1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <unistd.h>
26 #include <stdlib.h>
27 #include <stdint.h>
28 #include <stdio.h>
29 #include <string.h>
30 #include <fcntl.h>
31 #include <inttypes.h>
32 #include <errno.h>
33 #include <poll.h>
34 #include <sys/stat.h>
35 #include <sys/types.h>
36 #include <sys/ioctl.h>
37 #include <sys/time.h>
38 #include <sys/wait.h>
39 #include <time.h>
40 #include <assert.h>
41 #include <limits.h>
42 #include <pthread.h>
43
44 #include "intel_chipset.h"
45 #include "intel_reg.h"
46 #include "drm.h"
47 #include "ioctl_wrappers.h"
48 #include "drmtest.h"
49
50 #include "intel_io.h"
51 #include "igt_aux.h"
52 #include "igt_rand.h"
53 #include "igt_perf.h"
54 #include "sw_sync.h"
55 #include "i915/gem_mman.h"
56
57 #include "ewma.h"
58
59 enum intel_engine_id {
60 DEFAULT,
61 RCS,
62 BCS,
63 VCS,
64 VCS1,
65 VCS2,
66 VECS,
67 NUM_ENGINES
68 };
69
70 struct duration {
71 unsigned int min, max;
72 };
73
74 enum w_type
75 {
76 BATCH,
77 SYNC,
78 DELAY,
79 PERIOD,
80 THROTTLE,
81 QD_THROTTLE,
82 SW_FENCE,
83 SW_FENCE_SIGNAL,
84 CTX_PRIORITY,
85 PREEMPTION,
86 ENGINE_MAP,
87 LOAD_BALANCE,
88 BOND,
89 TERMINATE,
90 SSEU
91 };
92
93 struct deps
94 {
95 int nr;
96 bool submit_fence;
97 int *list;
98 };
99
100 struct w_arg {
101 char *filename;
102 char *desc;
103 int prio;
104 bool sseu;
105 };
106
107 struct bond {
108 uint64_t mask;
109 enum intel_engine_id master;
110 };
111
112 struct w_step
113 {
114 /* Workload step metadata */
115 enum w_type type;
116 unsigned int context;
117 unsigned int engine;
118 struct duration duration;
119 bool unbound_duration;
120 struct deps data_deps;
121 struct deps fence_deps;
122 int emit_fence;
123 union {
124 int sync;
125 int delay;
126 int period;
127 int target;
128 int throttle;
129 int fence_signal;
130 int priority;
131 struct {
132 unsigned int engine_map_count;
133 enum intel_engine_id *engine_map;
134 };
135 bool load_balance;
136 struct {
137 uint64_t bond_mask;
138 enum intel_engine_id bond_master;
139 };
140 int sseu;
141 };
142
143 /* Implementation details */
144 unsigned int idx;
145 struct igt_list rq_link;
146 unsigned int request;
147 unsigned int preempt_us;
148
149 struct drm_i915_gem_execbuffer2 eb;
150 struct drm_i915_gem_exec_object2 *obj;
151 struct drm_i915_gem_relocation_entry reloc[5];
152 unsigned long bb_sz;
153 uint32_t bb_handle;
154 uint32_t *seqno_value;
155 uint32_t *seqno_address;
156 uint32_t *rt0_value;
157 uint32_t *rt0_address;
158 uint32_t *rt1_address;
159 uint32_t *latch_value;
160 uint32_t *latch_address;
161 uint32_t *recursive_bb_start;
162 };
163
164 DECLARE_EWMA(uint64_t, rt, 4, 2)
165
166 struct ctx {
167 uint32_t id;
168 int priority;
169 unsigned int engine_map_count;
170 enum intel_engine_id *engine_map;
171 unsigned int bond_count;
172 struct bond *bonds;
173 bool targets_instance;
174 bool wants_balance;
175 unsigned int static_vcs;
176 uint64_t sseu;
177 };
178
179 struct workload
180 {
181 unsigned int id;
182
183 unsigned int nr_steps;
184 struct w_step *steps;
185 int prio;
186 bool sseu;
187
188 pthread_t thread;
189 bool run;
190 bool background;
191 const struct workload_balancer *balancer;
192 unsigned int repeat;
193 unsigned int flags;
194 bool print_stats;
195
196 uint32_t bb_prng;
197 uint32_t prng;
198
199 struct timespec repeat_start;
200
201 unsigned int nr_ctxs;
202 struct ctx *ctx_list;
203
204 int sync_timeline;
205 uint32_t sync_seqno;
206
207 uint32_t seqno[NUM_ENGINES];
208 struct drm_i915_gem_exec_object2 status_object[2];
209 uint32_t *status_page;
210 uint32_t *status_cs;
211 unsigned int vcs_rr;
212
213 unsigned long qd_sum[NUM_ENGINES];
214 unsigned long nr_bb[NUM_ENGINES];
215
216 struct igt_list requests[NUM_ENGINES];
217 unsigned int nrequest[NUM_ENGINES];
218
219 struct workload *global_wrk;
220 const struct workload_balancer *global_balancer;
221 pthread_mutex_t mutex;
222
223 union {
224 struct rtavg {
225 struct ewma_rt avg[NUM_ENGINES];
226 uint32_t last[NUM_ENGINES];
227 } rt;
228 };
229
230 struct busy_balancer {
231 int fd;
232 bool first;
233 unsigned int num_engines;
234 unsigned int engine_map[NUM_ENGINES];
235 uint64_t t_prev;
236 uint64_t prev[NUM_ENGINES];
237 double busy[NUM_ENGINES];
238 } busy_balancer;
239 };
240
241 static const unsigned int nop_calibration_us = 1000;
242 static unsigned long nop_calibration;
243
244 static unsigned int master_prng;
245
246 static unsigned int context_vcs_rr;
247
248 static int verbose = 1;
249 static int fd;
250 static struct drm_i915_gem_context_param_sseu device_sseu = {
251 .slice_mask = -1 /* Force read on first use. */
252 };
253
254 #define SWAPVCS (1<<0)
255 #define SEQNO (1<<1)
256 #define BALANCE (1<<2)
257 #define RT (1<<3)
258 #define VCS2REMAP (1<<4)
259 #define INITVCSRR (1<<5)
260 #define SYNCEDCLIENTS (1<<6)
261 #define HEARTBEAT (1<<7)
262 #define GLOBAL_BALANCE (1<<8)
263 #define DEPSYNC (1<<9)
264 #define I915 (1<<10)
265 #define SSEU (1<<11)
266
267 #define SEQNO_IDX(engine) ((engine) * 16)
268 #define SEQNO_OFFSET(engine) (SEQNO_IDX(engine) * sizeof(uint32_t))
269
270 #define RCS_TIMESTAMP (0x2000 + 0x358)
271 #define REG(x) (volatile uint32_t *)((volatile char *)igt_global_mmio + x)
272
273 static const char *ring_str_map[NUM_ENGINES] = {
274 [DEFAULT] = "DEFAULT",
275 [RCS] = "RCS",
276 [BCS] = "BCS",
277 [VCS] = "VCS",
278 [VCS1] = "VCS1",
279 [VCS2] = "VCS2",
280 [VECS] = "VECS",
281 };
282
283 static int
parse_dependencies(unsigned int nr_steps,struct w_step * w,char * _desc)284 parse_dependencies(unsigned int nr_steps, struct w_step *w, char *_desc)
285 {
286 char *desc = strdup(_desc);
287 char *token, *tctx = NULL, *tstart = desc;
288
289 igt_assert(desc);
290 igt_assert(!w->data_deps.nr && w->data_deps.nr == w->fence_deps.nr);
291 igt_assert(!w->data_deps.list &&
292 w->data_deps.list == w->fence_deps.list);
293
294 while ((token = strtok_r(tstart, "/", &tctx)) != NULL) {
295 bool submit_fence = false;
296 char *str = token;
297 struct deps *deps;
298 int dep;
299
300 tstart = NULL;
301
302 if (str[0] == '-' || (str[0] >= '0' && str[0] <= '9')) {
303 deps = &w->data_deps;
304 } else {
305 if (str[0] == 's')
306 submit_fence = true;
307 else if (str[0] != 'f')
308 return -1;
309
310 deps = &w->fence_deps;
311 str++;
312 }
313
314 dep = atoi(str);
315 if (dep > 0 || ((int)nr_steps + dep) < 0) {
316 if (deps->list)
317 free(deps->list);
318 return -1;
319 }
320
321 if (dep < 0) {
322 deps->nr++;
323 /* Multiple fences not yet supported. */
324 igt_assert(deps->nr == 1 || deps != &w->fence_deps);
325 deps->list = realloc(deps->list,
326 sizeof(*deps->list) * deps->nr);
327 igt_assert(deps->list);
328 deps->list[deps->nr - 1] = dep;
329 deps->submit_fence = submit_fence;
330 }
331 }
332
333 free(desc);
334
335 return 0;
336 }
337
338 static void __attribute__((format(printf, 1, 2)))
wsim_err(const char * fmt,...)339 wsim_err(const char *fmt, ...)
340 {
341 va_list ap;
342
343 if (!verbose)
344 return;
345
346 va_start(ap, fmt);
347 vfprintf(stderr, fmt, ap);
348 va_end(ap);
349 }
350
351 #define check_arg(cond, fmt, ...) \
352 { \
353 if (cond) { \
354 wsim_err(fmt, __VA_ARGS__); \
355 return NULL; \
356 } \
357 }
358
str_to_engine(const char * str)359 static int str_to_engine(const char *str)
360 {
361 unsigned int i;
362
363 for (i = 0; i < ARRAY_SIZE(ring_str_map); i++) {
364 if (!strcasecmp(str, ring_str_map[i]))
365 return i;
366 }
367
368 return -1;
369 }
370
371 static bool __engines_queried;
372 static unsigned int __num_engines;
373 static struct i915_engine_class_instance *__engines;
374
375 static int
__i915_query(int i915,struct drm_i915_query * q)376 __i915_query(int i915, struct drm_i915_query *q)
377 {
378 if (igt_ioctl(i915, DRM_IOCTL_I915_QUERY, q))
379 return -errno;
380 return 0;
381 }
382
383 static int
__i915_query_items(int i915,struct drm_i915_query_item * items,uint32_t n_items)384 __i915_query_items(int i915, struct drm_i915_query_item *items, uint32_t n_items)
385 {
386 struct drm_i915_query q = {
387 .num_items = n_items,
388 .items_ptr = to_user_pointer(items),
389 };
390 return __i915_query(i915, &q);
391 }
392
393 static void
i915_query_items(int i915,struct drm_i915_query_item * items,uint32_t n_items)394 i915_query_items(int i915, struct drm_i915_query_item *items, uint32_t n_items)
395 {
396 igt_assert_eq(__i915_query_items(i915, items, n_items), 0);
397 }
398
has_engine_query(int i915)399 static bool has_engine_query(int i915)
400 {
401 struct drm_i915_query_item item = {
402 .query_id = DRM_I915_QUERY_ENGINE_INFO,
403 };
404
405 return __i915_query_items(i915, &item, 1) == 0 && item.length > 0;
406 }
407
query_engines(void)408 static void query_engines(void)
409 {
410 struct i915_engine_class_instance *engines;
411 unsigned int num;
412
413 if (__engines_queried)
414 return;
415
416 __engines_queried = true;
417
418 if (!has_engine_query(fd)) {
419 unsigned int num_bsd = gem_has_bsd(fd) + gem_has_bsd2(fd);
420 unsigned int i = 0;
421
422 igt_assert(num_bsd);
423
424 num = 1 + num_bsd;
425
426 if (gem_has_blt(fd))
427 num++;
428
429 if (gem_has_vebox(fd))
430 num++;
431
432 engines = calloc(num,
433 sizeof(struct i915_engine_class_instance));
434 igt_assert(engines);
435
436 engines[i].engine_class = I915_ENGINE_CLASS_RENDER;
437 engines[i].engine_instance = 0;
438 i++;
439
440 if (gem_has_blt(fd)) {
441 engines[i].engine_class = I915_ENGINE_CLASS_COPY;
442 engines[i].engine_instance = 0;
443 i++;
444 }
445
446 if (gem_has_bsd(fd)) {
447 engines[i].engine_class = I915_ENGINE_CLASS_VIDEO;
448 engines[i].engine_instance = 0;
449 i++;
450 }
451
452 if (gem_has_bsd2(fd)) {
453 engines[i].engine_class = I915_ENGINE_CLASS_VIDEO;
454 engines[i].engine_instance = 1;
455 i++;
456 }
457
458 if (gem_has_vebox(fd)) {
459 engines[i].engine_class =
460 I915_ENGINE_CLASS_VIDEO_ENHANCE;
461 engines[i].engine_instance = 0;
462 i++;
463 }
464 } else {
465 struct drm_i915_query_engine_info *engine_info;
466 struct drm_i915_query_item item = {
467 .query_id = DRM_I915_QUERY_ENGINE_INFO,
468 };
469 const unsigned int sz = 4096;
470 unsigned int i;
471
472 engine_info = malloc(sz);
473 igt_assert(engine_info);
474 memset(engine_info, 0, sz);
475
476 item.data_ptr = to_user_pointer(engine_info);
477 item.length = sz;
478
479 i915_query_items(fd, &item, 1);
480 igt_assert(item.length > 0);
481 igt_assert(item.length <= sz);
482
483 num = engine_info->num_engines;
484
485 engines = calloc(num,
486 sizeof(struct i915_engine_class_instance));
487 igt_assert(engines);
488
489 for (i = 0; i < num; i++) {
490 struct drm_i915_engine_info *engine =
491 (struct drm_i915_engine_info *)&engine_info->engines[i];
492
493 engines[i] = engine->engine;
494 }
495 }
496
497 __engines = engines;
498 __num_engines = num;
499 }
500
num_engines_in_class(enum intel_engine_id class)501 static unsigned int num_engines_in_class(enum intel_engine_id class)
502 {
503 unsigned int i, count = 0;
504
505 igt_assert(class == VCS);
506
507 query_engines();
508
509 for (i = 0; i < __num_engines; i++) {
510 if (__engines[i].engine_class == I915_ENGINE_CLASS_VIDEO)
511 count++;
512 }
513
514 igt_assert(count);
515 return count;
516 }
517
518 static void
fill_engines_class(struct i915_engine_class_instance * ci,enum intel_engine_id class)519 fill_engines_class(struct i915_engine_class_instance *ci,
520 enum intel_engine_id class)
521 {
522 unsigned int i, j = 0;
523
524 igt_assert(class == VCS);
525
526 query_engines();
527
528 for (i = 0; i < __num_engines; i++) {
529 if (__engines[i].engine_class != I915_ENGINE_CLASS_VIDEO)
530 continue;
531
532 ci[j].engine_class = __engines[i].engine_class;
533 ci[j].engine_instance = __engines[i].engine_instance;
534 j++;
535 }
536 }
537
538 static void
fill_engines_id_class(enum intel_engine_id * list,enum intel_engine_id class)539 fill_engines_id_class(enum intel_engine_id *list,
540 enum intel_engine_id class)
541 {
542 enum intel_engine_id engine = VCS1;
543 unsigned int i, j = 0;
544
545 igt_assert(class == VCS);
546 igt_assert(num_engines_in_class(VCS) <= 2);
547
548 query_engines();
549
550 for (i = 0; i < __num_engines; i++) {
551 if (__engines[i].engine_class != I915_ENGINE_CLASS_VIDEO)
552 continue;
553
554 list[j++] = engine++;
555 }
556 }
557
558 static unsigned int
find_physical_instance(enum intel_engine_id class,unsigned int logical)559 find_physical_instance(enum intel_engine_id class, unsigned int logical)
560 {
561 unsigned int i, j = 0;
562
563 igt_assert(class == VCS);
564
565 for (i = 0; i < __num_engines; i++) {
566 if (__engines[i].engine_class != I915_ENGINE_CLASS_VIDEO)
567 continue;
568
569 /* Map logical to physical instances. */
570 if (logical == j++)
571 return __engines[i].engine_instance;
572 }
573
574 igt_assert(0);
575 return 0;
576 }
577
578 static struct i915_engine_class_instance
get_engine(enum intel_engine_id engine)579 get_engine(enum intel_engine_id engine)
580 {
581 struct i915_engine_class_instance ci;
582
583 query_engines();
584
585 switch (engine) {
586 case RCS:
587 ci.engine_class = I915_ENGINE_CLASS_RENDER;
588 ci.engine_instance = 0;
589 break;
590 case BCS:
591 ci.engine_class = I915_ENGINE_CLASS_COPY;
592 ci.engine_instance = 0;
593 break;
594 case VCS1:
595 case VCS2:
596 ci.engine_class = I915_ENGINE_CLASS_VIDEO;
597 ci.engine_instance = find_physical_instance(VCS, engine - VCS1);
598 break;
599 case VECS:
600 ci.engine_class = I915_ENGINE_CLASS_VIDEO_ENHANCE;
601 ci.engine_instance = 0;
602 break;
603 default:
604 igt_assert(0);
605 };
606
607 return ci;
608 }
609
parse_engine_map(struct w_step * step,const char * _str)610 static int parse_engine_map(struct w_step *step, const char *_str)
611 {
612 char *token, *tctx = NULL, *tstart = (char *)_str;
613
614 while ((token = strtok_r(tstart, "|", &tctx))) {
615 enum intel_engine_id engine;
616 unsigned int add;
617
618 tstart = NULL;
619
620 if (!strcmp(token, "DEFAULT"))
621 return -1;
622
623 engine = str_to_engine(token);
624 if ((int)engine < 0)
625 return -1;
626
627 if (engine != VCS && engine != VCS1 && engine != VCS2 &&
628 engine != RCS)
629 return -1; /* TODO */
630
631 add = engine == VCS ? num_engines_in_class(VCS) : 1;
632 step->engine_map_count += add;
633 step->engine_map = realloc(step->engine_map,
634 step->engine_map_count *
635 sizeof(step->engine_map[0]));
636
637 if (engine != VCS)
638 step->engine_map[step->engine_map_count - add] = engine;
639 else
640 fill_engines_id_class(&step->engine_map[step->engine_map_count - add], VCS);
641 }
642
643 return 0;
644 }
645
engine_list_mask(const char * _str)646 static uint64_t engine_list_mask(const char *_str)
647 {
648 uint64_t mask = 0;
649
650 char *token, *tctx = NULL, *tstart = (char *)_str;
651
652 while ((token = strtok_r(tstart, "|", &tctx))) {
653 enum intel_engine_id engine = str_to_engine(token);
654
655 if ((int)engine < 0 || engine == DEFAULT || engine == VCS)
656 return 0;
657
658 mask |= 1 << engine;
659
660 tstart = NULL;
661 }
662
663 return mask;
664 }
665
666 #define int_field(_STEP_, _FIELD_, _COND_, _ERR_) \
667 if ((field = strtok_r(fstart, ".", &fctx))) { \
668 tmp = atoi(field); \
669 check_arg(_COND_, _ERR_, nr_steps); \
670 step.type = _STEP_; \
671 step._FIELD_ = tmp; \
672 goto add_step; \
673 } \
674
675 static struct workload *
parse_workload(struct w_arg * arg,unsigned int flags,struct workload * app_w)676 parse_workload(struct w_arg *arg, unsigned int flags, struct workload *app_w)
677 {
678 struct workload *wrk;
679 unsigned int nr_steps = 0;
680 char *desc = strdup(arg->desc);
681 char *_token, *token, *tctx = NULL, *tstart = desc;
682 char *field, *fctx = NULL, *fstart;
683 struct w_step step, *steps = NULL;
684 bool bcs_used = false;
685 unsigned int valid;
686 int i, j, tmp;
687
688 igt_assert(desc);
689
690 while ((_token = strtok_r(tstart, ",", &tctx))) {
691 tstart = NULL;
692 token = strdup(_token);
693 igt_assert(token);
694 fstart = token;
695 valid = 0;
696 memset(&step, 0, sizeof(step));
697
698 if ((field = strtok_r(fstart, ".", &fctx))) {
699 fstart = NULL;
700
701 if (!strcmp(field, "d")) {
702 int_field(DELAY, delay, tmp <= 0,
703 "Invalid delay at step %u!\n");
704 } else if (!strcmp(field, "p")) {
705 int_field(PERIOD, period, tmp <= 0,
706 "Invalid period at step %u!\n");
707 } else if (!strcmp(field, "P")) {
708 unsigned int nr = 0;
709 while ((field = strtok_r(fstart, ".", &fctx))) {
710 tmp = atoi(field);
711 check_arg(nr == 0 && tmp <= 0,
712 "Invalid context at step %u!\n",
713 nr_steps);
714 check_arg(nr > 1,
715 "Invalid priority format at step %u!\n",
716 nr_steps);
717
718 if (nr == 0)
719 step.context = tmp;
720 else
721 step.priority = tmp;
722
723 nr++;
724 }
725
726 step.type = CTX_PRIORITY;
727 goto add_step;
728 } else if (!strcmp(field, "s")) {
729 int_field(SYNC, target,
730 tmp >= 0 || ((int)nr_steps + tmp) < 0,
731 "Invalid sync target at step %u!\n");
732 } else if (!strcmp(field, "S")) {
733 unsigned int nr = 0;
734 while ((field = strtok_r(fstart, ".", &fctx))) {
735 tmp = atoi(field);
736 check_arg(tmp <= 0 && nr == 0,
737 "Invalid context at step %u!\n",
738 nr_steps);
739 check_arg(nr > 1,
740 "Invalid SSEU format at step %u!\n",
741 nr_steps);
742
743 if (nr == 0)
744 step.context = tmp;
745 else if (nr == 1)
746 step.sseu = tmp;
747
748 nr++;
749 }
750
751 step.type = SSEU;
752 goto add_step;
753 } else if (!strcmp(field, "t")) {
754 int_field(THROTTLE, throttle,
755 tmp < 0,
756 "Invalid throttle at step %u!\n");
757 } else if (!strcmp(field, "q")) {
758 int_field(QD_THROTTLE, throttle,
759 tmp < 0,
760 "Invalid qd throttle at step %u!\n");
761 } else if (!strcmp(field, "a")) {
762 int_field(SW_FENCE_SIGNAL, target,
763 tmp >= 0,
764 "Invalid sw fence signal at step %u!\n");
765 } else if (!strcmp(field, "f")) {
766 step.type = SW_FENCE;
767 goto add_step;
768 } else if (!strcmp(field, "M")) {
769 unsigned int nr = 0;
770 while ((field = strtok_r(fstart, ".", &fctx))) {
771 tmp = atoi(field);
772 check_arg(nr == 0 && tmp <= 0,
773 "Invalid context at step %u!\n",
774 nr_steps);
775 check_arg(nr > 1,
776 "Invalid engine map format at step %u!\n",
777 nr_steps);
778
779 if (nr == 0) {
780 step.context = tmp;
781 } else {
782 tmp = parse_engine_map(&step,
783 field);
784 check_arg(tmp < 0,
785 "Invalid engine map list at step %u!\n",
786 nr_steps);
787 }
788
789 nr++;
790 }
791
792 step.type = ENGINE_MAP;
793 goto add_step;
794 } else if (!strcmp(field, "T")) {
795 int_field(TERMINATE, target,
796 tmp >= 0 || ((int)nr_steps + tmp) < 0,
797 "Invalid terminate target at step %u!\n");
798 } else if (!strcmp(field, "X")) {
799 unsigned int nr = 0;
800 while ((field = strtok_r(fstart, ".", &fctx))) {
801 tmp = atoi(field);
802 check_arg(nr == 0 && tmp <= 0,
803 "Invalid context at step %u!\n",
804 nr_steps);
805 check_arg(nr == 1 && tmp < 0,
806 "Invalid preemption period at step %u!\n",
807 nr_steps);
808 check_arg(nr > 1,
809 "Invalid preemption format at step %u!\n",
810 nr_steps);
811
812 if (nr == 0)
813 step.context = tmp;
814 else
815 step.period = tmp;
816
817 nr++;
818 }
819
820 step.type = PREEMPTION;
821 goto add_step;
822 } else if (!strcmp(field, "B")) {
823 unsigned int nr = 0;
824 while ((field = strtok_r(fstart, ".", &fctx))) {
825 tmp = atoi(field);
826 check_arg(nr == 0 && tmp <= 0,
827 "Invalid context at step %u!\n",
828 nr_steps);
829 check_arg(nr > 0,
830 "Invalid load balance format at step %u!\n",
831 nr_steps);
832
833 step.context = tmp;
834 step.load_balance = true;
835
836 nr++;
837 }
838
839 step.type = LOAD_BALANCE;
840 goto add_step;
841 } else if (!strcmp(field, "b")) {
842 unsigned int nr = 0;
843 while ((field = strtok_r(fstart, ".", &fctx))) {
844 check_arg(nr > 2,
845 "Invalid bond format at step %u!\n",
846 nr_steps);
847
848 if (nr == 0) {
849 tmp = atoi(field);
850 step.context = tmp;
851 check_arg(tmp <= 0,
852 "Invalid context at step %u!\n",
853 nr_steps);
854 } else if (nr == 1) {
855 step.bond_mask = engine_list_mask(field);
856 check_arg(step.bond_mask == 0,
857 "Invalid siblings list at step %u!\n",
858 nr_steps);
859 } else if (nr == 2) {
860 tmp = str_to_engine(field);
861 check_arg(tmp <= 0 ||
862 tmp == VCS ||
863 tmp == DEFAULT,
864 "Invalid master engine at step %u!\n",
865 nr_steps);
866 step.bond_master = tmp;
867 }
868
869 nr++;
870 }
871
872 step.type = BOND;
873 goto add_step;
874 }
875
876 if (!field) {
877 if (verbose)
878 fprintf(stderr,
879 "Parse error at step %u!\n",
880 nr_steps);
881 return NULL;
882 }
883
884 tmp = atoi(field);
885 check_arg(tmp < 0, "Invalid ctx id at step %u!\n",
886 nr_steps);
887 step.context = tmp;
888
889 valid++;
890 }
891
892 if ((field = strtok_r(fstart, ".", &fctx))) {
893 fstart = NULL;
894
895 i = str_to_engine(field);
896 check_arg(i < 0,
897 "Invalid engine id at step %u!\n", nr_steps);
898
899 valid++;
900
901 step.engine = i;
902
903 if (step.engine == BCS)
904 bcs_used = true;
905 }
906
907 if ((field = strtok_r(fstart, ".", &fctx))) {
908 char *sep = NULL;
909 long int tmpl;
910
911 fstart = NULL;
912
913 if (field[0] == '*') {
914 check_arg(intel_gen(intel_get_drm_devid(fd)) < 8,
915 "Infinite batch at step %u needs Gen8+!\n",
916 nr_steps);
917 step.unbound_duration = true;
918 } else {
919 tmpl = strtol(field, &sep, 10);
920 check_arg(tmpl <= 0 || tmpl == LONG_MIN ||
921 tmpl == LONG_MAX,
922 "Invalid duration at step %u!\n",
923 nr_steps);
924 step.duration.min = tmpl;
925
926 if (sep && *sep == '-') {
927 tmpl = strtol(sep + 1, NULL, 10);
928 check_arg(tmpl <= 0 ||
929 tmpl <= step.duration.min ||
930 tmpl == LONG_MIN ||
931 tmpl == LONG_MAX,
932 "Invalid duration range at step %u!\n",
933 nr_steps);
934 step.duration.max = tmpl;
935 } else {
936 step.duration.max = step.duration.min;
937 }
938 }
939
940 valid++;
941 }
942
943 if ((field = strtok_r(fstart, ".", &fctx))) {
944 fstart = NULL;
945
946 tmp = parse_dependencies(nr_steps, &step, field);
947 check_arg(tmp < 0,
948 "Invalid dependency at step %u!\n", nr_steps);
949
950 valid++;
951 }
952
953 if ((field = strtok_r(fstart, ".", &fctx))) {
954 fstart = NULL;
955
956 check_arg(strlen(field) != 1 ||
957 (field[0] != '0' && field[0] != '1'),
958 "Invalid wait boolean at step %u!\n",
959 nr_steps);
960 step.sync = field[0] - '0';
961
962 valid++;
963 }
964
965 check_arg(valid != 5, "Invalid record at step %u!\n", nr_steps);
966
967 step.type = BATCH;
968
969 add_step:
970 step.idx = nr_steps++;
971 step.request = -1;
972 steps = realloc(steps, sizeof(step) * nr_steps);
973 igt_assert(steps);
974
975 memcpy(&steps[nr_steps - 1], &step, sizeof(step));
976
977 free(token);
978 }
979
980 if (app_w) {
981 steps = realloc(steps, sizeof(step) *
982 (nr_steps + app_w->nr_steps));
983 igt_assert(steps);
984
985 memcpy(&steps[nr_steps], app_w->steps,
986 sizeof(step) * app_w->nr_steps);
987
988 for (i = 0; i < app_w->nr_steps; i++)
989 steps[nr_steps + i].idx += nr_steps;
990
991 nr_steps += app_w->nr_steps;
992 }
993
994 wrk = malloc(sizeof(*wrk));
995 igt_assert(wrk);
996
997 wrk->nr_steps = nr_steps;
998 wrk->steps = steps;
999 wrk->prio = arg->prio;
1000 wrk->sseu = arg->sseu;
1001
1002 free(desc);
1003
1004 /*
1005 * Tag all steps which need to emit a sync fence if another step is
1006 * referencing them as a sync fence dependency.
1007 */
1008 for (i = 0; i < nr_steps; i++) {
1009 for (j = 0; j < steps[i].fence_deps.nr; j++) {
1010 tmp = steps[i].idx + steps[i].fence_deps.list[j];
1011 check_arg(tmp < 0 || tmp >= i ||
1012 (steps[tmp].type != BATCH &&
1013 steps[tmp].type != SW_FENCE),
1014 "Invalid dependency target %u!\n", i);
1015 steps[tmp].emit_fence = -1;
1016 }
1017 }
1018
1019 /* Validate SW_FENCE_SIGNAL targets. */
1020 for (i = 0; i < nr_steps; i++) {
1021 if (steps[i].type == SW_FENCE_SIGNAL) {
1022 tmp = steps[i].idx + steps[i].target;
1023 check_arg(tmp < 0 || tmp >= i ||
1024 steps[tmp].type != SW_FENCE,
1025 "Invalid sw fence target %u!\n", i);
1026 }
1027 }
1028
1029 if (bcs_used && (flags & VCS2REMAP) && verbose)
1030 printf("BCS usage in workload with VCS2 remapping enabled!\n");
1031
1032 return wrk;
1033 }
1034
1035 static struct workload *
clone_workload(struct workload * _wrk)1036 clone_workload(struct workload *_wrk)
1037 {
1038 struct workload *wrk;
1039 int i;
1040
1041 wrk = malloc(sizeof(*wrk));
1042 igt_assert(wrk);
1043 memset(wrk, 0, sizeof(*wrk));
1044
1045 wrk->prio = _wrk->prio;
1046 wrk->sseu = _wrk->sseu;
1047 wrk->nr_steps = _wrk->nr_steps;
1048 wrk->steps = calloc(wrk->nr_steps, sizeof(struct w_step));
1049 igt_assert(wrk->steps);
1050
1051 memcpy(wrk->steps, _wrk->steps, sizeof(struct w_step) * wrk->nr_steps);
1052
1053 /* Check if we need a sw sync timeline. */
1054 for (i = 0; i < wrk->nr_steps; i++) {
1055 if (wrk->steps[i].type == SW_FENCE) {
1056 wrk->sync_timeline = sw_sync_timeline_create();
1057 igt_assert(wrk->sync_timeline >= 0);
1058 break;
1059 }
1060 }
1061
1062 for (i = 0; i < NUM_ENGINES; i++)
1063 igt_list_init(&wrk->requests[i]);
1064
1065 return wrk;
1066 }
1067
1068 #define rounddown(x, y) (x - (x%y))
1069 #ifndef PAGE_SIZE
1070 #define PAGE_SIZE (4096)
1071 #endif
1072
get_duration(struct workload * wrk,struct w_step * w)1073 static unsigned int get_duration(struct workload *wrk, struct w_step *w)
1074 {
1075 struct duration *dur = &w->duration;
1076
1077 if (dur->min == dur->max)
1078 return dur->min;
1079 else
1080 return dur->min + hars_petruska_f54_1_random(&wrk->bb_prng) %
1081 (dur->max + 1 - dur->min);
1082 }
1083
get_bb_sz(unsigned int duration)1084 static unsigned long get_bb_sz(unsigned int duration)
1085 {
1086 return ALIGN(duration * nop_calibration * sizeof(uint32_t) /
1087 nop_calibration_us, sizeof(uint32_t));
1088 }
1089
1090 static void
init_bb(struct w_step * w,unsigned int flags)1091 init_bb(struct w_step *w, unsigned int flags)
1092 {
1093 const unsigned int arb_period =
1094 get_bb_sz(w->preempt_us) / sizeof(uint32_t);
1095 const unsigned int mmap_len = ALIGN(w->bb_sz, 4096);
1096 unsigned int i;
1097 uint32_t *ptr;
1098
1099 if (w->unbound_duration || !arb_period)
1100 return;
1101
1102 gem_set_domain(fd, w->bb_handle,
1103 I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC);
1104
1105 ptr = gem_mmap__wc(fd, w->bb_handle, 0, mmap_len, PROT_WRITE);
1106
1107 for (i = arb_period; i < w->bb_sz / sizeof(uint32_t); i += arb_period)
1108 ptr[i] = 0x5 << 23; /* MI_ARB_CHK */
1109
1110 munmap(ptr, mmap_len);
1111 }
1112
1113 static unsigned int
terminate_bb(struct w_step * w,unsigned int flags)1114 terminate_bb(struct w_step *w, unsigned int flags)
1115 {
1116 const uint32_t bbe = 0xa << 23;
1117 unsigned long mmap_start, mmap_len;
1118 unsigned long batch_start = w->bb_sz;
1119 unsigned int r = 0;
1120 uint32_t *ptr, *cs;
1121
1122 igt_assert(((flags & RT) && (flags & SEQNO)) || !(flags & RT));
1123
1124 batch_start -= sizeof(uint32_t); /* bbend */
1125 if (flags & SEQNO)
1126 batch_start -= 4 * sizeof(uint32_t);
1127 if (flags & RT)
1128 batch_start -= 12 * sizeof(uint32_t);
1129
1130 if (w->unbound_duration)
1131 batch_start -= 4 * sizeof(uint32_t); /* MI_ARB_CHK + MI_BATCH_BUFFER_START */
1132
1133 mmap_start = rounddown(batch_start, PAGE_SIZE);
1134 mmap_len = ALIGN(w->bb_sz - mmap_start, PAGE_SIZE);
1135
1136 gem_set_domain(fd, w->bb_handle,
1137 I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC);
1138
1139 ptr = gem_mmap__wc(fd, w->bb_handle, mmap_start, mmap_len, PROT_WRITE);
1140 cs = (uint32_t *)((char *)ptr + batch_start - mmap_start);
1141
1142 if (w->unbound_duration) {
1143 w->reloc[r++].offset = batch_start + 2 * sizeof(uint32_t);
1144 batch_start += 4 * sizeof(uint32_t);
1145
1146 *cs++ = w->preempt_us ? 0x5 << 23 /* MI_ARB_CHK; */ : MI_NOOP;
1147 w->recursive_bb_start = cs;
1148 *cs++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
1149 *cs++ = 0;
1150 *cs++ = 0;
1151 }
1152
1153 if (flags & SEQNO) {
1154 w->reloc[r++].offset = batch_start + sizeof(uint32_t);
1155 batch_start += 4 * sizeof(uint32_t);
1156
1157 *cs++ = MI_STORE_DWORD_IMM;
1158 w->seqno_address = cs;
1159 *cs++ = 0;
1160 *cs++ = 0;
1161 w->seqno_value = cs;
1162 *cs++ = 0;
1163 }
1164
1165 if (flags & RT) {
1166 w->reloc[r++].offset = batch_start + sizeof(uint32_t);
1167 batch_start += 4 * sizeof(uint32_t);
1168
1169 *cs++ = MI_STORE_DWORD_IMM;
1170 w->rt0_address = cs;
1171 *cs++ = 0;
1172 *cs++ = 0;
1173 w->rt0_value = cs;
1174 *cs++ = 0;
1175
1176 w->reloc[r++].offset = batch_start + 2 * sizeof(uint32_t);
1177 batch_start += 4 * sizeof(uint32_t);
1178
1179 *cs++ = 0x24 << 23 | 2; /* MI_STORE_REG_MEM */
1180 *cs++ = RCS_TIMESTAMP;
1181 w->rt1_address = cs;
1182 *cs++ = 0;
1183 *cs++ = 0;
1184
1185 w->reloc[r++].offset = batch_start + sizeof(uint32_t);
1186 batch_start += 4 * sizeof(uint32_t);
1187
1188 *cs++ = MI_STORE_DWORD_IMM;
1189 w->latch_address = cs;
1190 *cs++ = 0;
1191 *cs++ = 0;
1192 w->latch_value = cs;
1193 *cs++ = 0;
1194 }
1195
1196 *cs = bbe;
1197
1198 return r;
1199 }
1200
1201 static const unsigned int eb_engine_map[NUM_ENGINES] = {
1202 [DEFAULT] = I915_EXEC_DEFAULT,
1203 [RCS] = I915_EXEC_RENDER,
1204 [BCS] = I915_EXEC_BLT,
1205 [VCS] = I915_EXEC_BSD,
1206 [VCS1] = I915_EXEC_BSD | I915_EXEC_BSD_RING1,
1207 [VCS2] = I915_EXEC_BSD | I915_EXEC_BSD_RING2,
1208 [VECS] = I915_EXEC_VEBOX
1209 };
1210
1211 static void
eb_set_engine(struct drm_i915_gem_execbuffer2 * eb,enum intel_engine_id engine,unsigned int flags)1212 eb_set_engine(struct drm_i915_gem_execbuffer2 *eb,
1213 enum intel_engine_id engine,
1214 unsigned int flags)
1215 {
1216 if (engine == VCS2 && (flags & VCS2REMAP))
1217 engine = BCS;
1218
1219 if ((flags & I915) && engine == VCS)
1220 eb->flags = 0;
1221 else
1222 eb->flags = eb_engine_map[engine];
1223 }
1224
1225 static unsigned int
find_engine_in_map(struct ctx * ctx,enum intel_engine_id engine)1226 find_engine_in_map(struct ctx *ctx, enum intel_engine_id engine)
1227 {
1228 unsigned int i;
1229
1230 for (i = 0; i < ctx->engine_map_count; i++) {
1231 if (ctx->engine_map[i] == engine)
1232 return i + 1;
1233 }
1234
1235 igt_assert(ctx->wants_balance);
1236 return 0;
1237 }
1238
1239 static struct ctx *
__get_ctx(struct workload * wrk,struct w_step * w)1240 __get_ctx(struct workload *wrk, struct w_step *w)
1241 {
1242 return &wrk->ctx_list[w->context * 2];
1243 }
1244
1245 static void
eb_update_flags(struct workload * wrk,struct w_step * w,enum intel_engine_id engine,unsigned int flags)1246 eb_update_flags(struct workload *wrk, struct w_step *w,
1247 enum intel_engine_id engine, unsigned int flags)
1248 {
1249 struct ctx *ctx = __get_ctx(wrk, w);
1250
1251 if (ctx->engine_map)
1252 w->eb.flags = find_engine_in_map(ctx, engine);
1253 else
1254 eb_set_engine(&w->eb, engine, flags);
1255
1256 w->eb.flags |= I915_EXEC_HANDLE_LUT;
1257 w->eb.flags |= I915_EXEC_NO_RELOC;
1258
1259 igt_assert(w->emit_fence <= 0);
1260 if (w->emit_fence)
1261 w->eb.flags |= I915_EXEC_FENCE_OUT;
1262 }
1263
1264 static struct drm_i915_gem_exec_object2 *
get_status_objects(struct workload * wrk)1265 get_status_objects(struct workload *wrk)
1266 {
1267 if (wrk->flags & GLOBAL_BALANCE)
1268 return wrk->global_wrk->status_object;
1269 else
1270 return wrk->status_object;
1271 }
1272
1273 static uint32_t
get_ctxid(struct workload * wrk,struct w_step * w)1274 get_ctxid(struct workload *wrk, struct w_step *w)
1275 {
1276 struct ctx *ctx = __get_ctx(wrk, w);
1277
1278 if (ctx->targets_instance && ctx->wants_balance && w->engine == VCS)
1279 return wrk->ctx_list[w->context * 2 + 1].id;
1280 else
1281 return wrk->ctx_list[w->context * 2].id;
1282 }
1283
1284 static void
alloc_step_batch(struct workload * wrk,struct w_step * w,unsigned int flags)1285 alloc_step_batch(struct workload *wrk, struct w_step *w, unsigned int flags)
1286 {
1287 enum intel_engine_id engine = w->engine;
1288 unsigned int j = 0;
1289 unsigned int nr_obj = 3 + w->data_deps.nr;
1290 unsigned int i;
1291
1292 w->obj = calloc(nr_obj, sizeof(*w->obj));
1293 igt_assert(w->obj);
1294
1295 w->obj[j].handle = gem_create(fd, 4096);
1296 w->obj[j].flags = EXEC_OBJECT_WRITE;
1297 j++;
1298 igt_assert(j < nr_obj);
1299
1300 if (flags & SEQNO) {
1301 w->obj[j++] = get_status_objects(wrk)[0];
1302 igt_assert(j < nr_obj);
1303 }
1304
1305 for (i = 0; i < w->data_deps.nr; i++) {
1306 igt_assert(w->data_deps.list[i] <= 0);
1307 if (w->data_deps.list[i]) {
1308 int dep_idx = w->idx + w->data_deps.list[i];
1309
1310 igt_assert(dep_idx >= 0 && dep_idx < w->idx);
1311 igt_assert(wrk->steps[dep_idx].type == BATCH);
1312
1313 w->obj[j].handle = wrk->steps[dep_idx].obj[0].handle;
1314 j++;
1315 igt_assert(j < nr_obj);
1316 }
1317 }
1318
1319 if (w->unbound_duration)
1320 /* nops + MI_ARB_CHK + MI_BATCH_BUFFER_START */
1321 w->bb_sz = max(PAGE_SIZE, get_bb_sz(w->preempt_us)) +
1322 (1 + 3) * sizeof(uint32_t);
1323 else
1324 w->bb_sz = get_bb_sz(w->duration.max);
1325 w->bb_handle = w->obj[j].handle = gem_create(fd, w->bb_sz + (w->unbound_duration ? 4096 : 0));
1326 init_bb(w, flags);
1327 w->obj[j].relocation_count = terminate_bb(w, flags);
1328
1329 if (w->obj[j].relocation_count) {
1330 w->obj[j].relocs_ptr = to_user_pointer(&w->reloc);
1331 for (i = 0; i < w->obj[j].relocation_count; i++)
1332 w->reloc[i].target_handle = 1;
1333 if (w->unbound_duration)
1334 w->reloc[0].target_handle = j;
1335 }
1336
1337 w->eb.buffers_ptr = to_user_pointer(w->obj);
1338 w->eb.buffer_count = j + 1;
1339 w->eb.rsvd1 = get_ctxid(wrk, w);
1340
1341 if (flags & SWAPVCS && engine == VCS1)
1342 engine = VCS2;
1343 else if (flags & SWAPVCS && engine == VCS2)
1344 engine = VCS1;
1345 eb_update_flags(wrk, w, engine, flags);
1346 #ifdef DEBUG
1347 printf("%u: %u:|", w->idx, w->eb.buffer_count);
1348 for (i = 0; i <= j; i++)
1349 printf("%x|", w->obj[i].handle);
1350 printf(" %10lu flags=%llx bb=%x[%u] ctx[%u]=%u\n",
1351 w->bb_sz, w->eb.flags, w->bb_handle, j, w->context,
1352 get_ctxid(wrk, w));
1353 #endif
1354 }
1355
__ctx_set_prio(uint32_t ctx_id,unsigned int prio)1356 static void __ctx_set_prio(uint32_t ctx_id, unsigned int prio)
1357 {
1358 struct drm_i915_gem_context_param param = {
1359 .ctx_id = ctx_id,
1360 .param = I915_CONTEXT_PARAM_PRIORITY,
1361 .value = prio,
1362 };
1363
1364 if (prio)
1365 gem_context_set_param(fd, ¶m);
1366 }
1367
__vm_destroy(int i915,uint32_t vm_id)1368 static int __vm_destroy(int i915, uint32_t vm_id)
1369 {
1370 struct drm_i915_gem_vm_control ctl = { .vm_id = vm_id };
1371 int err = 0;
1372
1373 if (igt_ioctl(i915, DRM_IOCTL_I915_GEM_VM_DESTROY, &ctl)) {
1374 err = -errno;
1375 igt_assume(err);
1376 }
1377
1378 errno = 0;
1379 return err;
1380 }
1381
vm_destroy(int i915,uint32_t vm_id)1382 static void vm_destroy(int i915, uint32_t vm_id)
1383 {
1384 igt_assert_eq(__vm_destroy(i915, vm_id), 0);
1385 }
1386
1387 static unsigned int
find_engine(struct i915_engine_class_instance * ci,unsigned int count,enum intel_engine_id engine)1388 find_engine(struct i915_engine_class_instance *ci, unsigned int count,
1389 enum intel_engine_id engine)
1390 {
1391 struct i915_engine_class_instance e = get_engine(engine);
1392 unsigned int i;
1393
1394 for (i = 0; i < count; i++, ci++) {
1395 if (!memcmp(&e, ci, sizeof(*ci)))
1396 return i;
1397 }
1398
1399 igt_assert(0);
1400 return 0;
1401 }
1402
get_device_sseu(void)1403 static struct drm_i915_gem_context_param_sseu get_device_sseu(void)
1404 {
1405 struct drm_i915_gem_context_param param = { };
1406
1407 if (device_sseu.slice_mask == -1) {
1408 param.param = I915_CONTEXT_PARAM_SSEU;
1409 param.value = (uintptr_t)&device_sseu;
1410
1411 gem_context_get_param(fd, ¶m);
1412 }
1413
1414 return device_sseu;
1415 }
1416
1417 static uint64_t
set_ctx_sseu(struct ctx * ctx,uint64_t slice_mask)1418 set_ctx_sseu(struct ctx *ctx, uint64_t slice_mask)
1419 {
1420 struct drm_i915_gem_context_param_sseu sseu = get_device_sseu();
1421 struct drm_i915_gem_context_param param = { };
1422
1423 if (slice_mask == -1)
1424 slice_mask = device_sseu.slice_mask;
1425
1426 if (ctx->engine_map && ctx->wants_balance) {
1427 sseu.flags = I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX;
1428 sseu.engine.engine_class = I915_ENGINE_CLASS_INVALID;
1429 sseu.engine.engine_instance = 0;
1430 }
1431
1432 sseu.slice_mask = slice_mask;
1433
1434 param.ctx_id = ctx->id;
1435 param.param = I915_CONTEXT_PARAM_SSEU;
1436 param.size = sizeof(sseu);
1437 param.value = (uintptr_t)&sseu;
1438
1439 gem_context_set_param(fd, ¶m);
1440
1441 return slice_mask;
1442 }
1443
sizeof_load_balance(int count)1444 static size_t sizeof_load_balance(int count)
1445 {
1446 return offsetof(struct i915_context_engines_load_balance,
1447 engines[count]);
1448 }
1449
sizeof_param_engines(int count)1450 static size_t sizeof_param_engines(int count)
1451 {
1452 return offsetof(struct i915_context_param_engines,
1453 engines[count]);
1454 }
1455
sizeof_engines_bond(int count)1456 static size_t sizeof_engines_bond(int count)
1457 {
1458 return offsetof(struct i915_context_engines_bond,
1459 engines[count]);
1460 }
1461
1462 #define alloca0(sz) ({ size_t sz__ = (sz); memset(alloca(sz__), 0, sz__); })
1463
1464 static int
prepare_workload(unsigned int id,struct workload * wrk,unsigned int flags)1465 prepare_workload(unsigned int id, struct workload *wrk, unsigned int flags)
1466 {
1467 unsigned int ctx_vcs;
1468 int max_ctx = -1;
1469 struct w_step *w;
1470 int i, j;
1471
1472 wrk->id = id;
1473 wrk->prng = rand();
1474 wrk->bb_prng = (wrk->flags & SYNCEDCLIENTS) ? master_prng : rand();
1475 wrk->run = true;
1476
1477 ctx_vcs = 0;
1478 if (flags & INITVCSRR)
1479 ctx_vcs = id & 1;
1480 wrk->vcs_rr = ctx_vcs;
1481
1482 if (flags & GLOBAL_BALANCE) {
1483 int ret = pthread_mutex_init(&wrk->mutex, NULL);
1484 igt_assert(ret == 0);
1485 }
1486
1487 if (flags & SEQNO) {
1488 if (!(flags & GLOBAL_BALANCE) || id == 0) {
1489 uint32_t handle;
1490
1491 handle = gem_create(fd, 4096);
1492 gem_set_caching(fd, handle, I915_CACHING_CACHED);
1493 wrk->status_object[0].handle = handle;
1494 wrk->status_page = gem_mmap__cpu(fd, handle, 0, 4096,
1495 PROT_READ);
1496
1497 handle = gem_create(fd, 4096);
1498 wrk->status_object[1].handle = handle;
1499 wrk->status_cs = gem_mmap__wc(fd, handle,
1500 0, 4096, PROT_WRITE);
1501 }
1502 }
1503
1504 /*
1505 * Pre-scan workload steps to allocate context list storage.
1506 */
1507 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1508 int ctx = w->context * 2 + 1; /* Odd slots are special. */
1509 int delta;
1510
1511 if (ctx <= max_ctx)
1512 continue;
1513
1514 delta = ctx + 1 - wrk->nr_ctxs;
1515
1516 wrk->nr_ctxs += delta;
1517 wrk->ctx_list = realloc(wrk->ctx_list,
1518 wrk->nr_ctxs * sizeof(*wrk->ctx_list));
1519 memset(&wrk->ctx_list[wrk->nr_ctxs - delta], 0,
1520 delta * sizeof(*wrk->ctx_list));
1521
1522 max_ctx = ctx;
1523 }
1524
1525 /*
1526 * Identify if contexts target specific engine instances and if they
1527 * want to be balanced.
1528 *
1529 * Transfer over engine map configuration from the workload step.
1530 */
1531 for (j = 0; j < wrk->nr_ctxs; j += 2) {
1532 struct ctx *ctx = &wrk->ctx_list[j];
1533
1534 bool targets = false;
1535 bool balance = false;
1536
1537 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1538 if (w->context != (j / 2))
1539 continue;
1540
1541 if (w->type == BATCH) {
1542 if (w->engine == VCS)
1543 balance = true;
1544 else
1545 targets = true;
1546 } else if (w->type == ENGINE_MAP) {
1547 ctx->engine_map = w->engine_map;
1548 ctx->engine_map_count = w->engine_map_count;
1549 } else if (w->type == LOAD_BALANCE) {
1550 if (!ctx->engine_map) {
1551 wsim_err("Load balancing needs an engine map!\n");
1552 return 1;
1553 }
1554 ctx->wants_balance = w->load_balance;
1555 } else if (w->type == BOND) {
1556 if (!ctx->wants_balance) {
1557 wsim_err("Engine bonds need load balancing engine map!\n");
1558 return 1;
1559 }
1560 ctx->bond_count++;
1561 ctx->bonds = realloc(ctx->bonds,
1562 ctx->bond_count *
1563 sizeof(struct bond));
1564 igt_assert(ctx->bonds);
1565 ctx->bonds[ctx->bond_count - 1].mask =
1566 w->bond_mask;
1567 ctx->bonds[ctx->bond_count - 1].master =
1568 w->bond_master;
1569 }
1570 }
1571
1572 wrk->ctx_list[j].targets_instance = targets;
1573 if (flags & I915)
1574 wrk->ctx_list[j].wants_balance |= balance;
1575 }
1576
1577 /*
1578 * Ensure VCS is not allowed with engine map contexts.
1579 */
1580 for (j = 0; j < wrk->nr_ctxs; j += 2) {
1581 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1582 if (w->context != (j / 2))
1583 continue;
1584
1585 if (w->type != BATCH)
1586 continue;
1587
1588 if (wrk->ctx_list[j].engine_map &&
1589 !wrk->ctx_list[j].wants_balance &&
1590 (w->engine == VCS || w->engine == DEFAULT)) {
1591 wsim_err("Batches targetting engine maps must use explicit engines!\n");
1592 return -1;
1593 }
1594 }
1595 }
1596
1597
1598 /*
1599 * Create and configure contexts.
1600 */
1601 for (i = 0; i < wrk->nr_ctxs; i += 2) {
1602 struct ctx *ctx = &wrk->ctx_list[i];
1603 uint32_t ctx_id, share_vm = 0;
1604
1605 if (ctx->id)
1606 continue;
1607
1608 if ((flags & I915) || ctx->engine_map) {
1609 struct drm_i915_gem_context_create_ext_setparam ext = {
1610 .base.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1611 .param.param = I915_CONTEXT_PARAM_VM,
1612 };
1613 struct drm_i915_gem_context_create_ext args = { };
1614
1615 /* Find existing context to share ppgtt with. */
1616 for (j = 0; j < wrk->nr_ctxs; j++) {
1617 struct drm_i915_gem_context_param param = {
1618 .param = I915_CONTEXT_PARAM_VM,
1619 };
1620
1621 if (!wrk->ctx_list[j].id)
1622 continue;
1623
1624 param.ctx_id = wrk->ctx_list[j].id;
1625
1626 gem_context_get_param(fd, ¶m);
1627 igt_assert(param.value);
1628
1629 share_vm = param.value;
1630
1631 ext.param.value = share_vm;
1632 args.flags =
1633 I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS;
1634 args.extensions = to_user_pointer(&ext);
1635 break;
1636 }
1637
1638 if ((!ctx->engine_map && !ctx->targets_instance) ||
1639 (ctx->engine_map && ctx->wants_balance))
1640 args.flags |=
1641 I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE;
1642
1643 drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT,
1644 &args);
1645
1646 ctx_id = args.ctx_id;
1647 } else {
1648 struct drm_i915_gem_context_create args = {};
1649
1650 drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &args);
1651 ctx_id = args.ctx_id;
1652 }
1653
1654 igt_assert(ctx_id);
1655 ctx->id = ctx_id;
1656 ctx->sseu = device_sseu.slice_mask;
1657
1658 if (flags & GLOBAL_BALANCE) {
1659 ctx->static_vcs = context_vcs_rr;
1660 context_vcs_rr ^= 1;
1661 } else {
1662 ctx->static_vcs = ctx_vcs;
1663 ctx_vcs ^= 1;
1664 }
1665
1666 __ctx_set_prio(ctx_id, wrk->prio);
1667
1668 /*
1669 * Do we need a separate context to satisfy this workloads which
1670 * both want to target specific engines and be balanced by i915?
1671 */
1672 if ((flags & I915) && ctx->wants_balance &&
1673 ctx->targets_instance && !ctx->engine_map) {
1674 struct drm_i915_gem_context_create_ext_setparam ext = {
1675 .base.name = I915_CONTEXT_CREATE_EXT_SETPARAM,
1676 .param.param = I915_CONTEXT_PARAM_VM,
1677 .param.value = share_vm,
1678 };
1679 struct drm_i915_gem_context_create_ext args = {
1680 .extensions = to_user_pointer(&ext),
1681 .flags =
1682 I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS |
1683 I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE,
1684 };
1685
1686 igt_assert(share_vm);
1687
1688 drmIoctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT,
1689 &args);
1690
1691 igt_assert(args.ctx_id);
1692 ctx_id = args.ctx_id;
1693 wrk->ctx_list[i + 1].id = args.ctx_id;
1694
1695 __ctx_set_prio(ctx_id, wrk->prio);
1696 }
1697
1698 if (ctx->engine_map) {
1699 struct i915_context_param_engines *set_engines =
1700 alloca0(sizeof_param_engines(ctx->engine_map_count + 1));
1701 struct i915_context_engines_load_balance *load_balance =
1702 alloca0(sizeof_load_balance(ctx->engine_map_count));
1703 struct drm_i915_gem_context_param param = {
1704 .ctx_id = ctx_id,
1705 .param = I915_CONTEXT_PARAM_ENGINES,
1706 .size = sizeof_param_engines(ctx->engine_map_count + 1),
1707 .value = to_user_pointer(set_engines),
1708 };
1709 struct i915_context_engines_bond *last = NULL;
1710
1711 if (ctx->wants_balance) {
1712 set_engines->extensions =
1713 to_user_pointer(load_balance);
1714
1715 load_balance->base.name =
1716 I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE;
1717 load_balance->num_siblings =
1718 ctx->engine_map_count;
1719
1720 for (j = 0; j < ctx->engine_map_count; j++)
1721 load_balance->engines[j] =
1722 get_engine(ctx->engine_map[j]);
1723 }
1724
1725 /* Reserve slot for virtual engine. */
1726 set_engines->engines[0].engine_class =
1727 I915_ENGINE_CLASS_INVALID;
1728 set_engines->engines[0].engine_instance =
1729 I915_ENGINE_CLASS_INVALID_NONE;
1730
1731 for (j = 1; j <= ctx->engine_map_count; j++)
1732 set_engines->engines[j] =
1733 get_engine(ctx->engine_map[j - 1]);
1734
1735 last = NULL;
1736 for (j = 0; j < ctx->bond_count; j++) {
1737 unsigned long mask = ctx->bonds[j].mask;
1738 struct i915_context_engines_bond *bond =
1739 alloca0(sizeof_engines_bond(__builtin_popcount(mask)));
1740 unsigned int b, e;
1741
1742 bond->base.next_extension = to_user_pointer(last);
1743 bond->base.name = I915_CONTEXT_ENGINES_EXT_BOND;
1744
1745 bond->virtual_index = 0;
1746 bond->master = get_engine(ctx->bonds[j].master);
1747
1748 for (b = 0, e = 0; mask; e++, mask >>= 1) {
1749 unsigned int idx;
1750
1751 if (!(mask & 1))
1752 continue;
1753
1754 idx = find_engine(&set_engines->engines[1],
1755 ctx->engine_map_count,
1756 e);
1757 bond->engines[b++] =
1758 set_engines->engines[1 + idx];
1759 }
1760
1761 last = bond;
1762 }
1763 load_balance->base.next_extension = to_user_pointer(last);
1764
1765 gem_context_set_param(fd, ¶m);
1766 } else if (ctx->wants_balance) {
1767 const unsigned int count = num_engines_in_class(VCS);
1768 struct i915_context_engines_load_balance *load_balance =
1769 alloca0(sizeof_load_balance(count));
1770 struct i915_context_param_engines *set_engines =
1771 alloca0(sizeof_param_engines(count + 1));
1772 struct drm_i915_gem_context_param param = {
1773 .ctx_id = ctx_id,
1774 .param = I915_CONTEXT_PARAM_ENGINES,
1775 .size = sizeof_param_engines(count + 1),
1776 .value = to_user_pointer(set_engines),
1777 };
1778
1779 set_engines->extensions = to_user_pointer(load_balance);
1780
1781 set_engines->engines[0].engine_class =
1782 I915_ENGINE_CLASS_INVALID;
1783 set_engines->engines[0].engine_instance =
1784 I915_ENGINE_CLASS_INVALID_NONE;
1785 fill_engines_class(&set_engines->engines[1], VCS);
1786
1787 load_balance->base.name =
1788 I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE;
1789 load_balance->num_siblings = count;
1790
1791 fill_engines_class(&load_balance->engines[0], VCS);
1792
1793 gem_context_set_param(fd, ¶m);
1794 }
1795
1796 if (wrk->sseu) {
1797 /* Set to slice 0 only, one slice. */
1798 ctx->sseu = set_ctx_sseu(ctx, 1);
1799 }
1800
1801 if (share_vm)
1802 vm_destroy(fd, share_vm);
1803 }
1804
1805 /* Record default preemption. */
1806 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1807 if (w->type == BATCH)
1808 w->preempt_us = 100;
1809 }
1810
1811 /*
1812 * Scan for contexts with modified preemption config and record their
1813 * preemption period for the following steps belonging to the same
1814 * context.
1815 */
1816 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1817 struct w_step *w2;
1818
1819 if (w->type != PREEMPTION)
1820 continue;
1821
1822 for (j = i + 1; j < wrk->nr_steps; j++) {
1823 w2 = &wrk->steps[j];
1824
1825 if (w2->context != w->context)
1826 continue;
1827 else if (w2->type == PREEMPTION)
1828 break;
1829 else if (w2->type != BATCH)
1830 continue;
1831
1832 w2->preempt_us = w->period;
1833 }
1834 }
1835
1836 /*
1837 * Scan for SSEU control steps.
1838 */
1839 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1840 if (w->type == SSEU) {
1841 get_device_sseu();
1842 break;
1843 }
1844 }
1845
1846 /*
1847 * Allocate batch buffers.
1848 */
1849 for (i = 0, w = wrk->steps; i < wrk->nr_steps; i++, w++) {
1850 unsigned int _flags = flags;
1851 enum intel_engine_id engine = w->engine;
1852
1853 if (w->type != BATCH)
1854 continue;
1855
1856 if (engine == VCS)
1857 _flags &= ~SWAPVCS;
1858
1859 alloc_step_batch(wrk, w, _flags);
1860 }
1861
1862 return 0;
1863 }
1864
elapsed(const struct timespec * start,const struct timespec * end)1865 static double elapsed(const struct timespec *start, const struct timespec *end)
1866 {
1867 return (end->tv_sec - start->tv_sec) +
1868 (end->tv_nsec - start->tv_nsec) / 1e9;
1869 }
1870
elapsed_us(const struct timespec * start,const struct timespec * end)1871 static int elapsed_us(const struct timespec *start, const struct timespec *end)
1872 {
1873 return elapsed(start, end) * 1e6;
1874 }
1875
get_vcs_engine(unsigned int n)1876 static enum intel_engine_id get_vcs_engine(unsigned int n)
1877 {
1878 const enum intel_engine_id vcs_engines[2] = { VCS1, VCS2 };
1879
1880 igt_assert(n < ARRAY_SIZE(vcs_engines));
1881
1882 return vcs_engines[n];
1883 }
1884
new_seqno(struct workload * wrk,enum intel_engine_id engine)1885 static uint32_t new_seqno(struct workload *wrk, enum intel_engine_id engine)
1886 {
1887 uint32_t seqno;
1888 int ret;
1889
1890 if (wrk->flags & GLOBAL_BALANCE) {
1891 igt_assert(wrk->global_wrk);
1892 wrk = wrk->global_wrk;
1893
1894 ret = pthread_mutex_lock(&wrk->mutex);
1895 igt_assert(ret == 0);
1896 }
1897
1898 seqno = ++wrk->seqno[engine];
1899
1900 if (wrk->flags & GLOBAL_BALANCE) {
1901 ret = pthread_mutex_unlock(&wrk->mutex);
1902 igt_assert(ret == 0);
1903 }
1904
1905 return seqno;
1906 }
1907
1908 static uint32_t
current_seqno(struct workload * wrk,enum intel_engine_id engine)1909 current_seqno(struct workload *wrk, enum intel_engine_id engine)
1910 {
1911 if (wrk->flags & GLOBAL_BALANCE)
1912 return wrk->global_wrk->seqno[engine];
1913 else
1914 return wrk->seqno[engine];
1915 }
1916
1917 static uint32_t
read_status_page(struct workload * wrk,unsigned int idx)1918 read_status_page(struct workload *wrk, unsigned int idx)
1919 {
1920 if (wrk->flags & GLOBAL_BALANCE)
1921 return READ_ONCE(wrk->global_wrk->status_page[idx]);
1922 else
1923 return READ_ONCE(wrk->status_page[idx]);
1924 }
1925
1926 static uint32_t
current_gpu_seqno(struct workload * wrk,enum intel_engine_id engine)1927 current_gpu_seqno(struct workload *wrk, enum intel_engine_id engine)
1928 {
1929 return read_status_page(wrk, SEQNO_IDX(engine));
1930 }
1931
1932 struct workload_balancer {
1933 unsigned int id;
1934 const char *name;
1935 const char *desc;
1936 unsigned int flags;
1937 unsigned int min_gen;
1938
1939 int (*init)(const struct workload_balancer *balancer,
1940 struct workload *wrk);
1941 unsigned int (*get_qd)(const struct workload_balancer *balancer,
1942 struct workload *wrk,
1943 enum intel_engine_id engine);
1944 enum intel_engine_id (*balance)(const struct workload_balancer *balancer,
1945 struct workload *wrk, struct w_step *w);
1946 };
1947
1948 static enum intel_engine_id
rr_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)1949 rr_balance(const struct workload_balancer *balancer,
1950 struct workload *wrk, struct w_step *w)
1951 {
1952 unsigned int engine;
1953
1954 engine = get_vcs_engine(wrk->vcs_rr);
1955 wrk->vcs_rr ^= 1;
1956
1957 return engine;
1958 }
1959
1960 static enum intel_engine_id
rand_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)1961 rand_balance(const struct workload_balancer *balancer,
1962 struct workload *wrk, struct w_step *w)
1963 {
1964 return get_vcs_engine(hars_petruska_f54_1_random(&wrk->prng) & 1);
1965 }
1966
1967 static unsigned int
get_qd_depth(const struct workload_balancer * balancer,struct workload * wrk,enum intel_engine_id engine)1968 get_qd_depth(const struct workload_balancer *balancer,
1969 struct workload *wrk, enum intel_engine_id engine)
1970 {
1971 return current_seqno(wrk, engine) - current_gpu_seqno(wrk, engine);
1972 }
1973
1974 static enum intel_engine_id
__qd_select_engine(struct workload * wrk,const unsigned long * qd,bool random)1975 __qd_select_engine(struct workload *wrk, const unsigned long *qd, bool random)
1976 {
1977 unsigned int n;
1978
1979 if (qd[VCS1] < qd[VCS2])
1980 n = 0;
1981 else if (qd[VCS1] > qd[VCS2])
1982 n = 1;
1983 else if (random)
1984 n = hars_petruska_f54_1_random(&wrk->prng) & 1;
1985 else
1986 n = wrk->vcs_rr;
1987 wrk->vcs_rr = n ^ 1;
1988
1989 return get_vcs_engine(n);
1990 }
1991
1992 static enum intel_engine_id
__qd_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w,bool random)1993 __qd_balance(const struct workload_balancer *balancer,
1994 struct workload *wrk, struct w_step *w, bool random)
1995 {
1996 enum intel_engine_id engine;
1997 unsigned long qd[NUM_ENGINES];
1998
1999 igt_assert(w->engine == VCS);
2000
2001 qd[VCS1] = balancer->get_qd(balancer, wrk, VCS1);
2002 wrk->qd_sum[VCS1] += qd[VCS1];
2003
2004 qd[VCS2] = balancer->get_qd(balancer, wrk, VCS2);
2005 wrk->qd_sum[VCS2] += qd[VCS2];
2006
2007 engine = __qd_select_engine(wrk, qd, random);
2008
2009 #ifdef DEBUG
2010 printf("qd_balance[%u]: 1:%ld 2:%ld rr:%u = %u\t(%u - %u) (%u - %u)\n",
2011 wrk->id, qd[VCS1], qd[VCS2], wrk->vcs_rr, engine,
2012 current_seqno(wrk, VCS1), current_gpu_seqno(wrk, VCS1),
2013 current_seqno(wrk, VCS2), current_gpu_seqno(wrk, VCS2));
2014 #endif
2015 return engine;
2016 }
2017
2018 static enum intel_engine_id
qd_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2019 qd_balance(const struct workload_balancer *balancer,
2020 struct workload *wrk, struct w_step *w)
2021 {
2022 return __qd_balance(balancer, wrk, w, false);
2023 }
2024
2025 static enum intel_engine_id
qdr_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2026 qdr_balance(const struct workload_balancer *balancer,
2027 struct workload *wrk, struct w_step *w)
2028 {
2029 return __qd_balance(balancer, wrk, w, true);
2030 }
2031
2032 static enum intel_engine_id
qdavg_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2033 qdavg_balance(const struct workload_balancer *balancer,
2034 struct workload *wrk, struct w_step *w)
2035 {
2036 unsigned long qd[NUM_ENGINES];
2037 unsigned int engine;
2038
2039 igt_assert(w->engine == VCS);
2040
2041 for (engine = VCS1; engine <= VCS2; engine++) {
2042 qd[engine] = balancer->get_qd(balancer, wrk, engine);
2043 wrk->qd_sum[engine] += qd[engine];
2044
2045 ewma_rt_add(&wrk->rt.avg[engine], qd[engine]);
2046 qd[engine] = ewma_rt_read(&wrk->rt.avg[engine]);
2047 }
2048
2049 engine = __qd_select_engine(wrk, qd, false);
2050 #ifdef DEBUG
2051 printf("qdavg_balance[%u]: 1:%ld 2:%ld rr:%u = %u\t(%u - %u) (%u - %u)\n",
2052 wrk->id, qd[VCS1], qd[VCS2], wrk->vcs_rr, engine,
2053 current_seqno(wrk, VCS1), current_gpu_seqno(wrk, VCS1),
2054 current_seqno(wrk, VCS2), current_gpu_seqno(wrk, VCS2));
2055 #endif
2056 return engine;
2057 }
2058
2059 static enum intel_engine_id
__rt_select_engine(struct workload * wrk,unsigned long * qd,bool random)2060 __rt_select_engine(struct workload *wrk, unsigned long *qd, bool random)
2061 {
2062 qd[VCS1] >>= 10;
2063 qd[VCS2] >>= 10;
2064
2065 return __qd_select_engine(wrk, qd, random);
2066 }
2067
2068 struct rt_depth {
2069 uint32_t seqno;
2070 uint32_t submitted;
2071 uint32_t completed;
2072 };
2073
get_rt_depth(struct workload * wrk,unsigned int engine,struct rt_depth * rt)2074 static void get_rt_depth(struct workload *wrk,
2075 unsigned int engine,
2076 struct rt_depth *rt)
2077 {
2078 const unsigned int idx = SEQNO_IDX(engine);
2079 uint32_t latch;
2080
2081 do {
2082 latch = read_status_page(wrk, idx + 3);
2083 rt->submitted = read_status_page(wrk, idx + 1);
2084 rt->completed = read_status_page(wrk, idx + 2);
2085 rt->seqno = read_status_page(wrk, idx);
2086 } while (latch != rt->seqno);
2087 }
2088
2089 static enum intel_engine_id
__rt_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w,bool random)2090 __rt_balance(const struct workload_balancer *balancer,
2091 struct workload *wrk, struct w_step *w, bool random)
2092 {
2093 unsigned long qd[NUM_ENGINES];
2094 unsigned int engine;
2095
2096 igt_assert(w->engine == VCS);
2097
2098 /* Estimate the "speed" of the most recent batch
2099 * (finish time - submit time)
2100 * and use that as an approximate for the total remaining time for
2101 * all batches on that engine, plus the time we expect this batch to
2102 * take. We try to keep the total balanced between the engines.
2103 */
2104 for (engine = VCS1; engine <= VCS2; engine++) {
2105 struct rt_depth rt;
2106
2107 get_rt_depth(wrk, engine, &rt);
2108 qd[engine] = current_seqno(wrk, engine) - rt.seqno;
2109 wrk->qd_sum[engine] += qd[engine];
2110 qd[engine] = (qd[engine] + 1) * (rt.completed - rt.submitted);
2111 #ifdef DEBUG
2112 printf("rt[0] = %d (%d - %d) x %d (%d - %d) = %ld\n",
2113 current_seqno(wrk, engine) - rt.seqno,
2114 current_seqno(wrk, engine), rt.seqno,
2115 rt.completed - rt.submitted,
2116 rt.completed, rt.submitted,
2117 qd[engine]);
2118 #endif
2119 }
2120
2121 return __rt_select_engine(wrk, qd, random);
2122 }
2123
2124 static enum intel_engine_id
rt_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2125 rt_balance(const struct workload_balancer *balancer,
2126 struct workload *wrk, struct w_step *w)
2127 {
2128
2129 return __rt_balance(balancer, wrk, w, false);
2130 }
2131
2132 static enum intel_engine_id
rtr_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2133 rtr_balance(const struct workload_balancer *balancer,
2134 struct workload *wrk, struct w_step *w)
2135 {
2136 return __rt_balance(balancer, wrk, w, true);
2137 }
2138
2139 static enum intel_engine_id
rtavg_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2140 rtavg_balance(const struct workload_balancer *balancer,
2141 struct workload *wrk, struct w_step *w)
2142 {
2143 unsigned long qd[NUM_ENGINES];
2144 unsigned int engine;
2145
2146 igt_assert(w->engine == VCS);
2147
2148 /* Estimate the average "speed" of the most recent batches
2149 * (finish time - submit time)
2150 * and use that as an approximate for the total remaining time for
2151 * all batches on that engine plus the time we expect to execute in.
2152 * We try to keep the total remaining balanced between the engines.
2153 */
2154 for (engine = VCS1; engine <= VCS2; engine++) {
2155 struct rt_depth rt;
2156
2157 get_rt_depth(wrk, engine, &rt);
2158 if (rt.seqno != wrk->rt.last[engine]) {
2159 igt_assert((long)(rt.completed - rt.submitted) > 0);
2160 ewma_rt_add(&wrk->rt.avg[engine],
2161 rt.completed - rt.submitted);
2162 wrk->rt.last[engine] = rt.seqno;
2163 }
2164 qd[engine] = current_seqno(wrk, engine) - rt.seqno;
2165 wrk->qd_sum[engine] += qd[engine];
2166 qd[engine] =
2167 (qd[engine] + 1) * ewma_rt_read(&wrk->rt.avg[engine]);
2168
2169 #ifdef DEBUG
2170 printf("rtavg[%d] = %d (%d - %d) x %ld (%d) = %ld\n",
2171 engine,
2172 current_seqno(wrk, engine) - rt.seqno,
2173 current_seqno(wrk, engine), rt.seqno,
2174 ewma_rt_read(&wrk->rt.avg[engine]),
2175 rt.completed - rt.submitted,
2176 qd[engine]);
2177 #endif
2178 }
2179
2180 return __rt_select_engine(wrk, qd, false);
2181 }
2182
2183 static enum intel_engine_id
context_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2184 context_balance(const struct workload_balancer *balancer,
2185 struct workload *wrk, struct w_step *w)
2186 {
2187 return get_vcs_engine(__get_ctx(wrk, w)->static_vcs);
2188 }
2189
2190 static unsigned int
get_engine_busy(const struct workload_balancer * balancer,struct workload * wrk,enum intel_engine_id engine)2191 get_engine_busy(const struct workload_balancer *balancer,
2192 struct workload *wrk, enum intel_engine_id engine)
2193 {
2194 struct busy_balancer *bb = &wrk->busy_balancer;
2195
2196 if (engine == VCS2 && (wrk->flags & VCS2REMAP))
2197 engine = BCS;
2198
2199 return bb->busy[bb->engine_map[engine]];
2200 }
2201
2202 static void
get_pmu_stats(const struct workload_balancer * b,struct workload * wrk)2203 get_pmu_stats(const struct workload_balancer *b, struct workload *wrk)
2204 {
2205 struct busy_balancer *bb = &wrk->busy_balancer;
2206 uint64_t val[7];
2207 unsigned int i;
2208
2209 igt_assert_eq(read(bb->fd, val, sizeof(val)),
2210 (2 + bb->num_engines) * sizeof(uint64_t));
2211
2212 if (!bb->first) {
2213 for (i = 0; i < bb->num_engines; i++) {
2214 double d;
2215
2216 d = (val[2 + i] - bb->prev[i]) * 100;
2217 d /= val[1] - bb->t_prev;
2218 bb->busy[i] = d;
2219 }
2220 }
2221
2222 for (i = 0; i < bb->num_engines; i++)
2223 bb->prev[i] = val[2 + i];
2224
2225 bb->t_prev = val[1];
2226 bb->first = false;
2227 }
2228
2229 static enum intel_engine_id
busy_avg_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2230 busy_avg_balance(const struct workload_balancer *balancer,
2231 struct workload *wrk, struct w_step *w)
2232 {
2233 get_pmu_stats(balancer, wrk);
2234
2235 return qdavg_balance(balancer, wrk, w);
2236 }
2237
2238 static enum intel_engine_id
busy_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2239 busy_balance(const struct workload_balancer *balancer,
2240 struct workload *wrk, struct w_step *w)
2241 {
2242 get_pmu_stats(balancer, wrk);
2243
2244 return qd_balance(balancer, wrk, w);
2245 }
2246
2247 static int
busy_init(const struct workload_balancer * balancer,struct workload * wrk)2248 busy_init(const struct workload_balancer *balancer, struct workload *wrk)
2249 {
2250 struct busy_balancer *bb = &wrk->busy_balancer;
2251 struct engine_desc {
2252 unsigned class, inst;
2253 enum intel_engine_id id;
2254 } *d, engines[] = {
2255 { I915_ENGINE_CLASS_RENDER, 0, RCS },
2256 { I915_ENGINE_CLASS_COPY, 0, BCS },
2257 { I915_ENGINE_CLASS_VIDEO, 0, VCS1 },
2258 { I915_ENGINE_CLASS_VIDEO, 1, VCS2 },
2259 { I915_ENGINE_CLASS_VIDEO_ENHANCE, 0, VECS },
2260 { 0, 0, VCS }
2261 };
2262
2263 bb->num_engines = 0;
2264 bb->first = true;
2265 bb->fd = -1;
2266
2267 for (d = &engines[0]; d->id != VCS; d++) {
2268 int pfd;
2269
2270 pfd = perf_i915_open_group(I915_PMU_ENGINE_BUSY(d->class,
2271 d->inst),
2272 bb->fd);
2273 if (pfd < 0) {
2274 if (d->id != VCS2)
2275 return -(10 + bb->num_engines);
2276 else
2277 continue;
2278 }
2279
2280 if (bb->num_engines == 0)
2281 bb->fd = pfd;
2282
2283 bb->engine_map[d->id] = bb->num_engines++;
2284 }
2285
2286 if (bb->num_engines < 5 && !(wrk->flags & VCS2REMAP))
2287 return -1;
2288
2289 return 0;
2290 }
2291
2292 static const struct workload_balancer all_balancers[] = {
2293 {
2294 .id = 0,
2295 .name = "rr",
2296 .desc = "Simple round-robin.",
2297 .balance = rr_balance,
2298 },
2299 {
2300 .id = 6,
2301 .name = "rand",
2302 .desc = "Random selection.",
2303 .balance = rand_balance,
2304 },
2305 {
2306 .id = 1,
2307 .name = "qd",
2308 .desc = "Queue depth estimation with round-robin on equal depth.",
2309 .flags = SEQNO,
2310 .min_gen = 8,
2311 .get_qd = get_qd_depth,
2312 .balance = qd_balance,
2313 },
2314 {
2315 .id = 5,
2316 .name = "qdr",
2317 .desc = "Queue depth estimation with random selection on equal depth.",
2318 .flags = SEQNO,
2319 .min_gen = 8,
2320 .get_qd = get_qd_depth,
2321 .balance = qdr_balance,
2322 },
2323 {
2324 .id = 7,
2325 .name = "qdavg",
2326 .desc = "Like qd, but using an average queue depth estimator.",
2327 .flags = SEQNO,
2328 .min_gen = 8,
2329 .get_qd = get_qd_depth,
2330 .balance = qdavg_balance,
2331 },
2332 {
2333 .id = 2,
2334 .name = "rt",
2335 .desc = "Queue depth plus last runtime estimation.",
2336 .flags = SEQNO | RT,
2337 .min_gen = 8,
2338 .get_qd = get_qd_depth,
2339 .balance = rt_balance,
2340 },
2341 {
2342 .id = 3,
2343 .name = "rtr",
2344 .desc = "Like rt but with random engine selection on equal depth.",
2345 .flags = SEQNO | RT,
2346 .min_gen = 8,
2347 .get_qd = get_qd_depth,
2348 .balance = rtr_balance,
2349 },
2350 {
2351 .id = 4,
2352 .name = "rtavg",
2353 .desc = "Improved version rt tracking average execution speed per engine.",
2354 .flags = SEQNO | RT,
2355 .min_gen = 8,
2356 .get_qd = get_qd_depth,
2357 .balance = rtavg_balance,
2358 },
2359 {
2360 .id = 8,
2361 .name = "context",
2362 .desc = "Static round-robin VCS assignment at context creation.",
2363 .balance = context_balance,
2364 },
2365 {
2366 .id = 9,
2367 .name = "busy",
2368 .desc = "Engine busyness based balancing.",
2369 .init = busy_init,
2370 .get_qd = get_engine_busy,
2371 .balance = busy_balance,
2372 },
2373 {
2374 .id = 10,
2375 .name = "busy-avg",
2376 .desc = "Average engine busyness based balancing.",
2377 .init = busy_init,
2378 .get_qd = get_engine_busy,
2379 .balance = busy_avg_balance,
2380 },
2381 {
2382 .id = 11,
2383 .name = "i915",
2384 .desc = "i915 balancing.",
2385 .flags = I915,
2386 },
2387 };
2388
2389 static unsigned int
global_get_qd(const struct workload_balancer * balancer,struct workload * wrk,enum intel_engine_id engine)2390 global_get_qd(const struct workload_balancer *balancer,
2391 struct workload *wrk, enum intel_engine_id engine)
2392 {
2393 igt_assert(wrk->global_wrk);
2394 igt_assert(wrk->global_balancer);
2395
2396 return wrk->global_balancer->get_qd(wrk->global_balancer,
2397 wrk->global_wrk, engine);
2398 }
2399
2400 static enum intel_engine_id
global_balance(const struct workload_balancer * balancer,struct workload * wrk,struct w_step * w)2401 global_balance(const struct workload_balancer *balancer,
2402 struct workload *wrk, struct w_step *w)
2403 {
2404 enum intel_engine_id engine;
2405 int ret;
2406
2407 igt_assert(wrk->global_wrk);
2408 igt_assert(wrk->global_balancer);
2409
2410 wrk = wrk->global_wrk;
2411
2412 ret = pthread_mutex_lock(&wrk->mutex);
2413 igt_assert(ret == 0);
2414
2415 engine = wrk->global_balancer->balance(wrk->global_balancer, wrk, w);
2416
2417 ret = pthread_mutex_unlock(&wrk->mutex);
2418 igt_assert(ret == 0);
2419
2420 return engine;
2421 }
2422
2423 static const struct workload_balancer global_balancer = {
2424 .id = ~0,
2425 .name = "global",
2426 .desc = "Global balancer",
2427 .get_qd = global_get_qd,
2428 .balance = global_balance,
2429 };
2430
2431 static void
update_bb_seqno(struct w_step * w,enum intel_engine_id engine,uint32_t seqno)2432 update_bb_seqno(struct w_step *w, enum intel_engine_id engine, uint32_t seqno)
2433 {
2434 gem_set_domain(fd, w->bb_handle,
2435 I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC);
2436
2437 w->reloc[0].delta = SEQNO_OFFSET(engine);
2438
2439 *w->seqno_value = seqno;
2440 *w->seqno_address = w->reloc[0].presumed_offset + w->reloc[0].delta;
2441
2442 /* If not using NO_RELOC, force the relocations */
2443 if (!(w->eb.flags & I915_EXEC_NO_RELOC))
2444 w->reloc[0].presumed_offset = -1;
2445 }
2446
2447 static void
update_bb_rt(struct w_step * w,enum intel_engine_id engine,uint32_t seqno)2448 update_bb_rt(struct w_step *w, enum intel_engine_id engine, uint32_t seqno)
2449 {
2450 gem_set_domain(fd, w->bb_handle,
2451 I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC);
2452
2453 w->reloc[1].delta = SEQNO_OFFSET(engine) + sizeof(uint32_t);
2454 w->reloc[2].delta = SEQNO_OFFSET(engine) + 2 * sizeof(uint32_t);
2455 w->reloc[3].delta = SEQNO_OFFSET(engine) + 3 * sizeof(uint32_t);
2456
2457 *w->latch_value = seqno;
2458 *w->latch_address = w->reloc[3].presumed_offset + w->reloc[3].delta;
2459
2460 *w->rt0_value = *REG(RCS_TIMESTAMP);
2461 *w->rt0_address = w->reloc[1].presumed_offset + w->reloc[1].delta;
2462 *w->rt1_address = w->reloc[2].presumed_offset + w->reloc[2].delta;
2463
2464 /* If not using NO_RELOC, force the relocations */
2465 if (!(w->eb.flags & I915_EXEC_NO_RELOC)) {
2466 w->reloc[1].presumed_offset = -1;
2467 w->reloc[2].presumed_offset = -1;
2468 w->reloc[3].presumed_offset = -1;
2469 }
2470 }
2471
2472 static void
update_bb_start(struct w_step * w)2473 update_bb_start(struct w_step *w)
2474 {
2475 if (!w->unbound_duration)
2476 return;
2477
2478 gem_set_domain(fd, w->bb_handle,
2479 I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC);
2480
2481 *w->recursive_bb_start = MI_BATCH_BUFFER_START | (1 << 8) | 1;
2482 }
2483
w_sync_to(struct workload * wrk,struct w_step * w,int target)2484 static void w_sync_to(struct workload *wrk, struct w_step *w, int target)
2485 {
2486 if (target < 0)
2487 target = wrk->nr_steps + target;
2488
2489 igt_assert(target < wrk->nr_steps);
2490
2491 while (wrk->steps[target].type != BATCH) {
2492 if (--target < 0)
2493 target = wrk->nr_steps + target;
2494 }
2495
2496 igt_assert(target < wrk->nr_steps);
2497 igt_assert(wrk->steps[target].type == BATCH);
2498
2499 gem_sync(fd, wrk->steps[target].obj[0].handle);
2500 }
2501
get_status_cs(struct workload * wrk)2502 static uint32_t *get_status_cs(struct workload *wrk)
2503 {
2504 return wrk->status_cs;
2505 }
2506
2507 #define INIT_CLOCKS 0x1
2508 #define INIT_ALL (INIT_CLOCKS)
init_status_page(struct workload * wrk,unsigned int flags)2509 static void init_status_page(struct workload *wrk, unsigned int flags)
2510 {
2511 struct drm_i915_gem_relocation_entry reloc[4] = {};
2512 struct drm_i915_gem_exec_object2 *status_object =
2513 get_status_objects(wrk);
2514 struct drm_i915_gem_execbuffer2 eb = {
2515 .buffer_count = ARRAY_SIZE(wrk->status_object),
2516 .buffers_ptr = to_user_pointer(status_object)
2517 };
2518 uint32_t *base = get_status_cs(wrk);
2519
2520 /* Want to make sure that the balancer has a reasonable view of
2521 * the background busyness of each engine. To do that we occasionally
2522 * send a dummy batch down the pipeline.
2523 */
2524
2525 if (!base)
2526 return;
2527
2528 gem_set_domain(fd, status_object[1].handle,
2529 I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC);
2530
2531 status_object[1].relocs_ptr = to_user_pointer(reloc);
2532 status_object[1].relocation_count = 2;
2533 if (flags & INIT_CLOCKS)
2534 status_object[1].relocation_count += 2;
2535
2536 for (int engine = 0; engine < NUM_ENGINES; engine++) {
2537 struct drm_i915_gem_relocation_entry *r = reloc;
2538 uint64_t presumed_offset = status_object[0].offset;
2539 uint32_t offset = engine * 128;
2540 uint32_t *cs = base + offset / sizeof(*cs);
2541 uint64_t addr;
2542
2543 r->offset = offset + sizeof(uint32_t);
2544 r->delta = SEQNO_OFFSET(engine);
2545 r->presumed_offset = presumed_offset;
2546 addr = presumed_offset + r->delta;
2547 r++;
2548 *cs++ = MI_STORE_DWORD_IMM;
2549 *cs++ = addr;
2550 *cs++ = addr >> 32;
2551 *cs++ = new_seqno(wrk, engine);
2552 offset += 4 * sizeof(uint32_t);
2553
2554 /* When we are busy, we can just reuse the last set of timings.
2555 * If we have been idle for a while, we want to resample the
2556 * latency on each engine (to measure external load).
2557 */
2558 if (flags & INIT_CLOCKS) {
2559 r->offset = offset + sizeof(uint32_t);
2560 r->delta = SEQNO_OFFSET(engine) + sizeof(uint32_t);
2561 r->presumed_offset = presumed_offset;
2562 addr = presumed_offset + r->delta;
2563 r++;
2564 *cs++ = MI_STORE_DWORD_IMM;
2565 *cs++ = addr;
2566 *cs++ = addr >> 32;
2567 *cs++ = *REG(RCS_TIMESTAMP);
2568 offset += 4 * sizeof(uint32_t);
2569
2570 r->offset = offset + 2 * sizeof(uint32_t);
2571 r->delta = SEQNO_OFFSET(engine) + 2*sizeof(uint32_t);
2572 r->presumed_offset = presumed_offset;
2573 addr = presumed_offset + r->delta;
2574 r++;
2575 *cs++ = 0x24 << 23 | 2; /* MI_STORE_REG_MEM */
2576 *cs++ = RCS_TIMESTAMP;
2577 *cs++ = addr;
2578 *cs++ = addr >> 32;
2579 offset += 4 * sizeof(uint32_t);
2580 }
2581
2582 r->offset = offset + sizeof(uint32_t);
2583 r->delta = SEQNO_OFFSET(engine) + 3*sizeof(uint32_t);
2584 r->presumed_offset = presumed_offset;
2585 addr = presumed_offset + r->delta;
2586 r++;
2587 *cs++ = MI_STORE_DWORD_IMM;
2588 *cs++ = addr;
2589 *cs++ = addr >> 32;
2590 *cs++ = current_seqno(wrk, engine);
2591 offset += 4 * sizeof(uint32_t);
2592
2593 *cs++ = MI_BATCH_BUFFER_END;
2594
2595 eb_set_engine(&eb, engine, wrk->flags);
2596 eb.flags |= I915_EXEC_HANDLE_LUT;
2597 eb.flags |= I915_EXEC_NO_RELOC;
2598
2599 eb.batch_start_offset = 128 * engine;
2600
2601 gem_execbuf(fd, &eb);
2602 }
2603 }
2604
2605 static void
do_eb(struct workload * wrk,struct w_step * w,enum intel_engine_id engine,unsigned int flags)2606 do_eb(struct workload *wrk, struct w_step *w, enum intel_engine_id engine,
2607 unsigned int flags)
2608 {
2609 uint32_t seqno = new_seqno(wrk, engine);
2610 unsigned int i;
2611
2612 eb_update_flags(wrk, w, engine, flags);
2613
2614 if (flags & SEQNO)
2615 update_bb_seqno(w, engine, seqno);
2616 if (flags & RT)
2617 update_bb_rt(w, engine, seqno);
2618
2619 update_bb_start(w);
2620
2621 w->eb.batch_start_offset =
2622 w->unbound_duration ?
2623 0 :
2624 ALIGN(w->bb_sz - get_bb_sz(get_duration(wrk, w)),
2625 2 * sizeof(uint32_t));
2626
2627 for (i = 0; i < w->fence_deps.nr; i++) {
2628 int tgt = w->idx + w->fence_deps.list[i];
2629
2630 /* TODO: fence merging needed to support multiple inputs */
2631 igt_assert(i == 0);
2632 igt_assert(tgt >= 0 && tgt < w->idx);
2633 igt_assert(wrk->steps[tgt].emit_fence > 0);
2634
2635 if (w->fence_deps.submit_fence)
2636 w->eb.flags |= I915_EXEC_FENCE_SUBMIT;
2637 else
2638 w->eb.flags |= I915_EXEC_FENCE_IN;
2639
2640 w->eb.rsvd2 = wrk->steps[tgt].emit_fence;
2641 }
2642
2643 if (w->eb.flags & I915_EXEC_FENCE_OUT)
2644 gem_execbuf_wr(fd, &w->eb);
2645 else
2646 gem_execbuf(fd, &w->eb);
2647
2648 if (w->eb.flags & I915_EXEC_FENCE_OUT) {
2649 w->emit_fence = w->eb.rsvd2 >> 32;
2650 igt_assert(w->emit_fence > 0);
2651 }
2652 }
2653
sync_deps(struct workload * wrk,struct w_step * w)2654 static bool sync_deps(struct workload *wrk, struct w_step *w)
2655 {
2656 bool synced = false;
2657 unsigned int i;
2658
2659 for (i = 0; i < w->data_deps.nr; i++) {
2660 int dep_idx;
2661
2662 igt_assert(w->data_deps.list[i] <= 0);
2663
2664 if (!w->data_deps.list[i])
2665 continue;
2666
2667 dep_idx = w->idx + w->data_deps.list[i];
2668
2669 igt_assert(dep_idx >= 0 && dep_idx < w->idx);
2670 igt_assert(wrk->steps[dep_idx].type == BATCH);
2671
2672 gem_sync(fd, wrk->steps[dep_idx].obj[0].handle);
2673
2674 synced = true;
2675 }
2676
2677 return synced;
2678 }
2679
run_workload(void * data)2680 static void *run_workload(void *data)
2681 {
2682 struct workload *wrk = (struct workload *)data;
2683 struct timespec t_start, t_end;
2684 struct w_step *w;
2685 bool last_sync = false;
2686 int throttle = -1;
2687 int qd_throttle = -1;
2688 int count;
2689 int i;
2690
2691 clock_gettime(CLOCK_MONOTONIC, &t_start);
2692
2693 init_status_page(wrk, INIT_ALL);
2694 for (count = 0; wrk->run && (wrk->background || count < wrk->repeat);
2695 count++) {
2696 unsigned int cur_seqno = wrk->sync_seqno;
2697
2698 clock_gettime(CLOCK_MONOTONIC, &wrk->repeat_start);
2699
2700 for (i = 0, w = wrk->steps; wrk->run && (i < wrk->nr_steps);
2701 i++, w++) {
2702 enum intel_engine_id engine = w->engine;
2703 int do_sleep = 0;
2704
2705 if (w->type == DELAY) {
2706 do_sleep = w->delay;
2707 } else if (w->type == PERIOD) {
2708 struct timespec now;
2709
2710 clock_gettime(CLOCK_MONOTONIC, &now);
2711 do_sleep = w->period -
2712 elapsed_us(&wrk->repeat_start, &now);
2713 if (do_sleep < 0) {
2714 if (verbose > 1)
2715 printf("%u: Dropped period @ %u/%u (%dus late)!\n",
2716 wrk->id, count, i, do_sleep);
2717 continue;
2718 }
2719 } else if (w->type == SYNC) {
2720 unsigned int s_idx = i + w->target;
2721
2722 igt_assert(s_idx >= 0 && s_idx < i);
2723 igt_assert(wrk->steps[s_idx].type == BATCH);
2724 gem_sync(fd, wrk->steps[s_idx].obj[0].handle);
2725 continue;
2726 } else if (w->type == THROTTLE) {
2727 throttle = w->throttle;
2728 continue;
2729 } else if (w->type == QD_THROTTLE) {
2730 qd_throttle = w->throttle;
2731 continue;
2732 } else if (w->type == SW_FENCE) {
2733 igt_assert(w->emit_fence < 0);
2734 w->emit_fence =
2735 sw_sync_timeline_create_fence(wrk->sync_timeline,
2736 cur_seqno + w->idx);
2737 igt_assert(w->emit_fence > 0);
2738 continue;
2739 } else if (w->type == SW_FENCE_SIGNAL) {
2740 int tgt = w->idx + w->target;
2741 int inc;
2742
2743 igt_assert(tgt >= 0 && tgt < i);
2744 igt_assert(wrk->steps[tgt].type == SW_FENCE);
2745 cur_seqno += wrk->steps[tgt].idx;
2746 inc = cur_seqno - wrk->sync_seqno;
2747 sw_sync_timeline_inc(wrk->sync_timeline, inc);
2748 continue;
2749 } else if (w->type == CTX_PRIORITY) {
2750 if (w->priority != wrk->ctx_list[w->context].priority) {
2751 struct drm_i915_gem_context_param param = {
2752 .ctx_id = wrk->ctx_list[w->context].id,
2753 .param = I915_CONTEXT_PARAM_PRIORITY,
2754 .value = w->priority,
2755 };
2756
2757 gem_context_set_param(fd, ¶m);
2758 wrk->ctx_list[w->context].priority =
2759 w->priority;
2760 }
2761 continue;
2762 } else if (w->type == TERMINATE) {
2763 unsigned int t_idx = i + w->target;
2764
2765 igt_assert(t_idx >= 0 && t_idx < i);
2766 igt_assert(wrk->steps[t_idx].type == BATCH);
2767 igt_assert(wrk->steps[t_idx].unbound_duration);
2768
2769 *wrk->steps[t_idx].recursive_bb_start =
2770 MI_BATCH_BUFFER_END;
2771 __sync_synchronize();
2772 continue;
2773 } else if (w->type == PREEMPTION ||
2774 w->type == ENGINE_MAP ||
2775 w->type == LOAD_BALANCE ||
2776 w->type == BOND) {
2777 continue;
2778 } else if (w->type == SSEU) {
2779 if (w->sseu != wrk->ctx_list[w->context * 2].sseu) {
2780 wrk->ctx_list[w->context * 2].sseu =
2781 set_ctx_sseu(&wrk->ctx_list[w->context * 2],
2782 w->sseu);
2783 }
2784 continue;
2785 }
2786
2787 if (do_sleep || w->type == PERIOD) {
2788 usleep(do_sleep);
2789 continue;
2790 }
2791
2792 igt_assert(w->type == BATCH);
2793
2794 if ((wrk->flags & DEPSYNC) && engine == VCS)
2795 last_sync = sync_deps(wrk, w);
2796
2797 if (last_sync && (wrk->flags & HEARTBEAT))
2798 init_status_page(wrk, 0);
2799
2800 last_sync = false;
2801
2802 wrk->nr_bb[engine]++;
2803 if (engine == VCS && wrk->balancer &&
2804 wrk->balancer->balance) {
2805 engine = wrk->balancer->balance(wrk->balancer,
2806 wrk, w);
2807 wrk->nr_bb[engine]++;
2808 }
2809
2810 if (throttle > 0)
2811 w_sync_to(wrk, w, i - throttle);
2812
2813 do_eb(wrk, w, engine, wrk->flags);
2814
2815 if (w->request != -1) {
2816 igt_list_del(&w->rq_link);
2817 wrk->nrequest[w->request]--;
2818 }
2819 w->request = engine;
2820 igt_list_add_tail(&w->rq_link, &wrk->requests[engine]);
2821 wrk->nrequest[engine]++;
2822
2823 if (!wrk->run)
2824 break;
2825
2826 if (w->sync) {
2827 gem_sync(fd, w->obj[0].handle);
2828 last_sync = true;
2829 }
2830
2831 if (qd_throttle > 0) {
2832 while (wrk->nrequest[engine] > qd_throttle) {
2833 struct w_step *s;
2834
2835 s = igt_list_first_entry(&wrk->requests[engine],
2836 s, rq_link);
2837
2838 gem_sync(fd, s->obj[0].handle);
2839 last_sync = true;
2840
2841 s->request = -1;
2842 igt_list_del(&s->rq_link);
2843 wrk->nrequest[engine]--;
2844 }
2845 }
2846 }
2847
2848 if (wrk->sync_timeline) {
2849 int inc;
2850
2851 inc = wrk->nr_steps - (cur_seqno - wrk->sync_seqno);
2852 sw_sync_timeline_inc(wrk->sync_timeline, inc);
2853 wrk->sync_seqno += wrk->nr_steps;
2854 }
2855
2856 /* Cleanup all fences instantiated in this iteration. */
2857 for (i = 0, w = wrk->steps; wrk->run && (i < wrk->nr_steps);
2858 i++, w++) {
2859 if (w->emit_fence > 0) {
2860 close(w->emit_fence);
2861 w->emit_fence = -1;
2862 }
2863 }
2864 }
2865
2866 for (i = 0; i < NUM_ENGINES; i++) {
2867 if (!wrk->nrequest[i])
2868 continue;
2869
2870 w = igt_list_last_entry(&wrk->requests[i], w, rq_link);
2871 gem_sync(fd, w->obj[0].handle);
2872 }
2873
2874 clock_gettime(CLOCK_MONOTONIC, &t_end);
2875
2876 if (wrk->print_stats) {
2877 double t = elapsed(&t_start, &t_end);
2878
2879 printf("%c%u: %.3fs elapsed (%d cycles, %.3f workloads/s).",
2880 wrk->background ? ' ' : '*', wrk->id,
2881 t, count, count / t);
2882 if (wrk->balancer)
2883 printf(" %lu (%lu + %lu) total VCS batches.",
2884 wrk->nr_bb[VCS], wrk->nr_bb[VCS1], wrk->nr_bb[VCS2]);
2885 if (wrk->balancer && wrk->balancer->get_qd)
2886 printf(" Average queue depths %.3f, %.3f.",
2887 (double)wrk->qd_sum[VCS1] / wrk->nr_bb[VCS],
2888 (double)wrk->qd_sum[VCS2] / wrk->nr_bb[VCS]);
2889 putchar('\n');
2890 }
2891
2892 return NULL;
2893 }
2894
fini_workload(struct workload * wrk)2895 static void fini_workload(struct workload *wrk)
2896 {
2897 free(wrk->steps);
2898 free(wrk);
2899 }
2900
calibrate_nop(unsigned int tolerance_pct)2901 static unsigned long calibrate_nop(unsigned int tolerance_pct)
2902 {
2903 const uint32_t bbe = 0xa << 23;
2904 unsigned int loops = 17;
2905 unsigned int usecs = nop_calibration_us;
2906 struct drm_i915_gem_exec_object2 obj = {};
2907 struct drm_i915_gem_execbuffer2 eb =
2908 { .buffer_count = 1, .buffers_ptr = (uintptr_t)&obj};
2909 long size, last_size;
2910 struct timespec t_0, t_end;
2911
2912 clock_gettime(CLOCK_MONOTONIC, &t_0);
2913
2914 size = 256 * 1024;
2915 do {
2916 struct timespec t_start;
2917
2918 obj.handle = gem_create(fd, size);
2919 gem_write(fd, obj.handle, size - sizeof(bbe), &bbe,
2920 sizeof(bbe));
2921 gem_execbuf(fd, &eb);
2922 gem_sync(fd, obj.handle);
2923
2924 clock_gettime(CLOCK_MONOTONIC, &t_start);
2925 for (int loop = 0; loop < loops; loop++)
2926 gem_execbuf(fd, &eb);
2927 gem_sync(fd, obj.handle);
2928 clock_gettime(CLOCK_MONOTONIC, &t_end);
2929
2930 gem_close(fd, obj.handle);
2931
2932 last_size = size;
2933 size = loops * size / elapsed(&t_start, &t_end) / 1e6 * usecs;
2934 size = ALIGN(size, sizeof(uint32_t));
2935 } while (elapsed(&t_0, &t_end) < 5 ||
2936 abs(size - last_size) > (size * tolerance_pct / 100));
2937
2938 return size / sizeof(uint32_t);
2939 }
2940
print_help(void)2941 static void print_help(void)
2942 {
2943 unsigned int i;
2944
2945 puts(
2946 "Usage: gem_wsim [OPTIONS]\n"
2947 "\n"
2948 "Runs a simulated workload on the GPU.\n"
2949 "When ran without arguments performs a GPU calibration result of which needs to\n"
2950 "be provided when running the simulation in subsequent invocations.\n"
2951 "\n"
2952 "Options:\n"
2953 " -h This text.\n"
2954 " -q Be quiet - do not output anything to stdout.\n"
2955 " -n <n> Nop calibration value.\n"
2956 " -t <n> Nop calibration tolerance percentage.\n"
2957 " Use when there is a difficulty obtaining calibration with the\n"
2958 " default settings.\n"
2959 " -I <n> Initial randomness seed.\n"
2960 " -p <n> Context priority to use for the following workload on the\n"
2961 " command line.\n"
2962 " -w <desc|path> Filename or a workload descriptor.\n"
2963 " Can be given multiple times.\n"
2964 " -W <desc|path> Filename or a master workload descriptor.\n"
2965 " Only one master workload can be optinally specified in which\n"
2966 " case all other workloads become background ones and run as\n"
2967 " long as the master.\n"
2968 " -a <desc|path> Append a workload to all other workloads.\n"
2969 " -r <n> How many times to emit the workload.\n"
2970 " -c <n> Fork N clients emitting the workload simultaneously.\n"
2971 " -x Swap VCS1 and VCS2 engines in every other client.\n"
2972 " -b <n> Load balancing to use.\n"
2973 " Available load balancers are:"
2974 );
2975
2976 for (i = 0; i < ARRAY_SIZE(all_balancers); i++) {
2977 igt_assert(all_balancers[i].desc);
2978 printf(
2979 " %s (%u): %s\n",
2980 all_balancers[i].name, all_balancers[i].id,
2981 all_balancers[i].desc);
2982 }
2983 puts(
2984 " Balancers can be specified either as names or as their id\n"
2985 " number as listed above.\n"
2986 " -2 Remap VCS2 to BCS.\n"
2987 " -R Round-robin initial VCS assignment per client.\n"
2988 " -H Send heartbeat on synchronisation points with seqno based\n"
2989 " balancers. Gives better engine busyness view in some cases.\n"
2990 " -s Turn on small SSEU config for the next workload on the\n"
2991 " command line. Subsequent -s switches it off.\n"
2992 " -S Synchronize the sequence of random batch durations between\n"
2993 " clients.\n"
2994 " -G Global load balancing - a single load balancer will be shared\n"
2995 " between all clients and there will be a single seqno domain.\n"
2996 " -d Sync between data dependencies in userspace."
2997 );
2998 }
2999
load_workload_descriptor(char * filename)3000 static char *load_workload_descriptor(char *filename)
3001 {
3002 struct stat sbuf;
3003 char *buf;
3004 int infd, ret, i;
3005 ssize_t len;
3006
3007 ret = stat(filename, &sbuf);
3008 if (ret || !S_ISREG(sbuf.st_mode))
3009 return filename;
3010
3011 igt_assert(sbuf.st_size < 1024 * 1024); /* Just so. */
3012 buf = malloc(sbuf.st_size);
3013 igt_assert(buf);
3014
3015 infd = open(filename, O_RDONLY);
3016 igt_assert(infd >= 0);
3017 len = read(infd, buf, sbuf.st_size);
3018 igt_assert(len == sbuf.st_size);
3019 close(infd);
3020
3021 for (i = 0; i < len; i++) {
3022 if (buf[i] == '\n')
3023 buf[i] = ',';
3024 }
3025
3026 len--;
3027 while (buf[len] == ',')
3028 buf[len--] = 0;
3029
3030 return buf;
3031 }
3032
3033 static struct w_arg *
add_workload_arg(struct w_arg * w_args,unsigned int nr_args,char * w_arg,int prio,bool sseu)3034 add_workload_arg(struct w_arg *w_args, unsigned int nr_args, char *w_arg,
3035 int prio, bool sseu)
3036 {
3037 w_args = realloc(w_args, sizeof(*w_args) * nr_args);
3038 igt_assert(w_args);
3039 w_args[nr_args - 1] = (struct w_arg) { w_arg, NULL, prio, sseu };
3040
3041 return w_args;
3042 }
3043
find_balancer_by_name(char * name)3044 static int find_balancer_by_name(char *name)
3045 {
3046 unsigned int i;
3047
3048 for (i = 0; i < ARRAY_SIZE(all_balancers); i++) {
3049 if (!strcasecmp(name, all_balancers[i].name))
3050 return all_balancers[i].id;
3051 }
3052
3053 return -1;
3054 }
3055
find_balancer_by_id(unsigned int id)3056 static const struct workload_balancer *find_balancer_by_id(unsigned int id)
3057 {
3058 unsigned int i;
3059
3060 for (i = 0; i < ARRAY_SIZE(all_balancers); i++) {
3061 if (id == all_balancers[i].id)
3062 return &all_balancers[i];
3063 }
3064
3065 return NULL;
3066 }
3067
init_clocks(void)3068 static void init_clocks(void)
3069 {
3070 struct timespec t_start, t_end;
3071 uint32_t rcs_start, rcs_end;
3072 double overhead, t;
3073
3074 intel_register_access_init(intel_get_pci_device(), false, fd);
3075
3076 if (verbose <= 1)
3077 return;
3078
3079 clock_gettime(CLOCK_MONOTONIC, &t_start);
3080 for (int i = 0; i < 100; i++)
3081 rcs_start = *REG(RCS_TIMESTAMP);
3082 clock_gettime(CLOCK_MONOTONIC, &t_end);
3083 overhead = 2 * elapsed(&t_start, &t_end) / 100;
3084
3085 clock_gettime(CLOCK_MONOTONIC, &t_start);
3086 for (int i = 0; i < 100; i++)
3087 clock_gettime(CLOCK_MONOTONIC, &t_end);
3088 clock_gettime(CLOCK_MONOTONIC, &t_end);
3089 overhead += elapsed(&t_start, &t_end) / 100;
3090
3091 clock_gettime(CLOCK_MONOTONIC, &t_start);
3092 rcs_start = *REG(RCS_TIMESTAMP);
3093 usleep(100);
3094 rcs_end = *REG(RCS_TIMESTAMP);
3095 clock_gettime(CLOCK_MONOTONIC, &t_end);
3096
3097 t = elapsed(&t_start, &t_end) - overhead;
3098 printf("%d cycles in %.1fus, i.e. 1024 cycles takes %1.fus\n",
3099 rcs_end - rcs_start, 1e6*t, 1024e6 * t / (rcs_end - rcs_start));
3100 }
3101
main(int argc,char ** argv)3102 int main(int argc, char **argv)
3103 {
3104 unsigned int repeat = 1;
3105 unsigned int clients = 1;
3106 unsigned int flags = 0;
3107 struct timespec t_start, t_end;
3108 struct workload **w, **wrk = NULL;
3109 struct workload *app_w = NULL;
3110 unsigned int nr_w_args = 0;
3111 int master_workload = -1;
3112 char *append_workload_arg = NULL;
3113 struct w_arg *w_args = NULL;
3114 unsigned int tolerance_pct = 1;
3115 const struct workload_balancer *balancer = NULL;
3116 char *endptr = NULL;
3117 int prio = 0;
3118 double t;
3119 int i, c;
3120
3121 /*
3122 * Open the device via the low-level API so we can do the GPU quiesce
3123 * manually as close as possible in time to the start of the workload.
3124 * This minimizes the gap in engine utilization tracking when observed
3125 * via external tools like trace.pl.
3126 */
3127 fd = __drm_open_driver(DRIVER_INTEL);
3128 igt_require(fd);
3129
3130 init_clocks();
3131
3132 master_prng = time(NULL);
3133
3134 while ((c = getopt(argc, argv,
3135 "hqv2RsSHxGdc:n:r:w:W:a:t:b:p:I:")) != -1) {
3136 switch (c) {
3137 case 'W':
3138 if (master_workload >= 0) {
3139 wsim_err("Only one master workload can be given!\n");
3140 return 1;
3141 }
3142 master_workload = nr_w_args;
3143 /* Fall through */
3144 case 'w':
3145 w_args = add_workload_arg(w_args, ++nr_w_args, optarg,
3146 prio, flags & SSEU);
3147 break;
3148 case 'p':
3149 prio = atoi(optarg);
3150 break;
3151 case 'a':
3152 if (append_workload_arg) {
3153 wsim_err("Only one append workload can be given!\n");
3154 return 1;
3155 }
3156 append_workload_arg = optarg;
3157 break;
3158 case 'c':
3159 clients = strtol(optarg, NULL, 0);
3160 break;
3161 case 't':
3162 tolerance_pct = strtol(optarg, NULL, 0);
3163 break;
3164 case 'n':
3165 nop_calibration = strtol(optarg, NULL, 0);
3166 break;
3167 case 'r':
3168 repeat = strtol(optarg, NULL, 0);
3169 break;
3170 case 'q':
3171 verbose = 0;
3172 break;
3173 case 'v':
3174 verbose++;
3175 break;
3176 case 'x':
3177 flags |= SWAPVCS;
3178 break;
3179 case '2':
3180 flags |= VCS2REMAP;
3181 break;
3182 case 'R':
3183 flags |= INITVCSRR;
3184 break;
3185 case 'S':
3186 flags |= SYNCEDCLIENTS;
3187 break;
3188 case 's':
3189 flags ^= SSEU;
3190 break;
3191 case 'H':
3192 flags |= HEARTBEAT;
3193 break;
3194 case 'G':
3195 flags |= GLOBAL_BALANCE;
3196 break;
3197 case 'd':
3198 flags |= DEPSYNC;
3199 break;
3200 case 'b':
3201 i = find_balancer_by_name(optarg);
3202 if (i < 0) {
3203 i = strtol(optarg, &endptr, 0);
3204 if (endptr && *endptr)
3205 i = -1;
3206 }
3207
3208 if (i >= 0) {
3209 balancer = find_balancer_by_id(i);
3210 if (balancer) {
3211 igt_assert(intel_gen(intel_get_drm_devid(fd)) >= balancer->min_gen);
3212 flags |= BALANCE | balancer->flags;
3213 }
3214 }
3215
3216 if (!balancer) {
3217 wsim_err("Unknown balancing mode '%s'!\n",
3218 optarg);
3219 return 1;
3220 }
3221 break;
3222 case 'I':
3223 master_prng = strtol(optarg, NULL, 0);
3224 break;
3225 case 'h':
3226 print_help();
3227 return 0;
3228 default:
3229 return 1;
3230 }
3231 }
3232
3233 if ((flags & HEARTBEAT) && !(flags & SEQNO)) {
3234 wsim_err("Heartbeat needs a seqno based balancer!\n");
3235 return 1;
3236 }
3237
3238 if ((flags & VCS2REMAP) && (flags & I915)) {
3239 wsim_err("VCS remapping not supported with i915 balancing!\n");
3240 return 1;
3241 }
3242
3243 if (!nop_calibration) {
3244 if (verbose > 1)
3245 printf("Calibrating nop delay with %u%% tolerance...\n",
3246 tolerance_pct);
3247 nop_calibration = calibrate_nop(tolerance_pct);
3248 if (verbose)
3249 printf("Nop calibration for %uus delay is %lu.\n",
3250 nop_calibration_us, nop_calibration);
3251
3252 return 0;
3253 }
3254
3255 if (!nr_w_args) {
3256 wsim_err("No workload descriptor(s)!\n");
3257 return 1;
3258 }
3259
3260 if (nr_w_args > 1 && clients > 1) {
3261 wsim_err("Cloned clients cannot be combined with multiple workloads!\n");
3262 return 1;
3263 }
3264
3265 if ((flags & GLOBAL_BALANCE) && !balancer) {
3266 wsim_err("Balancer not specified in global balancing mode!\n");
3267 return 1;
3268 }
3269
3270 if (append_workload_arg) {
3271 append_workload_arg = load_workload_descriptor(append_workload_arg);
3272 if (!append_workload_arg) {
3273 wsim_err("Failed to load append workload descriptor!\n");
3274 return 1;
3275 }
3276 }
3277
3278 if (append_workload_arg) {
3279 struct w_arg arg = { NULL, append_workload_arg, 0 };
3280 app_w = parse_workload(&arg, flags, NULL);
3281 if (!app_w) {
3282 wsim_err("Failed to parse append workload!\n");
3283 return 1;
3284 }
3285 }
3286
3287 wrk = calloc(nr_w_args, sizeof(*wrk));
3288 igt_assert(wrk);
3289
3290 for (i = 0; i < nr_w_args; i++) {
3291 w_args[i].desc = load_workload_descriptor(w_args[i].filename);
3292
3293 if (!w_args[i].desc) {
3294 wsim_err("Failed to load workload descriptor %u!\n", i);
3295 return 1;
3296 }
3297
3298 wrk[i] = parse_workload(&w_args[i], flags, app_w);
3299 if (!wrk[i]) {
3300 wsim_err("Failed to parse workload %u!\n", i);
3301 return 1;
3302 }
3303 }
3304
3305 if (nr_w_args > 1)
3306 clients = nr_w_args;
3307
3308 if (verbose > 1) {
3309 printf("Random seed is %u.\n", master_prng);
3310 printf("Using %lu nop calibration for %uus delay.\n",
3311 nop_calibration, nop_calibration_us);
3312 printf("%u client%s.\n", clients, clients > 1 ? "s" : "");
3313 if (flags & SWAPVCS)
3314 printf("Swapping VCS rings between clients.\n");
3315 if (flags & GLOBAL_BALANCE) {
3316 if (flags & I915) {
3317 printf("Ignoring global balancing with i915!\n");
3318 flags &= ~GLOBAL_BALANCE;
3319 } else {
3320 printf("Using %s balancer in global mode.\n",
3321 balancer->name);
3322 }
3323 } else if (balancer) {
3324 printf("Using %s balancer.\n", balancer->name);
3325 }
3326 }
3327
3328 srand(master_prng);
3329 master_prng = rand();
3330
3331 if (master_workload >= 0 && clients == 1)
3332 master_workload = -1;
3333
3334 w = calloc(clients, sizeof(struct workload *));
3335 igt_assert(w);
3336
3337 for (i = 0; i < clients; i++) {
3338 unsigned int flags_ = flags;
3339
3340 w[i] = clone_workload(wrk[nr_w_args > 1 ? i : 0]);
3341
3342 if (flags & SWAPVCS && i & 1)
3343 flags_ &= ~SWAPVCS;
3344
3345 if ((flags & GLOBAL_BALANCE) && !(flags & I915)) {
3346 w[i]->balancer = &global_balancer;
3347 w[i]->global_wrk = w[0];
3348 w[i]->global_balancer = balancer;
3349 } else {
3350 w[i]->balancer = balancer;
3351 }
3352
3353 w[i]->flags = flags;
3354 w[i]->repeat = repeat;
3355 w[i]->background = master_workload >= 0 && i != master_workload;
3356 w[i]->print_stats = verbose > 1 ||
3357 (verbose > 0 && master_workload == i);
3358
3359 if (prepare_workload(i, w[i], flags_)) {
3360 wsim_err("Failed to prepare workload %u!\n", i);
3361 return 1;
3362 }
3363
3364
3365 if (balancer && balancer->init) {
3366 int ret = balancer->init(balancer, w[i]);
3367 if (ret) {
3368 wsim_err("Failed to initialize balancing! (%u=%d)\n",
3369 i, ret);
3370 return 1;
3371 }
3372 }
3373 }
3374
3375 gem_quiescent_gpu(fd);
3376
3377 clock_gettime(CLOCK_MONOTONIC, &t_start);
3378
3379 for (i = 0; i < clients; i++) {
3380 int ret;
3381
3382 ret = pthread_create(&w[i]->thread, NULL, run_workload, w[i]);
3383 igt_assert_eq(ret, 0);
3384 }
3385
3386 if (master_workload >= 0) {
3387 int ret = pthread_join(w[master_workload]->thread, NULL);
3388
3389 igt_assert(ret == 0);
3390
3391 for (i = 0; i < clients; i++)
3392 w[i]->run = false;
3393 }
3394
3395 for (i = 0; i < clients; i++) {
3396 if (master_workload != i) {
3397 int ret = pthread_join(w[i]->thread, NULL);
3398 igt_assert(ret == 0);
3399 }
3400 }
3401
3402 clock_gettime(CLOCK_MONOTONIC, &t_end);
3403
3404 t = elapsed(&t_start, &t_end);
3405 if (verbose)
3406 printf("%.3fs elapsed (%.3f workloads/s)\n",
3407 t, clients * repeat / t);
3408
3409 for (i = 0; i < clients; i++)
3410 fini_workload(w[i]);
3411 free(w);
3412 for (i = 0; i < nr_w_args; i++)
3413 fini_workload(wrk[i]);
3414 free(w_args);
3415
3416 return 0;
3417 }
3418