782 }
783 
verifyOperandsAreFloatLike(Operation * op)784 LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
785   for (auto opType : op->getOperandTypes()) {
786     auto type = getTensorOrVectorElementType(opType);
787     if (!type.isa<FloatType>())
788       return op->emitOpError("requires a float type");
789   }
790   return success();
791 }
792 
verifySameTypeOperands(Operation * op)793 LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
794   // Zero or one operand always have the "same" type.
795   unsigned nOperands = op->getNumOperands();
796   if (nOperands < 2)
797     return success();
798 
799   auto type = op->getOperand(0).getType();
800   for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
801     if (opType != type)
802       return op->emitOpError() << "requires all operands to have the same type";
803   return success();
804 }
805 
verifyZeroRegion(Operation * op)806 LogicalResult OpTrait::impl::verifyZeroRegion(Operation *op) {
807   if (op->getNumRegions() != 0)
808     return op->emitOpError() << "requires zero regions";
809   return success();
810 }
811 
verifyOneRegion(Operation * op)812 LogicalResult OpTrait::impl::verifyOneRegion(Operation *op) {
813   if (op->getNumRegions() != 1)
814     return op->emitOpError() << "requires one region";
815   return success();
816 }
817 
verifyNRegions(Operation * op,unsigned numRegions)818 LogicalResult OpTrait::impl::verifyNRegions(Operation *op,
819                                             unsigned numRegions) {
820   if (op->getNumRegions() != numRegions)
821     return op->emitOpError() << "expected " << numRegions << " regions";
822   return success();
823 }
824 
verifyAtLeastNRegions(Operation * op,unsigned numRegions)825 LogicalResult OpTrait::impl::verifyAtLeastNRegions(Operation *op,
826                                                    unsigned numRegions) {
827   if (op->getNumRegions() < numRegions)
828     return op->emitOpError() << "expected " << numRegions << " or more regions";
829   return success();
830 }
831 
verifyZeroResult(Operation * op)832 LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
833   if (op->getNumResults() != 0)
834     return op->emitOpError() << "requires zero results";
835   return success();
836 }
837 
verifyOneResult(Operation * op)838 LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
839   if (op->getNumResults() != 1)
840     return op->emitOpError() << "requires one result";
841   return success();
842 }
843 
verifyNResults(Operation * op,unsigned numOperands)844 LogicalResult OpTrait::impl::verifyNResults(Operation *op,
845                                             unsigned numOperands) {
846   if (op->getNumResults() != numOperands)
847     return op->emitOpError() << "expected " << numOperands << " results";
848   return success();
849 }
850 
verifyAtLeastNResults(Operation * op,unsigned numOperands)851 LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
852                                                    unsigned numOperands) {
853   if (op->getNumResults() < numOperands)
854     return op->emitOpError()
855            << "expected " << numOperands << " or more results";
856   return success();
857 }
858 
verifySameOperandsShape(Operation * op)859 LogicalResult OpTrait::impl::verifySameOperandsShape(Operation *op) {
860   if (failed(verifyAtLeastNOperands(op, 1)))
861     return failure();
862 
863   auto type = op->getOperand(0).getType();
864   for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
865     if (failed(verifyCompatibleShape(opType, type)))
866       return op->emitOpError() << "requires the same shape for all operands";
867   }
868   return success();
869 }
870 
verifySameOperandsAndResultShape(Operation * op)871 LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
872   if (failed(verifyAtLeastNOperands(op, 1)) ||
873       failed(verifyAtLeastNResults(op, 1)))
874     return failure();
875 
876   auto type = op->getOperand(0).getType();
877   for (auto resultType : op->getResultTypes()) {
878     if (failed(verifyCompatibleShape(resultType, type)))
879       return op->emitOpError()
880              << "requires the same shape for all operands and results";
881   }
882   for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
883     if (failed(verifyCompatibleShape(opType, type)))
884       return op->emitOpError()
885              << "requires the same shape for all operands and results";
886   }
887   return success();
888 }
889 
verifySameOperandsElementType(Operation * op)890 LogicalResult OpTrait::impl::verifySameOperandsElementType(Operation *op) {
891   if (failed(verifyAtLeastNOperands(op, 1)))
892     return failure();
893   auto elementType = getElementTypeOrSelf(op->getOperand(0));
894 
895   for (auto operand : llvm::drop_begin(op->getOperands(), 1)) {
896     if (getElementTypeOrSelf(operand) != elementType)
897       return op->emitOpError("requires the same element type for all operands");
898   }
899 
900   return success();
901 }
902 
903 LogicalResult
verifySameOperandsAndResultElementType(Operation * op)904 OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
905   if (failed(verifyAtLeastNOperands(op, 1)) ||
906       failed(verifyAtLeastNResults(op, 1)))
907     return failure();
908 
909   auto elementType = getElementTypeOrSelf(op->getResult(0));
910 
911   // Verify result element type matches first result's element type.
912   for (auto result : llvm::drop_begin(op->getResults(), 1)) {
913     if (getElementTypeOrSelf(result) != elementType)
914       return op->emitOpError(
915           "requires the same element type for all operands and results");
916   }
917 
918   // Verify operand's element type matches first result's element type.
919   for (auto operand : op->getOperands()) {
920     if (getElementTypeOrSelf(operand) != elementType)
921       return op->emitOpError(
922           "requires the same element type for all operands and results");
923   }
924 
925   return success();
926 }
927 
verifySameOperandsAndResultType(Operation * op)928 LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
929   if (failed(verifyAtLeastNOperands(op, 1)) ||
930       failed(verifyAtLeastNResults(op, 1)))
931     return failure();
932 
933   auto type = op->getResult(0).getType();
934   auto elementType = getElementTypeOrSelf(type);
935   for (auto resultType : op->getResultTypes().drop_front(1)) {
936     if (getElementTypeOrSelf(resultType) != elementType ||
937         failed(verifyCompatibleShape(resultType, type)))
938       return op->emitOpError()
939              << "requires the same type for all operands and results";
940   }
941   for (auto opType : op->getOperandTypes()) {
942     if (getElementTypeOrSelf(opType) != elementType ||
943         failed(verifyCompatibleShape(opType, type)))
944       return op->emitOpError()
945              << "requires the same type for all operands and results";
946   }
947   return success();
948 }
949 
verifyIsTerminator(Operation * op)950 LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
951   Block *block = op->getBlock();
952   // Verify that the operation is at the end of the respective parent block.
953   if (!block || &block->back() != op)
954     return op->emitOpError("must be the last operation in the parent block");
955   return success();
956 }
957 
verifyTerminatorSuccessors(Operation * op)958 static LogicalResult verifyTerminatorSuccessors(Operation *op) {
959   auto *parent = op->getParentRegion();
960 
961   // Verify that the operands lines up with the BB arguments in the successor.
962   for (Block *succ : op->getSuccessors())
963     if (succ->getParent() != parent)
964       return op->emitError("reference to block defined in another region");
965   return success();
966 }
967 
verifyZeroSuccessor(Operation * op)968 LogicalResult OpTrait::impl::verifyZeroSuccessor(Operation *op) {
969   if (op->getNumSuccessors() != 0) {
970     return op->emitOpError("requires 0 successors but found ")
971            << op->getNumSuccessors();
972   }
973   return success();
974 }
975 
verifyOneSuccessor(Operation * op)976 LogicalResult OpTrait::impl::verifyOneSuccessor(Operation *op) {
977   if (op->getNumSuccessors() != 1) {
978     return op->emitOpError("requires 1 successor but found ")
979            << op->getNumSuccessors();
980   }
981   return verifyTerminatorSuccessors(op);
982 }
verifyNSuccessors(Operation * op,unsigned numSuccessors)983 LogicalResult OpTrait::impl::verifyNSuccessors(Operation *op,
984                                                unsigned numSuccessors) {
985   if (op->getNumSuccessors() != numSuccessors) {
986     return op->emitOpError("requires ")
987            << numSuccessors << " successors but found "
988            << op->getNumSuccessors();
989   }
990   return verifyTerminatorSuccessors(op);
991 }
verifyAtLeastNSuccessors(Operation * op,unsigned numSuccessors)992 LogicalResult OpTrait::impl::verifyAtLeastNSuccessors(Operation *op,
993                                                       unsigned numSuccessors) {
994   if (op->getNumSuccessors() < numSuccessors) {
995     return op->emitOpError("requires at least ")
996            << numSuccessors << " successors but found "
997            << op->getNumSuccessors();
998   }
999   return verifyTerminatorSuccessors(op);
1000 }
1001 
verifyResultsAreBoolLike(Operation * op)1002 LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
1003   for (auto resultType : op->getResultTypes()) {
1004     auto elementType = getTensorOrVectorElementType(resultType);
1005     bool isBoolType = elementType.isInteger(1);
1006     if (!isBoolType)
1007       return op->emitOpError() << "requires a bool result type";
1008   }
1009 
1010   return success();
1011 }
1012 
verifyResultsAreFloatLike(Operation * op)1013 LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
1014   for (auto resultType : op->getResultTypes())
1015     if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
1016       return op->emitOpError() << "requires a floating point type";
1017 
1018   return success();
1019 }
1020 
1021 LogicalResult
verifyResultsAreSignlessIntegerLike(Operation * op)1022 OpTrait::impl::verifyResultsAreSignlessIntegerLike(Operation *op) {
1023   for (auto resultType : op->getResultTypes())
1024     if (!getTensorOrVectorElementType(resultType).isSignlessIntOrIndex())
1025       return op->emitOpError() << "requires an integer or index type";
1026   return success();
1027 }
1028 
verifyValueSizeAttr(Operation * op,StringRef attrName,bool isOperand)1029 static LogicalResult verifyValueSizeAttr(Operation *op, StringRef attrName,
1030                                          bool isOperand) {
1031   auto sizeAttr = op->getAttrOfType<DenseIntElementsAttr>(attrName);
1032   if (!sizeAttr)
1033     return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
1034 
1035   auto sizeAttrType = sizeAttr.getType().dyn_cast<VectorType>();
1036   if (!sizeAttrType || sizeAttrType.getRank() != 1)
1037     return op->emitOpError("requires 1D vector attribute '") << attrName << "'";
1038 
1039   if (llvm::any_of(sizeAttr.getIntValues(), [](const APInt &element) {
1040         return !element.isNonNegative();
1041       }))
1042     return op->emitOpError("'")
1043            << attrName << "' attribute cannot have negative elements";
1044 
1045   size_t totalCount = std::accumulate(
1046       sizeAttr.begin(), sizeAttr.end(), 0,
1047       [](unsigned all, APInt one) { return all + one.getZExtValue(); });
1048 
1049   if (isOperand && totalCount != op->getNumOperands())
1050     return op->emitOpError("operand count (")
1051            << op->getNumOperands() << ") does not match with the total size ("
1052            << totalCount << ") specified in attribute '" << attrName << "'";
1053   else if (!isOperand && totalCount != op->getNumResults())
1054     return op->emitOpError("result count (")
1055            << op->getNumResults() << ") does not match with the total size ("
1056            << totalCount << ") specified in attribute '" << attrName << "'";
1057   return success();
1058 }
1059 
verifyOperandSizeAttr(Operation * op,StringRef attrName)1060 LogicalResult OpTrait::impl::verifyOperandSizeAttr(Operation *op,
1061                                                    StringRef attrName) {
1062   return verifyValueSizeAttr(op, attrName, /*isOperand=*/true);
1063 }
1064 
verifyResultSizeAttr(Operation * op,StringRef attrName)1065 LogicalResult OpTrait::impl::verifyResultSizeAttr(Operation *op,
1066                                                   StringRef attrName) {
1067   return verifyValueSizeAttr(op, attrName, /*isOperand=*/false);
1068 }
1069 
verifyNoRegionArguments(Operation * op)1070 LogicalResult OpTrait::impl::verifyNoRegionArguments(Operation *op) {
1071   for (Region &region : op->getRegions()) {
1072     if (region.empty())
1073       continue;
1074 
1075     if (region.getNumArguments() != 0) {
1076       if (op->getNumRegions() > 1)
1077         return op->emitOpError("region #")
1078                << region.getRegionNumber() << " should have no arguments";
1079       else
1080         return op->emitOpError("region should have no arguments");
1081     }
1082   }
1083   return success();
1084 }
1085 
1086 /// Checks if two ShapedTypes are the same, ignoring the element type.
areSameShapedTypeIgnoringElementType(ShapedType a,ShapedType b)1087 static bool areSameShapedTypeIgnoringElementType(ShapedType a, ShapedType b) {
1088   if (a.getTypeID() != b.getTypeID())
1089     return false;
1090   if (!a.hasRank())
1091     return !b.hasRank();
1092   return a.getShape() == b.getShape();
1093 }
1094 
verifyElementwiseMappable(Operation * op)1095 LogicalResult OpTrait::impl::verifyElementwiseMappable(Operation *op) {
1096   auto isMappableType = [](Type type) {
1097     return type.isa<VectorType, TensorType>();
1098   };
1099   auto resultMappableTypes = llvm::to_vector<1>(
1100       llvm::make_filter_range(op->getResultTypes(), isMappableType));
1101   auto operandMappableTypes = llvm::to_vector<2>(
1102       llvm::make_filter_range(op->getOperandTypes(), isMappableType));
1103 
1104   // If the op only has scalar operand/result types, then we have nothing to
1105   // check.
1106   if (resultMappableTypes.empty() && operandMappableTypes.empty())
1107     return success();
1108 
1109   if (!resultMappableTypes.empty() && operandMappableTypes.empty())
1110     return op->emitOpError("if a result is non-scalar, then at least one "
1111                            "operand must be non-scalar");
1112 
1113   assert(!operandMappableTypes.empty());
1114 
1115   if (resultMappableTypes.empty())
1116     return op->emitOpError("if an operand is non-scalar, then there must be at "
1117                            "least one non-scalar result");
1118 
1119   if (resultMappableTypes.size() != op->getNumResults())
1120     return op->emitOpError(
1121         "if an operand is non-scalar, then all results must be non-scalar");
1122 
1123   auto mustMatchType = operandMappableTypes[0].cast<ShapedType>();
1124   for (auto type :
1125        llvm::concat<Type>(resultMappableTypes, operandMappableTypes)) {
1126     if (!areSameShapedTypeIgnoringElementType(type.cast<ShapedType>(),
1127                                               mustMatchType)) {
1128       return op->emitOpError() << "all non-scalar operands/results must have "
1129                                   "the same shape and base type: found "
1130                                << type << " and " << mustMatchType;
1131     }
1132   }
1133 
1134   return success();
1135 }
1136 
1137 //===----------------------------------------------------------------------===//
1138 // BinaryOp implementation
1139 //===----------------------------------------------------------------------===//
1140 
1141 // These functions are out-of-line implementations of the methods in BinaryOp,
1142 // which avoids them being template instantiated/duplicated.
1143 
buildBinaryOp(OpBuilder & builder,OperationState & result,Value lhs,Value rhs)1144 void impl::buildBinaryOp(OpBuilder &builder, OperationState &result, Value lhs,
1145                          Value rhs) {
1146   assert(lhs.getType() == rhs.getType());
1147   result.addOperands({lhs, rhs});
1148   result.types.push_back(lhs.getType());
1149 }
1150 
parseOneResultSameOperandTypeOp(OpAsmParser & parser,OperationState & result)1151 ParseResult impl::parseOneResultSameOperandTypeOp(OpAsmParser &parser,
1152                                                   OperationState &result) {
1153   SmallVector<OpAsmParser::OperandType, 2> ops;
1154   Type type;
1155   return failure(parser.parseOperandList(ops) ||
1156                  parser.parseOptionalAttrDict(result.attributes) ||
1157                  parser.parseColonType(type) ||
1158                  parser.resolveOperands(ops, type, result.operands) ||
1159                  parser.addTypeToList(type, result.types));
1160 }
1161 
printOneResultOp(Operation * op,OpAsmPrinter & p)1162 void impl::printOneResultOp(Operation *op, OpAsmPrinter &p) {
1163   assert(op->getNumResults() == 1 && "op should have one result");
1164 
1165   // If not all the operand and result types are the same, just use the
1166   // generic assembly form to avoid omitting information in printing.
1167   auto resultType = op->getResult(0).getType();
1168   if (llvm::any_of(op->getOperandTypes(),
1169                    [&](Type type) { return type != resultType; })) {
1170     p.printGenericOp(op);
1171     return;
1172   }
1173 
1174   p << op->getName() << ' ';
1175   p.printOperands(op->getOperands());
1176   p.printOptionalAttrDict(op->getAttrs());
1177   // Now we can output only one type for all operands and the result.
1178   p << " : " << resultType;
1179 }
1180 
1181 //===----------------------------------------------------------------------===//
1182 // CastOp implementation
1183 //===----------------------------------------------------------------------===//
1184 
buildCastOp(OpBuilder & builder,OperationState & result,Value source,Type destType)1185 void impl::buildCastOp(OpBuilder &builder, OperationState &result, Value source,
1186                        Type destType) {
1187   result.addOperands(source);
1188   result.addTypes(destType);
1189 }
1190 
parseCastOp(OpAsmParser & parser,OperationState & result)1191 ParseResult impl::parseCastOp(OpAsmParser &parser, OperationState &result) {
1192   OpAsmParser::OperandType srcInfo;
1193   Type srcType, dstType;
1194   return failure(parser.parseOperand(srcInfo) ||
1195                  parser.parseOptionalAttrDict(result.attributes) ||
1196                  parser.parseColonType(srcType) ||
1197                  parser.resolveOperand(srcInfo, srcType, result.operands) ||
1198                  parser.parseKeywordType("to", dstType) ||
1199                  parser.addTypeToList(dstType, result.types));
1200 }
1201 
printCastOp(Operation * op,OpAsmPrinter & p)1202 void impl::printCastOp(Operation *op, OpAsmPrinter &p) {
1203   p << op->getName() << ' ' << op->getOperand(0);
1204   p.printOptionalAttrDict(op->getAttrs());
1205   p << " : " << op->getOperand(0).getType() << " to "
1206     << op->getResult(0).getType();
1207 }
1208 
foldCastOp(Operation * op)1209 Value impl::foldCastOp(Operation *op) {
1210   // Identity cast
1211   if (op->getOperand(0).getType() == op->getResult(0).getType())
1212     return op->getOperand(0);
1213   return nullptr;
1214 }
1215 
1216 //===----------------------------------------------------------------------===//
1217 // Misc. utils
1218 //===----------------------------------------------------------------------===//
1219 
1220 /// Insert an operation, generated by `buildTerminatorOp`, at the end of the
1221 /// region's only block if it does not have a terminator already. If the region
1222 /// is empty, insert a new block first. `buildTerminatorOp` should return the
1223 /// terminator operation to insert.
ensureRegionTerminator(Region & region,OpBuilder & builder,Location loc,function_ref<Operation * (OpBuilder &,Location)> buildTerminatorOp)1224 void impl::ensureRegionTerminator(
1225     Region &region, OpBuilder &builder, Location loc,
1226     function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
1227   OpBuilder::InsertionGuard guard(builder);
1228   if (region.empty())
1229     builder.createBlock(&region);
1230 
1231   Block &block = region.back();
1232   if (!block.empty() && block.back().isKnownTerminator())
1233     return;
1234 
1235   builder.setInsertionPointToEnd(&block);
1236   builder.insert(buildTerminatorOp(builder, loc));
1237 }
1238 
1239 /// Create a simple OpBuilder and forward to the OpBuilder version of this
1240 /// function.
ensureRegionTerminator(Region & region,Builder & builder,Location loc,function_ref<Operation * (OpBuilder &,Location)> buildTerminatorOp)1241 void impl::ensureRegionTerminator(
1242     Region &region, Builder &builder, Location loc,
1243     function_ref<Operation *(OpBuilder &, Location)> buildTerminatorOp) {
1244   OpBuilder opBuilder(builder.getContext());
1245   ensureRegionTerminator(region, opBuilder, loc, buildTerminatorOp);
1246 }
1247 
1248 //===----------------------------------------------------------------------===//
1249 // UseIterator
1250 //===----------------------------------------------------------------------===//
1251 
UseIterator(Operation * op,bool end)1252 Operation::UseIterator::UseIterator(Operation *op, bool end)
1253     : op(op), res(end ? op->result_end() : op->result_begin()) {
1254   // Only initialize current use if there are results/can be uses.
1255   if (op->getNumResults())
1256     skipOverResultsWithNoUsers();
1257 }
1258 
operator ++()1259 Operation::UseIterator &Operation::UseIterator::operator++() {
1260   // We increment over uses, if we reach the last use then move to next
1261   // result.
1262   if (use != (*res).use_end())
1263     ++use;
1264   if (use == (*res).use_end()) {
1265     ++res;
1266     skipOverResultsWithNoUsers();
1267   }
1268   return *this;
1269 }
1270 
skipOverResultsWithNoUsers()1271 void Operation::UseIterator::skipOverResultsWithNoUsers() {
1272   while (res != op->result_end() && (*res).use_empty())
1273     ++res;
1274 
1275   // If we are at the last result, then set use to first use of
1276   // first result (sentinel value used for end).
1277   if (res == op->result_end())
1278     use = {};
1279   else
1280     use = (*res).use_begin();
1281 }
1282