/external/libaom/libaom/tools/ |
D | gen_constrained_tokenset.py | 16 cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta] 18 For a given beta and a given probability of the 1-node, the alpha 19 is first solved, and then the {alpha, beta} pair is used to generate 30 def cdf_spareto(x, xm, beta): argument 31 p = 1 - (xm / (np.abs(x) + xm))**beta 36 def get_spareto(p, beta): argument 40 return ((cdf(1.5, x, beta) - cdf(0.5, x, beta)) / 41 (1 - cdf(0.5, x, beta)) - p)**2 45 parray[0] = 2 * (cdf(0.5, alpha, beta) - 0.5) 46 parray[1] = (2 * (cdf(1.5, alpha, beta) - cdf(0.5, alpha, beta))) [all …]
|
/external/cblas/testing/ |
D | c_d3chke.c | 32 ALPHA=0.0, BETA=0.0; in F77_d3chke() local 51 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 55 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 59 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 63 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 67 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 71 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 75 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 79 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() 83 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_d3chke() [all …]
|
D | c_s3chke.c | 32 ALPHA=0.0, BETA=0.0; in F77_s3chke() local 50 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 54 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 58 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 62 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 66 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 70 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 74 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 78 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() 82 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_s3chke() [all …]
|
D | c_z3chke.c | 33 BETA[2] = {0.0,0.0}, in F77_z3chke() local 53 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 57 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 61 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 65 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 69 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 73 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 77 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 81 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() 85 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_z3chke() [all …]
|
D | c_c3chke.c | 33 BETA[2] = {0.0,0.0}, in F77_c3chke() local 53 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 57 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 61 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 65 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 69 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 73 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 77 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 81 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() 85 ALPHA, A, 1, B, 1, BETA, C, 1 ); in F77_c3chke() [all …]
|
D | c_z2chke.c | 33 BETA[2] = {0.0,0.0}, in F77_z2chke() local 52 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() 56 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() 60 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() 64 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() 68 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() 72 ALPHA, A, 1, X, 0, BETA, Y, 1 ); in F77_z2chke() 76 ALPHA, A, 1, X, 1, BETA, Y, 0 ); in F77_z2chke() 81 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() 85 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_z2chke() [all …]
|
D | c_c2chke.c | 33 BETA[2] = {0.0,0.0}, in F77_c2chke() local 52 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() 56 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() 60 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() 64 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() 68 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() 72 ALPHA, A, 1, X, 0, BETA, Y, 1 ); in F77_c2chke() 76 ALPHA, A, 1, X, 1, BETA, Y, 0 ); in F77_c2chke() 81 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() 85 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_c2chke() [all …]
|
D | c_s2chke.c | 32 ALPHA=0.0, BETA=0.0; in F77_s2chke() local 50 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() 54 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() 58 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() 62 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() 66 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() 70 ALPHA, A, 1, X, 0, BETA, Y, 1 ); in F77_s2chke() 74 ALPHA, A, 1, X, 1, BETA, Y, 0 ); in F77_s2chke() 79 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() 83 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_s2chke() [all …]
|
D | c_d2chke.c | 32 ALPHA=0.0, BETA=0.0; in F77_d2chke() local 50 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() 54 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() 58 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() 62 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() 66 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() 70 ALPHA, A, 1, X, 0, BETA, Y, 1 ); in F77_d2chke() 74 ALPHA, A, 1, X, 1, BETA, Y, 0 ); in F77_d2chke() 79 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() 83 ALPHA, A, 1, X, 1, BETA, Y, 1 ); in F77_d2chke() [all …]
|
/external/ImageMagick/MagickCore/ |
D | fx.c | 524 static inline double FxGCD(const double alpha,const double beta) in FxGCD() argument 526 if (alpha < beta) in FxGCD() 527 return(FxGCD(beta,alpha)); in FxGCD() 528 if (fabs(beta) < 0.001) in FxGCD() 530 return(FxGCD(beta,alpha-beta*floor(alpha/beta))); in FxGCD() 577 beta; in FxGetSymbol() local 641 depth,&beta,exception); in FxGetSymbol() 671 depth,&beta,exception); in FxGetSymbol() 673 point.y=beta; in FxGetSymbol() 697 depth,&beta,exception); in FxGetSymbol() [all …]
|
D | composite-private.h | 36 const double q,const double beta) in MagickOver_() argument 43 Da=QuantumScale*beta; in MagickOver_() 53 const double alpha,const Quantum *q,const double beta,Quantum *composite) in CompositePixelOver() argument 67 Da=QuantumScale*beta; in CompositePixelOver() 87 (double) q[i],beta)); in CompositePixelOver() 93 (double) q[i],beta)); in CompositePixelOver() 99 (double) q[i],beta)); in CompositePixelOver() 105 (double) q[i],beta)); in CompositePixelOver() 123 const PixelInfo *q,const double beta,PixelInfo *composite) in CompositePixelInfoOver() argument 134 Da=QuantumScale*beta, in CompositePixelInfoOver() [all …]
|
/external/tensorflow/tensorflow/python/ops/distributions/ |
D | beta.py | 15 """The Beta distribution class.""" 41 "Beta", 50 @tf_export(v1=["distributions.Beta"]) 51 class Beta(distribution.Distribution): class 52 """Beta distribution. 54 The Beta distribution is defined over the `(0, 1)` interval using parameters 55 `concentration1` (aka "alpha") and `concentration0` (aka "beta"). 62 pdf(x; alpha, beta) = x**(alpha - 1) (1 - x)**(beta - 1) / Z 63 Z = Gamma(alpha) Gamma(beta) / Gamma(alpha + beta) 69 * `concentration0 = beta`, [all …]
|
/external/tensorflow/tensorflow/python/kernel_tests/distributions/ |
D | beta_test.py | 30 from tensorflow.python.ops.distributions import beta as beta_lib 55 dist = beta_lib.Beta(a, b) 64 dist = beta_lib.Beta(a, b) 73 dist = beta_lib.Beta(a, b) 82 dist = beta_lib.Beta(a, b) 89 dist = beta_lib.Beta(a, b) 96 dist = beta_lib.Beta(a, b, validate_args=True) 113 dist = beta_lib.Beta(a, b) 122 dist = beta_lib.Beta(a, b) 132 dist = beta_lib.Beta(a, b) [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/distribution/ |
D | BetaDistributionImpl.java | 23 import org.apache.commons.math.special.Beta; 27 * Implements the Beta distribution. 32 * Beta distribution</a></li> 54 private double beta; field in BetaDistributionImpl 57 * updated whenever alpha or beta are changed. 67 * @param beta second shape parameter (must be positive) 72 public BetaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { in BetaDistributionImpl() argument 74 this.beta = beta; in BetaDistributionImpl() 82 * @param beta second shape parameter (must be positive) 84 public BetaDistributionImpl(double alpha, double beta) { in BetaDistributionImpl() argument [all …]
|
D | GammaDistributionImpl.java | 48 private double beta; field in GammaDistributionImpl 54 * Create a new gamma distribution with the given alpha and beta values. 56 * @param beta the scale parameter. 58 public GammaDistributionImpl(double alpha, double beta) { in GammaDistributionImpl() argument 59 this(alpha, beta, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); in GammaDistributionImpl() 63 * Create a new gamma distribution with the given alpha and beta values. 65 * @param beta the scale parameter. 70 public GammaDistributionImpl(double alpha, double beta, double inverseCumAccuracy) { in GammaDistributionImpl() argument 73 setBetaInternal(beta); in GammaDistributionImpl() 100 ret = Gamma.regularizedGammaP(alpha, x / beta); in cumulativeProbability() [all …]
|
/external/openscreen/third_party/abseil/src/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/rust/crates/grpcio-sys/grpc/third_party/abseil-cpp/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/webrtc/third_party/abseil-cpp/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/abseil-cpp/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/libtextclassifier/abseil-cpp/absl/random/ |
D | beta_distribution.h | 35 // Generate a floating-point variate conforming to a Beta distribution: 36 // pdf(x) \propto x^(alpha-1) * (1-x)^(beta-1), 37 // where the params alpha and beta are both strictly positive real values. 40 // to 0 or 1, due to numerical errors when alpha and beta are very different. 42 // Usage note: One usage is that alpha and beta are counts of number of 44 // approximating a beta distribution with a Gaussian distribution with the same 46 // smaller of alpha and beta when the number of trials are sufficiently large, 47 // to quantify how far a beta distribution is from the normal distribution. 57 explicit param_type(result_type alpha, result_type beta) in param_type() argument 58 : alpha_(alpha), beta_(beta) { in param_type() [all …]
|
/external/XNNPACK/test/ |
D | f32-velu.cc | 89 TEST(F32_VELU__NEON_RR2_LUT16_P3_X4, beta) { in TEST() argument 91 for (float beta : std::vector<float>({0.3f, 3.0f})) { in TEST() local 95 .beta(beta) in TEST() 172 TEST(F32_VELU__NEON_RR2_LUT16_P3_X8, beta) { in TEST() argument 174 for (float beta : std::vector<float>({0.3f, 3.0f})) { in TEST() local 178 .beta(beta) in TEST() 255 TEST(F32_VELU__NEON_RR2_LUT16_P3_X12, beta) { in TEST() argument 257 for (float beta : std::vector<float>({0.3f, 3.0f})) { in TEST() local 261 .beta(beta) in TEST() 338 TEST(F32_VELU__NEON_RR2_LUT16_P3_X16, beta) { in TEST() argument [all …]
|
/external/protobuf/python/compatibility_tests/v2.5.0/ |
D | test.sh | 26 3.0.0-beta-1) 27 OLD_VERSION=3.0.0-beta-1 28 …=http://repo1.maven.org/maven2/com/google/protobuf/protoc/3.0.0-beta-1/protoc-3.0.0-beta-1-linux-x… 30 3.0.0-beta-2) 31 OLD_VERSION=3.0.0-beta-2 32 …=http://repo1.maven.org/maven2/com/google/protobuf/protoc/3.0.0-beta-2/protoc-3.0.0-beta-2-linux-x… 34 3.0.0-beta-3) 35 OLD_VERSION=3.0.0-beta-3 36 …=http://repo1.maven.org/maven2/com/google/protobuf/protoc/3.0.0-beta-3/protoc-3.0.0-beta-3-linux-x… 38 3.0.0-beta-4) [all …]
|
/external/eigen/lapack/ |
D | zlarfg.f | 40 *> H**H * ( alpha ) = ( beta ), H**H * H = I. 43 *> where alpha and beta are scalars, with beta real, and x is an 71 *> On exit, it is overwritten with the value beta. 130 DOUBLE PRECISION ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM local 163 BETA = -SIGN( DLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) 168 IF( ABS( BETA ).LT.SAFMIN ) THEN 170 * XNORM, BETA may be inaccurate; scale X and recompute them 175 BETA = BETA*RSAFMN 178 IF( ABS( BETA ).LT.SAFMIN ) 181 * New BETA is at most 1, at least SAFMIN [all …]
|
D | clarfg.f | 40 *> H**H * ( alpha ) = ( beta ), H**H * H = I. 43 *> where alpha and beta are scalars, with beta real, and x is an 71 *> On exit, it is overwritten with the value beta. 130 REAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM local 163 BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR ) 168 IF( ABS( BETA ).LT.SAFMIN ) THEN 170 * XNORM, BETA may be inaccurate; scale X and recompute them 175 BETA = BETA*RSAFMN 178 IF( ABS( BETA ).LT.SAFMIN ) 181 * New BETA is at most 1, at least SAFMIN [all …]
|
D | dlarfg.f | 40 *> H * ( alpha ) = ( beta ), H**T * H = I. 43 *> where alpha and beta are scalars, and x is an (n-1)-element real 71 *> On exit, it is overwritten with the value beta. 130 DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM local 160 BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) 163 IF( ABS( BETA ).LT.SAFMIN ) THEN 165 * XNORM, BETA may be inaccurate; scale X and recompute them 171 BETA = BETA*RSAFMN 173 IF( ABS( BETA ).LT.SAFMIN ) 176 * New BETA is at most 1, at least SAFMIN [all …]
|