1 //
2 // Copyright 2002 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 // mathutil.h: Math and bit manipulation functions.
8 
9 #ifndef COMMON_MATHUTIL_H_
10 #define COMMON_MATHUTIL_H_
11 
12 #include <math.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <algorithm>
17 #include <limits>
18 
19 #include <anglebase/numerics/safe_math.h>
20 
21 #include "common/debug.h"
22 #include "common/platform.h"
23 
24 namespace angle
25 {
26 using base::CheckedNumeric;
27 using base::IsValueInRangeForNumericType;
28 }  // namespace angle
29 
30 namespace gl
31 {
32 
33 const unsigned int Float32One   = 0x3F800000;
34 const unsigned short Float16One = 0x3C00;
35 
36 template <typename T>
isPow2(T x)37 inline constexpr bool isPow2(T x)
38 {
39     static_assert(std::is_integral<T>::value, "isPow2 must be called on an integer type.");
40     return (x & (x - 1)) == 0 && (x != 0);
41 }
42 
43 template <typename T>
log2(T x)44 inline int log2(T x)
45 {
46     static_assert(std::is_integral<T>::value, "log2 must be called on an integer type.");
47     int r = 0;
48     while ((x >> r) > 1)
49         r++;
50     return r;
51 }
52 
ceilPow2(unsigned int x)53 inline unsigned int ceilPow2(unsigned int x)
54 {
55     if (x != 0)
56         x--;
57     x |= x >> 1;
58     x |= x >> 2;
59     x |= x >> 4;
60     x |= x >> 8;
61     x |= x >> 16;
62     x++;
63 
64     return x;
65 }
66 
67 template <typename DestT, typename SrcT>
clampCast(SrcT value)68 inline DestT clampCast(SrcT value)
69 {
70     // For floating-point types with denormalization, min returns the minimum positive normalized
71     // value. To find the value that has no values less than it, use numeric_limits::lowest.
72     constexpr const long double destLo =
73         static_cast<long double>(std::numeric_limits<DestT>::lowest());
74     constexpr const long double destHi =
75         static_cast<long double>(std::numeric_limits<DestT>::max());
76     constexpr const long double srcLo =
77         static_cast<long double>(std::numeric_limits<SrcT>::lowest());
78     constexpr long double srcHi = static_cast<long double>(std::numeric_limits<SrcT>::max());
79 
80     if (destHi < srcHi)
81     {
82         DestT destMax = std::numeric_limits<DestT>::max();
83         if (value >= static_cast<SrcT>(destMax))
84         {
85             return destMax;
86         }
87     }
88 
89     if (destLo > srcLo)
90     {
91         DestT destLow = std::numeric_limits<DestT>::lowest();
92         if (value <= static_cast<SrcT>(destLow))
93         {
94             return destLow;
95         }
96     }
97 
98     return static_cast<DestT>(value);
99 }
100 
101 // Specialize clampCast for bool->int conversion to avoid MSVS 2015 performance warning when the max
102 // value is casted to the source type.
103 template <>
clampCast(bool value)104 inline unsigned int clampCast(bool value)
105 {
106     return static_cast<unsigned int>(value);
107 }
108 
109 template <>
clampCast(bool value)110 inline int clampCast(bool value)
111 {
112     return static_cast<int>(value);
113 }
114 
115 template <typename T, typename MIN, typename MAX>
clamp(T x,MIN min,MAX max)116 inline T clamp(T x, MIN min, MAX max)
117 {
118     // Since NaNs fail all comparison tests, a NaN value will default to min
119     return x > min ? (x > max ? max : x) : min;
120 }
121 
clamp01(float x)122 inline float clamp01(float x)
123 {
124     return clamp(x, 0.0f, 1.0f);
125 }
126 
127 template <const int n>
unorm(float x)128 inline unsigned int unorm(float x)
129 {
130     const unsigned int max = 0xFFFFFFFF >> (32 - n);
131 
132     if (x > 1)
133     {
134         return max;
135     }
136     else if (x < 0)
137     {
138         return 0;
139     }
140     else
141     {
142         return (unsigned int)(max * x + 0.5f);
143     }
144 }
145 
supportsSSE2()146 inline bool supportsSSE2()
147 {
148 #if defined(ANGLE_USE_SSE)
149     static bool checked  = false;
150     static bool supports = false;
151 
152     if (checked)
153     {
154         return supports;
155     }
156 
157 #    if defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
158     {
159         int info[4];
160         __cpuid(info, 0);
161 
162         if (info[0] >= 1)
163         {
164             __cpuid(info, 1);
165 
166             supports = (info[3] >> 26) & 1;
167         }
168     }
169 #    endif  // defined(ANGLE_PLATFORM_WINDOWS) && !defined(_M_ARM) && !defined(_M_ARM64)
170     checked = true;
171     return supports;
172 #else  // defined(ANGLE_USE_SSE)
173     return false;
174 #endif
175 }
176 
177 template <typename destType, typename sourceType>
bitCast(const sourceType & source)178 destType bitCast(const sourceType &source)
179 {
180     size_t copySize = std::min(sizeof(destType), sizeof(sourceType));
181     destType output;
182     memcpy(&output, &source, copySize);
183     return output;
184 }
185 
186 // https://stackoverflow.com/a/37581284
187 template <typename T>
normalize(T value)188 static constexpr double normalize(T value)
189 {
190     return value < 0 ? -static_cast<double>(value) / std::numeric_limits<T>::min()
191                      : static_cast<double>(value) / std::numeric_limits<T>::max();
192 }
193 
float32ToFloat16(float fp32)194 inline unsigned short float32ToFloat16(float fp32)
195 {
196     unsigned int fp32i = bitCast<unsigned int>(fp32);
197     unsigned int sign  = (fp32i & 0x80000000) >> 16;
198     unsigned int abs   = fp32i & 0x7FFFFFFF;
199 
200     if (abs > 0x7F800000)
201     {  // NaN
202         return 0x7FFF;
203     }
204     else if (abs > 0x47FFEFFF)
205     {  // Infinity
206         return static_cast<uint16_t>(sign | 0x7C00);
207     }
208     else if (abs < 0x38800000)  // Denormal
209     {
210         unsigned int mantissa = (abs & 0x007FFFFF) | 0x00800000;
211         int e                 = 113 - (abs >> 23);
212 
213         if (e < 24)
214         {
215             abs = mantissa >> e;
216         }
217         else
218         {
219             abs = 0;
220         }
221 
222         return static_cast<unsigned short>(sign | (abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
223     }
224     else
225     {
226         return static_cast<unsigned short>(
227             sign | (abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
228     }
229 }
230 
231 float float16ToFloat32(unsigned short h);
232 
233 unsigned int convertRGBFloatsTo999E5(float red, float green, float blue);
234 void convert999E5toRGBFloats(unsigned int input, float *red, float *green, float *blue);
235 
float32ToFloat11(float fp32)236 inline unsigned short float32ToFloat11(float fp32)
237 {
238     const unsigned int float32MantissaMask     = 0x7FFFFF;
239     const unsigned int float32ExponentMask     = 0x7F800000;
240     const unsigned int float32SignMask         = 0x80000000;
241     const unsigned int float32ValueMask        = ~float32SignMask;
242     const unsigned int float32ExponentFirstBit = 23;
243     const unsigned int float32ExponentBias     = 127;
244 
245     const unsigned short float11Max          = 0x7BF;
246     const unsigned short float11MantissaMask = 0x3F;
247     const unsigned short float11ExponentMask = 0x7C0;
248     const unsigned short float11BitMask      = 0x7FF;
249     const unsigned int float11ExponentBias   = 14;
250 
251     const unsigned int float32Maxfloat11       = 0x477E0000;
252     const unsigned int float32MinNormfloat11   = 0x38800000;
253     const unsigned int float32MinDenormfloat11 = 0x35000080;
254 
255     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
256     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
257 
258     unsigned int float32Val = float32Bits & float32ValueMask;
259 
260     if ((float32Val & float32ExponentMask) == float32ExponentMask)
261     {
262         // INF or NAN
263         if ((float32Val & float32MantissaMask) != 0)
264         {
265             return float11ExponentMask |
266                    (((float32Val >> 17) | (float32Val >> 11) | (float32Val >> 6) | (float32Val)) &
267                     float11MantissaMask);
268         }
269         else if (float32Sign)
270         {
271             // -INF is clamped to 0 since float11 is positive only
272             return 0;
273         }
274         else
275         {
276             return float11ExponentMask;
277         }
278     }
279     else if (float32Sign)
280     {
281         // float11 is positive only, so clamp to zero
282         return 0;
283     }
284     else if (float32Val > float32Maxfloat11)
285     {
286         // The number is too large to be represented as a float11, set to max
287         return float11Max;
288     }
289     else if (float32Val < float32MinDenormfloat11)
290     {
291         // The number is too small to be represented as a denormalized float11, set to 0
292         return 0;
293     }
294     else
295     {
296         if (float32Val < float32MinNormfloat11)
297         {
298             // The number is too small to be represented as a normalized float11
299             // Convert it to a denormalized value.
300             const unsigned int shift = (float32ExponentBias - float11ExponentBias) -
301                                        (float32Val >> float32ExponentFirstBit);
302             float32Val =
303                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
304         }
305         else
306         {
307             // Rebias the exponent to represent the value as a normalized float11
308             float32Val += 0xC8000000;
309         }
310 
311         return ((float32Val + 0xFFFF + ((float32Val >> 17) & 1)) >> 17) & float11BitMask;
312     }
313 }
314 
float32ToFloat10(float fp32)315 inline unsigned short float32ToFloat10(float fp32)
316 {
317     const unsigned int float32MantissaMask     = 0x7FFFFF;
318     const unsigned int float32ExponentMask     = 0x7F800000;
319     const unsigned int float32SignMask         = 0x80000000;
320     const unsigned int float32ValueMask        = ~float32SignMask;
321     const unsigned int float32ExponentFirstBit = 23;
322     const unsigned int float32ExponentBias     = 127;
323 
324     const unsigned short float10Max          = 0x3DF;
325     const unsigned short float10MantissaMask = 0x1F;
326     const unsigned short float10ExponentMask = 0x3E0;
327     const unsigned short float10BitMask      = 0x3FF;
328     const unsigned int float10ExponentBias   = 14;
329 
330     const unsigned int float32Maxfloat10       = 0x477C0000;
331     const unsigned int float32MinNormfloat10   = 0x38800000;
332     const unsigned int float32MinDenormfloat10 = 0x35800040;
333 
334     const unsigned int float32Bits = bitCast<unsigned int>(fp32);
335     const bool float32Sign         = (float32Bits & float32SignMask) == float32SignMask;
336 
337     unsigned int float32Val = float32Bits & float32ValueMask;
338 
339     if ((float32Val & float32ExponentMask) == float32ExponentMask)
340     {
341         // INF or NAN
342         if ((float32Val & float32MantissaMask) != 0)
343         {
344             return float10ExponentMask |
345                    (((float32Val >> 18) | (float32Val >> 13) | (float32Val >> 3) | (float32Val)) &
346                     float10MantissaMask);
347         }
348         else if (float32Sign)
349         {
350             // -INF is clamped to 0 since float10 is positive only
351             return 0;
352         }
353         else
354         {
355             return float10ExponentMask;
356         }
357     }
358     else if (float32Sign)
359     {
360         // float10 is positive only, so clamp to zero
361         return 0;
362     }
363     else if (float32Val > float32Maxfloat10)
364     {
365         // The number is too large to be represented as a float10, set to max
366         return float10Max;
367     }
368     else if (float32Val < float32MinDenormfloat10)
369     {
370         // The number is too small to be represented as a denormalized float10, set to 0
371         return 0;
372     }
373     else
374     {
375         if (float32Val < float32MinNormfloat10)
376         {
377             // The number is too small to be represented as a normalized float10
378             // Convert it to a denormalized value.
379             const unsigned int shift = (float32ExponentBias - float10ExponentBias) -
380                                        (float32Val >> float32ExponentFirstBit);
381             float32Val =
382                 ((1 << float32ExponentFirstBit) | (float32Val & float32MantissaMask)) >> shift;
383         }
384         else
385         {
386             // Rebias the exponent to represent the value as a normalized float10
387             float32Val += 0xC8000000;
388         }
389 
390         return ((float32Val + 0x1FFFF + ((float32Val >> 18) & 1)) >> 18) & float10BitMask;
391     }
392 }
393 
float11ToFloat32(unsigned short fp11)394 inline float float11ToFloat32(unsigned short fp11)
395 {
396     unsigned short exponent = (fp11 >> 6) & 0x1F;
397     unsigned short mantissa = fp11 & 0x3F;
398 
399     if (exponent == 0x1F)
400     {
401         // INF or NAN
402         return bitCast<float>(0x7f800000 | (mantissa << 17));
403     }
404     else
405     {
406         if (exponent != 0)
407         {
408             // normalized
409         }
410         else if (mantissa != 0)
411         {
412             // The value is denormalized
413             exponent = 1;
414 
415             do
416             {
417                 exponent--;
418                 mantissa <<= 1;
419             } while ((mantissa & 0x40) == 0);
420 
421             mantissa = mantissa & 0x3F;
422         }
423         else  // The value is zero
424         {
425             exponent = static_cast<unsigned short>(-112);
426         }
427 
428         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 17));
429     }
430 }
431 
float10ToFloat32(unsigned short fp10)432 inline float float10ToFloat32(unsigned short fp10)
433 {
434     unsigned short exponent = (fp10 >> 5) & 0x1F;
435     unsigned short mantissa = fp10 & 0x1F;
436 
437     if (exponent == 0x1F)
438     {
439         // INF or NAN
440         return bitCast<float>(0x7f800000 | (mantissa << 17));
441     }
442     else
443     {
444         if (exponent != 0)
445         {
446             // normalized
447         }
448         else if (mantissa != 0)
449         {
450             // The value is denormalized
451             exponent = 1;
452 
453             do
454             {
455                 exponent--;
456                 mantissa <<= 1;
457             } while ((mantissa & 0x20) == 0);
458 
459             mantissa = mantissa & 0x1F;
460         }
461         else  // The value is zero
462         {
463             exponent = static_cast<unsigned short>(-112);
464         }
465 
466         return bitCast<float>(((exponent + 112) << 23) | (mantissa << 18));
467     }
468 }
469 
470 // Convers to and from float and 16.16 fixed point format.
471 
ConvertFixedToFloat(uint32_t fixedInput)472 inline float ConvertFixedToFloat(uint32_t fixedInput)
473 {
474     return static_cast<float>(fixedInput) / 65536.0f;
475 }
476 
ConvertFloatToFixed(float floatInput)477 inline uint32_t ConvertFloatToFixed(float floatInput)
478 {
479     static constexpr uint32_t kHighest = 32767 * 65536 + 65535;
480     static constexpr uint32_t kLowest  = static_cast<uint32_t>(-32768 * 65536 + 65535);
481 
482     if (floatInput > 32767.65535)
483     {
484         return kHighest;
485     }
486     else if (floatInput < -32768.65535)
487     {
488         return kLowest;
489     }
490     else
491     {
492         return static_cast<uint32_t>(floatInput * 65536);
493     }
494 }
495 
496 template <typename T>
normalizedToFloat(T input)497 inline float normalizedToFloat(T input)
498 {
499     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
500 
501     if (sizeof(T) > 2)
502     {
503         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
504         constexpr double inverseMax = 1.0 / std::numeric_limits<T>::max();
505         return static_cast<float>(input * inverseMax);
506     }
507     else
508     {
509         constexpr float inverseMax = 1.0f / std::numeric_limits<T>::max();
510         return input * inverseMax;
511     }
512 }
513 
514 template <unsigned int inputBitCount, typename T>
normalizedToFloat(T input)515 inline float normalizedToFloat(T input)
516 {
517     static_assert(std::numeric_limits<T>::is_integer, "T must be an integer.");
518     static_assert(inputBitCount < (sizeof(T) * 8), "T must have more bits than inputBitCount.");
519     ASSERT((input & ~((1 << inputBitCount) - 1)) == 0);
520 
521     if (inputBitCount > 23)
522     {
523         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
524         constexpr double inverseMax = 1.0 / ((1 << inputBitCount) - 1);
525         return static_cast<float>(input * inverseMax);
526     }
527     else
528     {
529         constexpr float inverseMax = 1.0f / ((1 << inputBitCount) - 1);
530         return input * inverseMax;
531     }
532 }
533 
534 template <typename T>
floatToNormalized(float input)535 inline T floatToNormalized(float input)
536 {
537     if (sizeof(T) > 2)
538     {
539         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
540         return static_cast<T>(std::numeric_limits<T>::max() * static_cast<double>(input) + 0.5);
541     }
542     else
543     {
544         return static_cast<T>(std::numeric_limits<T>::max() * input + 0.5f);
545     }
546 }
547 
548 template <unsigned int outputBitCount, typename T>
floatToNormalized(float input)549 inline T floatToNormalized(float input)
550 {
551     static_assert(outputBitCount < (sizeof(T) * 8), "T must have more bits than outputBitCount.");
552 
553     if (outputBitCount > 23)
554     {
555         // float has only a 23 bit mantissa, so we need to do the calculation in double precision
556         return static_cast<T>(((1 << outputBitCount) - 1) * static_cast<double>(input) + 0.5);
557     }
558     else
559     {
560         return static_cast<T>(((1 << outputBitCount) - 1) * input + 0.5f);
561     }
562 }
563 
564 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
getShiftedData(T input)565 inline T getShiftedData(T input)
566 {
567     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
568                   "T must have at least as many bits as inputBitCount + inputBitStart.");
569     const T mask = (1 << inputBitCount) - 1;
570     return (input >> inputBitStart) & mask;
571 }
572 
573 template <unsigned int inputBitCount, unsigned int inputBitStart, typename T>
shiftData(T input)574 inline T shiftData(T input)
575 {
576     static_assert(inputBitCount + inputBitStart <= (sizeof(T) * 8),
577                   "T must have at least as many bits as inputBitCount + inputBitStart.");
578     const T mask = (1 << inputBitCount) - 1;
579     return (input & mask) << inputBitStart;
580 }
581 
CountLeadingZeros(uint32_t x)582 inline unsigned int CountLeadingZeros(uint32_t x)
583 {
584     // Use binary search to find the amount of leading zeros.
585     unsigned int zeros = 32u;
586     uint32_t y;
587 
588     y = x >> 16u;
589     if (y != 0)
590     {
591         zeros = zeros - 16u;
592         x     = y;
593     }
594     y = x >> 8u;
595     if (y != 0)
596     {
597         zeros = zeros - 8u;
598         x     = y;
599     }
600     y = x >> 4u;
601     if (y != 0)
602     {
603         zeros = zeros - 4u;
604         x     = y;
605     }
606     y = x >> 2u;
607     if (y != 0)
608     {
609         zeros = zeros - 2u;
610         x     = y;
611     }
612     y = x >> 1u;
613     if (y != 0)
614     {
615         return zeros - 2u;
616     }
617     return zeros - x;
618 }
619 
average(unsigned char a,unsigned char b)620 inline unsigned char average(unsigned char a, unsigned char b)
621 {
622     return ((a ^ b) >> 1) + (a & b);
623 }
624 
average(signed char a,signed char b)625 inline signed char average(signed char a, signed char b)
626 {
627     return ((short)a + (short)b) / 2;
628 }
629 
average(unsigned short a,unsigned short b)630 inline unsigned short average(unsigned short a, unsigned short b)
631 {
632     return ((a ^ b) >> 1) + (a & b);
633 }
634 
average(signed short a,signed short b)635 inline signed short average(signed short a, signed short b)
636 {
637     return ((int)a + (int)b) / 2;
638 }
639 
average(unsigned int a,unsigned int b)640 inline unsigned int average(unsigned int a, unsigned int b)
641 {
642     return ((a ^ b) >> 1) + (a & b);
643 }
644 
average(int a,int b)645 inline int average(int a, int b)
646 {
647     long long average = (static_cast<long long>(a) + static_cast<long long>(b)) / 2ll;
648     return static_cast<int>(average);
649 }
650 
average(float a,float b)651 inline float average(float a, float b)
652 {
653     return (a + b) * 0.5f;
654 }
655 
averageHalfFloat(unsigned short a,unsigned short b)656 inline unsigned short averageHalfFloat(unsigned short a, unsigned short b)
657 {
658     return float32ToFloat16((float16ToFloat32(a) + float16ToFloat32(b)) * 0.5f);
659 }
660 
averageFloat11(unsigned int a,unsigned int b)661 inline unsigned int averageFloat11(unsigned int a, unsigned int b)
662 {
663     return float32ToFloat11((float11ToFloat32(static_cast<unsigned short>(a)) +
664                              float11ToFloat32(static_cast<unsigned short>(b))) *
665                             0.5f);
666 }
667 
averageFloat10(unsigned int a,unsigned int b)668 inline unsigned int averageFloat10(unsigned int a, unsigned int b)
669 {
670     return float32ToFloat10((float10ToFloat32(static_cast<unsigned short>(a)) +
671                              float10ToFloat32(static_cast<unsigned short>(b))) *
672                             0.5f);
673 }
674 
675 template <typename T>
676 class Range
677 {
678   public:
Range()679     Range() {}
Range(T lo,T hi)680     Range(T lo, T hi) : mLow(lo), mHigh(hi) {}
681 
length()682     T length() const { return (empty() ? 0 : (mHigh - mLow)); }
683 
intersects(Range<T> other)684     bool intersects(Range<T> other)
685     {
686         if (mLow <= other.mLow)
687         {
688             return other.mLow < mHigh;
689         }
690         else
691         {
692             return mLow < other.mHigh;
693         }
694     }
695 
696     // Assumes that end is non-inclusive.. for example, extending to 5 will make "end" 6.
extend(T value)697     void extend(T value)
698     {
699         mLow  = value < mLow ? value : mLow;
700         mHigh = value >= mHigh ? (value + 1) : mHigh;
701     }
702 
empty()703     bool empty() const { return mHigh <= mLow; }
704 
contains(T value)705     bool contains(T value) const { return value >= mLow && value < mHigh; }
706 
707     class Iterator final
708     {
709       public:
Iterator(T value)710         Iterator(T value) : mCurrent(value) {}
711 
712         Iterator &operator++()
713         {
714             mCurrent++;
715             return *this;
716         }
717         bool operator==(const Iterator &other) const { return mCurrent == other.mCurrent; }
718         bool operator!=(const Iterator &other) const { return mCurrent != other.mCurrent; }
719         T operator*() const { return mCurrent; }
720 
721       private:
722         T mCurrent;
723     };
724 
begin()725     Iterator begin() const { return Iterator(mLow); }
726 
end()727     Iterator end() const { return Iterator(mHigh); }
728 
low()729     T low() const { return mLow; }
high()730     T high() const { return mHigh; }
731 
invalidate()732     void invalidate()
733     {
734         mLow  = std::numeric_limits<T>::max();
735         mHigh = std::numeric_limits<T>::min();
736     }
737 
738   private:
739     T mLow;
740     T mHigh;
741 };
742 
743 typedef Range<int> RangeI;
744 typedef Range<unsigned int> RangeUI;
745 
746 struct IndexRange
747 {
748     struct Undefined
749     {};
IndexRangeIndexRange750     IndexRange(Undefined) {}
IndexRangeIndexRange751     IndexRange() : IndexRange(0, 0, 0) {}
IndexRangeIndexRange752     IndexRange(size_t start_, size_t end_, size_t vertexIndexCount_)
753         : start(start_), end(end_), vertexIndexCount(vertexIndexCount_)
754     {
755         ASSERT(start <= end);
756     }
757 
758     // Number of vertices in the range.
vertexCountIndexRange759     size_t vertexCount() const { return (end - start) + 1; }
760 
761     // Inclusive range of indices that are not primitive restart
762     size_t start;
763     size_t end;
764 
765     // Number of non-primitive restart indices
766     size_t vertexIndexCount;
767 };
768 
769 // Combine a floating-point value representing a mantissa (x) and an integer exponent (exp) into a
770 // floating-point value. As in GLSL ldexp() built-in.
Ldexp(float x,int exp)771 inline float Ldexp(float x, int exp)
772 {
773     if (exp > 128)
774     {
775         return std::numeric_limits<float>::infinity();
776     }
777     if (exp < -126)
778     {
779         return 0.0f;
780     }
781     double result = static_cast<double>(x) * std::pow(2.0, static_cast<double>(exp));
782     return static_cast<float>(result);
783 }
784 
785 // First, both normalized floating-point values are converted into 16-bit integer values.
786 // Then, the results are packed into the returned 32-bit unsigned integer.
787 // The first float value will be written to the least significant bits of the output;
788 // the last float value will be written to the most significant bits.
789 // The conversion of each value to fixed point is done as follows :
790 // packSnorm2x16 : round(clamp(c, -1, +1) * 32767.0)
packSnorm2x16(float f1,float f2)791 inline uint32_t packSnorm2x16(float f1, float f2)
792 {
793     int16_t leastSignificantBits = static_cast<int16_t>(roundf(clamp(f1, -1.0f, 1.0f) * 32767.0f));
794     int16_t mostSignificantBits  = static_cast<int16_t>(roundf(clamp(f2, -1.0f, 1.0f) * 32767.0f));
795     return static_cast<uint32_t>(mostSignificantBits) << 16 |
796            (static_cast<uint32_t>(leastSignificantBits) & 0xFFFF);
797 }
798 
799 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
800 // each component is converted to a normalized floating-point value to generate the returned two
801 // float values. The first float value will be extracted from the least significant bits of the
802 // input; the last float value will be extracted from the most-significant bits. The conversion for
803 // unpacked fixed-point value to floating point is done as follows: unpackSnorm2x16 : clamp(f /
804 // 32767.0, -1, +1)
unpackSnorm2x16(uint32_t u,float * f1,float * f2)805 inline void unpackSnorm2x16(uint32_t u, float *f1, float *f2)
806 {
807     int16_t leastSignificantBits = static_cast<int16_t>(u & 0xFFFF);
808     int16_t mostSignificantBits  = static_cast<int16_t>(u >> 16);
809     *f1 = clamp(static_cast<float>(leastSignificantBits) / 32767.0f, -1.0f, 1.0f);
810     *f2 = clamp(static_cast<float>(mostSignificantBits) / 32767.0f, -1.0f, 1.0f);
811 }
812 
813 // First, both normalized floating-point values are converted into 16-bit integer values.
814 // Then, the results are packed into the returned 32-bit unsigned integer.
815 // The first float value will be written to the least significant bits of the output;
816 // the last float value will be written to the most significant bits.
817 // The conversion of each value to fixed point is done as follows:
818 // packUnorm2x16 : round(clamp(c, 0, +1) * 65535.0)
packUnorm2x16(float f1,float f2)819 inline uint32_t packUnorm2x16(float f1, float f2)
820 {
821     uint16_t leastSignificantBits = static_cast<uint16_t>(roundf(clamp(f1, 0.0f, 1.0f) * 65535.0f));
822     uint16_t mostSignificantBits  = static_cast<uint16_t>(roundf(clamp(f2, 0.0f, 1.0f) * 65535.0f));
823     return static_cast<uint32_t>(mostSignificantBits) << 16 |
824            static_cast<uint32_t>(leastSignificantBits);
825 }
826 
827 // First, unpacks a single 32-bit unsigned integer u into a pair of 16-bit unsigned integers. Then,
828 // each component is converted to a normalized floating-point value to generate the returned two
829 // float values. The first float value will be extracted from the least significant bits of the
830 // input; the last float value will be extracted from the most-significant bits. The conversion for
831 // unpacked fixed-point value to floating point is done as follows: unpackUnorm2x16 : f / 65535.0
unpackUnorm2x16(uint32_t u,float * f1,float * f2)832 inline void unpackUnorm2x16(uint32_t u, float *f1, float *f2)
833 {
834     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
835     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
836     *f1                           = static_cast<float>(leastSignificantBits) / 65535.0f;
837     *f2                           = static_cast<float>(mostSignificantBits) / 65535.0f;
838 }
839 
840 // Helper functions intended to be used only here.
841 namespace priv
842 {
843 
ToPackedUnorm8(float f)844 inline uint8_t ToPackedUnorm8(float f)
845 {
846     return static_cast<uint8_t>(roundf(clamp(f, 0.0f, 1.0f) * 255.0f));
847 }
848 
ToPackedSnorm8(float f)849 inline int8_t ToPackedSnorm8(float f)
850 {
851     return static_cast<int8_t>(roundf(clamp(f, -1.0f, 1.0f) * 127.0f));
852 }
853 
854 }  // namespace priv
855 
856 // Packs 4 normalized unsigned floating-point values to a single 32-bit unsigned integer. Works
857 // similarly to packUnorm2x16. The floats are clamped to the range 0.0 to 1.0, and written to the
858 // unsigned integer starting from the least significant bits.
PackUnorm4x8(float f1,float f2,float f3,float f4)859 inline uint32_t PackUnorm4x8(float f1, float f2, float f3, float f4)
860 {
861     uint8_t bits[4];
862     bits[0]         = priv::ToPackedUnorm8(f1);
863     bits[1]         = priv::ToPackedUnorm8(f2);
864     bits[2]         = priv::ToPackedUnorm8(f3);
865     bits[3]         = priv::ToPackedUnorm8(f4);
866     uint32_t result = 0u;
867     for (int i = 0; i < 4; ++i)
868     {
869         int shift = i * 8;
870         result |= (static_cast<uint32_t>(bits[i]) << shift);
871     }
872     return result;
873 }
874 
875 // Unpacks 4 normalized unsigned floating-point values from a single 32-bit unsigned integer into f.
876 // Works similarly to unpackUnorm2x16. The floats are unpacked starting from the least significant
877 // bits.
UnpackUnorm4x8(uint32_t u,float * f)878 inline void UnpackUnorm4x8(uint32_t u, float *f)
879 {
880     for (int i = 0; i < 4; ++i)
881     {
882         int shift    = i * 8;
883         uint8_t bits = static_cast<uint8_t>((u >> shift) & 0xFF);
884         f[i]         = static_cast<float>(bits) / 255.0f;
885     }
886 }
887 
888 // Packs 4 normalized signed floating-point values to a single 32-bit unsigned integer. The floats
889 // are clamped to the range -1.0 to 1.0, and written to the unsigned integer starting from the least
890 // significant bits.
PackSnorm4x8(float f1,float f2,float f3,float f4)891 inline uint32_t PackSnorm4x8(float f1, float f2, float f3, float f4)
892 {
893     int8_t bits[4];
894     bits[0]         = priv::ToPackedSnorm8(f1);
895     bits[1]         = priv::ToPackedSnorm8(f2);
896     bits[2]         = priv::ToPackedSnorm8(f3);
897     bits[3]         = priv::ToPackedSnorm8(f4);
898     uint32_t result = 0u;
899     for (int i = 0; i < 4; ++i)
900     {
901         int shift = i * 8;
902         result |= ((static_cast<uint32_t>(bits[i]) & 0xFF) << shift);
903     }
904     return result;
905 }
906 
907 // Unpacks 4 normalized signed floating-point values from a single 32-bit unsigned integer into f.
908 // Works similarly to unpackSnorm2x16. The floats are unpacked starting from the least significant
909 // bits, and clamped to the range -1.0 to 1.0.
UnpackSnorm4x8(uint32_t u,float * f)910 inline void UnpackSnorm4x8(uint32_t u, float *f)
911 {
912     for (int i = 0; i < 4; ++i)
913     {
914         int shift   = i * 8;
915         int8_t bits = static_cast<int8_t>((u >> shift) & 0xFF);
916         f[i]        = clamp(static_cast<float>(bits) / 127.0f, -1.0f, 1.0f);
917     }
918 }
919 
920 // Returns an unsigned integer obtained by converting the two floating-point values to the 16-bit
921 // floating-point representation found in the OpenGL ES Specification, and then packing these
922 // two 16-bit integers into a 32-bit unsigned integer.
923 // f1: The 16 least-significant bits of the result;
924 // f2: The 16 most-significant bits.
packHalf2x16(float f1,float f2)925 inline uint32_t packHalf2x16(float f1, float f2)
926 {
927     uint16_t leastSignificantBits = static_cast<uint16_t>(float32ToFloat16(f1));
928     uint16_t mostSignificantBits  = static_cast<uint16_t>(float32ToFloat16(f2));
929     return static_cast<uint32_t>(mostSignificantBits) << 16 |
930            static_cast<uint32_t>(leastSignificantBits);
931 }
932 
933 // Returns two floating-point values obtained by unpacking a 32-bit unsigned integer into a pair of
934 // 16-bit values, interpreting those values as 16-bit floating-point numbers according to the OpenGL
935 // ES Specification, and converting them to 32-bit floating-point values. The first float value is
936 // obtained from the 16 least-significant bits of u; the second component is obtained from the 16
937 // most-significant bits of u.
unpackHalf2x16(uint32_t u,float * f1,float * f2)938 inline void unpackHalf2x16(uint32_t u, float *f1, float *f2)
939 {
940     uint16_t leastSignificantBits = static_cast<uint16_t>(u & 0xFFFF);
941     uint16_t mostSignificantBits  = static_cast<uint16_t>(u >> 16);
942 
943     *f1 = float16ToFloat32(leastSignificantBits);
944     *f2 = float16ToFloat32(mostSignificantBits);
945 }
946 
sRGBToLinear(uint8_t srgbValue)947 inline uint8_t sRGBToLinear(uint8_t srgbValue)
948 {
949     float value = srgbValue / 255.0f;
950     if (value <= 0.04045f)
951     {
952         value = value / 12.92f;
953     }
954     else
955     {
956         value = std::pow((value + 0.055f) / 1.055f, 2.4f);
957     }
958     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
959 }
960 
linearToSRGB(uint8_t linearValue)961 inline uint8_t linearToSRGB(uint8_t linearValue)
962 {
963     float value = linearValue / 255.0f;
964     if (value <= 0.0f)
965     {
966         value = 0.0f;
967     }
968     else if (value < 0.0031308f)
969     {
970         value = value * 12.92f;
971     }
972     else if (value < 1.0f)
973     {
974         value = std::pow(value, 0.41666f) * 1.055f - 0.055f;
975     }
976     else
977     {
978         value = 1.0f;
979     }
980     return static_cast<uint8_t>(clamp(value * 255.0f + 0.5f, 0.0f, 255.0f));
981 }
982 
983 // Reverse the order of the bits.
BitfieldReverse(uint32_t value)984 inline uint32_t BitfieldReverse(uint32_t value)
985 {
986     // TODO(oetuaho@nvidia.com): Optimize this if needed. There don't seem to be compiler intrinsics
987     // for this, and right now it's not used in performance-critical paths.
988     uint32_t result = 0u;
989     for (size_t j = 0u; j < 32u; ++j)
990     {
991         result |= (((value >> j) & 1u) << (31u - j));
992     }
993     return result;
994 }
995 
996 // Count the 1 bits.
997 #if defined(_MSC_VER) && !defined(__clang__)
998 #    if defined(_M_IX86) || defined(_M_X64)
999 namespace priv
1000 {
1001 // Check POPCNT instruction support and cache the result.
1002 // https://docs.microsoft.com/en-us/cpp/intrinsics/popcnt16-popcnt-popcnt64#remarks
1003 static const bool kHasPopcnt = [] {
1004     int info[4];
1005     __cpuid(&info[0], 1);
1006     return static_cast<bool>(info[2] & 0x800000);
1007 }();
1008 }  // namespace priv
1009 
1010 // Polyfills for x86/x64 CPUs without POPCNT.
1011 // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
BitCountPolyfill(uint32_t bits)1012 inline int BitCountPolyfill(uint32_t bits)
1013 {
1014     bits = bits - ((bits >> 1) & 0x55555555);
1015     bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333);
1016     bits = ((bits + (bits >> 4) & 0x0F0F0F0F) * 0x01010101) >> 24;
1017     return static_cast<int>(bits);
1018 }
1019 
BitCountPolyfill(uint64_t bits)1020 inline int BitCountPolyfill(uint64_t bits)
1021 {
1022     bits = bits - ((bits >> 1) & 0x5555555555555555ull);
1023     bits = (bits & 0x3333333333333333ull) + ((bits >> 2) & 0x3333333333333333ull);
1024     bits = ((bits + (bits >> 4) & 0x0F0F0F0F0F0F0F0Full) * 0x0101010101010101ull) >> 56;
1025     return static_cast<int>(bits);
1026 }
1027 
BitCount(uint32_t bits)1028 inline int BitCount(uint32_t bits)
1029 {
1030     if (priv::kHasPopcnt)
1031     {
1032         return static_cast<int>(__popcnt(bits));
1033     }
1034     return BitCountPolyfill(bits);
1035 }
1036 
BitCount(uint64_t bits)1037 inline int BitCount(uint64_t bits)
1038 {
1039     if (priv::kHasPopcnt)
1040     {
1041 #        if defined(_M_X64)
1042         return static_cast<int>(__popcnt64(bits));
1043 #        else   // x86
1044         return static_cast<int>(__popcnt(static_cast<uint32_t>(bits >> 32)) +
1045                                 __popcnt(static_cast<uint32_t>(bits)));
1046 #        endif  // defined(_M_X64)
1047     }
1048     return BitCountPolyfill(bits);
1049 }
1050 
1051 #    elif defined(_M_ARM) || defined(_M_ARM64)
1052 
1053 // MSVC's _CountOneBits* intrinsics are not defined for ARM64, moreover they do not use dedicated
1054 // NEON instructions.
1055 
BitCount(uint32_t bits)1056 inline int BitCount(uint32_t bits)
1057 {
1058     // cast bits to 8x8 datatype and use VCNT on it
1059     const uint8x8_t vsum = vcnt_u8(vcreate_u8(static_cast<uint64_t>(bits)));
1060 
1061     // pairwise sums: 8x8 -> 16x4 -> 32x2
1062     return static_cast<int>(vget_lane_u32(vpaddl_u16(vpaddl_u8(vsum)), 0));
1063 }
1064 
BitCount(uint64_t bits)1065 inline int BitCount(uint64_t bits)
1066 {
1067     // cast bits to 8x8 datatype and use VCNT on it
1068     const uint8x8_t vsum = vcnt_u8(vcreate_u8(bits));
1069 
1070     // pairwise sums: 8x8 -> 16x4 -> 32x2 -> 64x1
1071     return static_cast<int>(vget_lane_u64(vpaddl_u32(vpaddl_u16(vpaddl_u8(vsum))), 0));
1072 }
1073 #    endif  // defined(_M_IX86) || defined(_M_X64)
1074 #endif      // defined(_MSC_VER) && !defined(__clang__)
1075 
1076 #if defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
BitCount(uint32_t bits)1077 inline int BitCount(uint32_t bits)
1078 {
1079     return __builtin_popcount(bits);
1080 }
1081 
BitCount(uint64_t bits)1082 inline int BitCount(uint64_t bits)
1083 {
1084     return __builtin_popcountll(bits);
1085 }
1086 #endif  // defined(ANGLE_PLATFORM_POSIX) || defined(__clang__)
1087 
BitCount(uint8_t bits)1088 inline int BitCount(uint8_t bits)
1089 {
1090     return BitCount(static_cast<uint32_t>(bits));
1091 }
1092 
BitCount(uint16_t bits)1093 inline int BitCount(uint16_t bits)
1094 {
1095     return BitCount(static_cast<uint32_t>(bits));
1096 }
1097 
1098 #if defined(ANGLE_PLATFORM_WINDOWS)
1099 // Return the index of the least significant bit set. Indexing is such that bit 0 is the least
1100 // significant bit. Implemented for different bit widths on different platforms.
ScanForward(uint32_t bits)1101 inline unsigned long ScanForward(uint32_t bits)
1102 {
1103     ASSERT(bits != 0u);
1104     unsigned long firstBitIndex = 0ul;
1105     unsigned char ret           = _BitScanForward(&firstBitIndex, bits);
1106     ASSERT(ret != 0u);
1107     return firstBitIndex;
1108 }
1109 
ScanForward(uint64_t bits)1110 inline unsigned long ScanForward(uint64_t bits)
1111 {
1112     ASSERT(bits != 0u);
1113     unsigned long firstBitIndex = 0ul;
1114 #    if defined(ANGLE_IS_64_BIT_CPU)
1115     unsigned char ret = _BitScanForward64(&firstBitIndex, bits);
1116 #    else
1117     unsigned char ret;
1118     if (static_cast<uint32_t>(bits) == 0)
1119     {
1120         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits >> 32));
1121         firstBitIndex += 32ul;
1122     }
1123     else
1124     {
1125         ret = _BitScanForward(&firstBitIndex, static_cast<uint32_t>(bits));
1126     }
1127 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1128     ASSERT(ret != 0u);
1129     return firstBitIndex;
1130 }
1131 
1132 // Return the index of the most significant bit set. Indexing is such that bit 0 is the least
1133 // significant bit.
ScanReverse(uint32_t bits)1134 inline unsigned long ScanReverse(uint32_t bits)
1135 {
1136     ASSERT(bits != 0u);
1137     unsigned long lastBitIndex = 0ul;
1138     unsigned char ret          = _BitScanReverse(&lastBitIndex, bits);
1139     ASSERT(ret != 0u);
1140     return lastBitIndex;
1141 }
1142 
ScanReverse(uint64_t bits)1143 inline unsigned long ScanReverse(uint64_t bits)
1144 {
1145     ASSERT(bits != 0u);
1146     unsigned long lastBitIndex = 0ul;
1147 #    if defined(ANGLE_IS_64_BIT_CPU)
1148     unsigned char ret = _BitScanReverse64(&lastBitIndex, bits);
1149 #    else
1150     unsigned char ret;
1151     if (static_cast<uint32_t>(bits >> 32) == 0)
1152     {
1153         ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits));
1154     }
1155     else
1156     {
1157         ret = _BitScanReverse(&lastBitIndex, static_cast<uint32_t>(bits >> 32));
1158         lastBitIndex += 32ul;
1159     }
1160 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1161     ASSERT(ret != 0u);
1162     return lastBitIndex;
1163 }
1164 #endif  // defined(ANGLE_PLATFORM_WINDOWS)
1165 
1166 #if defined(ANGLE_PLATFORM_POSIX)
ScanForward(uint32_t bits)1167 inline unsigned long ScanForward(uint32_t bits)
1168 {
1169     ASSERT(bits != 0u);
1170     return static_cast<unsigned long>(__builtin_ctz(bits));
1171 }
1172 
ScanForward(uint64_t bits)1173 inline unsigned long ScanForward(uint64_t bits)
1174 {
1175     ASSERT(bits != 0u);
1176 #    if defined(ANGLE_IS_64_BIT_CPU)
1177     return static_cast<unsigned long>(__builtin_ctzll(bits));
1178 #    else
1179     return static_cast<unsigned long>(static_cast<uint32_t>(bits) == 0
1180                                           ? __builtin_ctz(static_cast<uint32_t>(bits >> 32)) + 32
1181                                           : __builtin_ctz(static_cast<uint32_t>(bits)));
1182 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1183 }
1184 
ScanReverse(uint32_t bits)1185 inline unsigned long ScanReverse(uint32_t bits)
1186 {
1187     ASSERT(bits != 0u);
1188     return static_cast<unsigned long>(sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(bits));
1189 }
1190 
ScanReverse(uint64_t bits)1191 inline unsigned long ScanReverse(uint64_t bits)
1192 {
1193     ASSERT(bits != 0u);
1194 #    if defined(ANGLE_IS_64_BIT_CPU)
1195     return static_cast<unsigned long>(sizeof(uint64_t) * CHAR_BIT - 1 - __builtin_clzll(bits));
1196 #    else
1197     if (static_cast<uint32_t>(bits >> 32) == 0)
1198     {
1199         return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits));
1200     }
1201     else
1202     {
1203         return sizeof(uint32_t) * CHAR_BIT - 1 - __builtin_clz(static_cast<uint32_t>(bits >> 32)) +
1204                32;
1205     }
1206 #    endif  // defined(ANGLE_IS_64_BIT_CPU)
1207 }
1208 #endif  // defined(ANGLE_PLATFORM_POSIX)
1209 
ScanForward(uint8_t bits)1210 inline unsigned long ScanForward(uint8_t bits)
1211 {
1212     return ScanForward(static_cast<uint32_t>(bits));
1213 }
1214 
ScanForward(uint16_t bits)1215 inline unsigned long ScanForward(uint16_t bits)
1216 {
1217     return ScanForward(static_cast<uint32_t>(bits));
1218 }
1219 
ScanReverse(uint8_t bits)1220 inline unsigned long ScanReverse(uint8_t bits)
1221 {
1222     return ScanReverse(static_cast<uint32_t>(bits));
1223 }
1224 
ScanReverse(uint16_t bits)1225 inline unsigned long ScanReverse(uint16_t bits)
1226 {
1227     return ScanReverse(static_cast<uint32_t>(bits));
1228 }
1229 
1230 // Returns -1 on 0, otherwise the index of the least significant 1 bit as in GLSL.
1231 template <typename T>
FindLSB(T bits)1232 int FindLSB(T bits)
1233 {
1234     static_assert(std::is_integral<T>::value, "must be integral type.");
1235     if (bits == 0u)
1236     {
1237         return -1;
1238     }
1239     else
1240     {
1241         return static_cast<int>(ScanForward(bits));
1242     }
1243 }
1244 
1245 // Returns -1 on 0, otherwise the index of the most significant 1 bit as in GLSL.
1246 template <typename T>
FindMSB(T bits)1247 int FindMSB(T bits)
1248 {
1249     static_assert(std::is_integral<T>::value, "must be integral type.");
1250     if (bits == 0u)
1251     {
1252         return -1;
1253     }
1254     else
1255     {
1256         return static_cast<int>(ScanReverse(bits));
1257     }
1258 }
1259 
1260 // Returns whether the argument is Not a Number.
1261 // IEEE 754 single precision NaN representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1262 // non-zero.
isNaN(float f)1263 inline bool isNaN(float f)
1264 {
1265     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1266     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1267     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1268            (bitCast<uint32_t>(f) & 0x7fffffu);
1269 }
1270 
1271 // Returns whether the argument is infinity.
1272 // IEEE 754 single precision infinity representation: Exponent(8 bits) - 255, Mantissa(23 bits) -
1273 // zero.
isInf(float f)1274 inline bool isInf(float f)
1275 {
1276     // Exponent mask: ((1u << 8) - 1u) << 23 = 0x7f800000u
1277     // Mantissa mask: ((1u << 23) - 1u) = 0x7fffffu
1278     return ((bitCast<uint32_t>(f) & 0x7f800000u) == 0x7f800000u) &&
1279            !(bitCast<uint32_t>(f) & 0x7fffffu);
1280 }
1281 
1282 namespace priv
1283 {
1284 template <unsigned int N, unsigned int R>
1285 struct iSquareRoot
1286 {
solveiSquareRoot1287     static constexpr unsigned int solve()
1288     {
1289         return (R * R > N)
1290                    ? 0
1291                    : ((R * R == N) ? R : static_cast<unsigned int>(iSquareRoot<N, R + 1>::value));
1292     }
1293     enum Result
1294     {
1295         value = iSquareRoot::solve()
1296     };
1297 };
1298 
1299 template <unsigned int N>
1300 struct iSquareRoot<N, N>
1301 {
1302     enum result
1303     {
1304         value = N
1305     };
1306 };
1307 
1308 }  // namespace priv
1309 
1310 template <unsigned int N>
1311 constexpr unsigned int iSquareRoot()
1312 {
1313     return priv::iSquareRoot<N, 1>::value;
1314 }
1315 
1316 // Sum, difference and multiplication operations for signed ints that wrap on 32-bit overflow.
1317 //
1318 // Unsigned types are defined to do arithmetic modulo 2^n in C++. For signed types, overflow
1319 // behavior is undefined.
1320 
1321 template <typename T>
1322 inline T WrappingSum(T lhs, T rhs)
1323 {
1324     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1325     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1326     return static_cast<T>(lhsUnsigned + rhsUnsigned);
1327 }
1328 
1329 template <typename T>
1330 inline T WrappingDiff(T lhs, T rhs)
1331 {
1332     uint32_t lhsUnsigned = static_cast<uint32_t>(lhs);
1333     uint32_t rhsUnsigned = static_cast<uint32_t>(rhs);
1334     return static_cast<T>(lhsUnsigned - rhsUnsigned);
1335 }
1336 
1337 inline int32_t WrappingMul(int32_t lhs, int32_t rhs)
1338 {
1339     int64_t lhsWide = static_cast<int64_t>(lhs);
1340     int64_t rhsWide = static_cast<int64_t>(rhs);
1341     // The multiplication is guaranteed not to overflow.
1342     int64_t resultWide = lhsWide * rhsWide;
1343     // Implement the desired wrapping behavior by masking out the high-order 32 bits.
1344     resultWide = resultWide & 0xffffffffll;
1345     // Casting to a narrower signed type is fine since the casted value is representable in the
1346     // narrower type.
1347     return static_cast<int32_t>(resultWide);
1348 }
1349 
1350 inline float scaleScreenDimensionToNdc(float dimensionScreen, float viewportDimension)
1351 {
1352     return 2.0f * dimensionScreen / viewportDimension;
1353 }
1354 
1355 inline float scaleScreenCoordinateToNdc(float coordinateScreen, float viewportDimension)
1356 {
1357     float halfShifted = coordinateScreen / viewportDimension;
1358     return 2.0f * (halfShifted - 0.5f);
1359 }
1360 
1361 }  // namespace gl
1362 
1363 namespace rx
1364 {
1365 
1366 template <typename T>
1367 T roundUp(const T value, const T alignment)
1368 {
1369     auto temp = value + alignment - static_cast<T>(1);
1370     return temp - temp % alignment;
1371 }
1372 
1373 template <typename T>
1374 constexpr T roundUpPow2(const T value, const T alignment)
1375 {
1376     ASSERT(gl::isPow2(alignment));
1377     return (value + alignment - 1) & ~(alignment - 1);
1378 }
1379 
1380 template <typename T>
1381 angle::CheckedNumeric<T> CheckedRoundUp(const T value, const T alignment)
1382 {
1383     angle::CheckedNumeric<T> checkedValue(value);
1384     angle::CheckedNumeric<T> checkedAlignment(alignment);
1385     return roundUp(checkedValue, checkedAlignment);
1386 }
1387 
1388 inline constexpr unsigned int UnsignedCeilDivide(unsigned int value, unsigned int divisor)
1389 {
1390     unsigned int divided = value / divisor;
1391     return (divided + ((value % divisor == 0) ? 0 : 1));
1392 }
1393 
1394 #if defined(__has_builtin)
1395 #    define ANGLE_HAS_BUILTIN(x) __has_builtin(x)
1396 #else
1397 #    define ANGLE_HAS_BUILTIN(x) 0
1398 #endif
1399 
1400 #if defined(_MSC_VER)
1401 
1402 #    define ANGLE_ROTL(x, y) _rotl(x, y)
1403 #    define ANGLE_ROTL64(x, y) _rotl64(x, y)
1404 #    define ANGLE_ROTR16(x, y) _rotr16(x, y)
1405 
1406 #elif defined(__clang__) && ANGLE_HAS_BUILTIN(__builtin_rotateleft32) && \
1407     ANGLE_HAS_BUILTIN(__builtin_rotateleft64) && ANGLE_HAS_BUILTIN(__builtin_rotateright16)
1408 
1409 #    define ANGLE_ROTL(x, y) __builtin_rotateleft32(x, y)
1410 #    define ANGLE_ROTL64(x, y) __builtin_rotateleft64(x, y)
1411 #    define ANGLE_ROTR16(x, y) __builtin_rotateright16(x, y)
1412 
1413 #else
1414 
1415 inline uint32_t RotL(uint32_t x, int8_t r)
1416 {
1417     return (x << r) | (x >> (32 - r));
1418 }
1419 
1420 inline uint64_t RotL64(uint64_t x, int8_t r)
1421 {
1422     return (x << r) | (x >> (64 - r));
1423 }
1424 
1425 inline uint16_t RotR16(uint16_t x, int8_t r)
1426 {
1427     return (x >> r) | (x << (16 - r));
1428 }
1429 
1430 #    define ANGLE_ROTL(x, y) ::rx::RotL(x, y)
1431 #    define ANGLE_ROTL64(x, y) ::rx::RotL64(x, y)
1432 #    define ANGLE_ROTR16(x, y) ::rx::RotR16(x, y)
1433 
1434 #endif  // namespace rx
1435 
1436 constexpr unsigned int Log2(unsigned int bytes)
1437 {
1438     return bytes == 1 ? 0 : (1 + Log2(bytes / 2));
1439 }
1440 }  // namespace rx
1441 
1442 #endif  // COMMON_MATHUTIL_H_
1443