1# Generate model interfaces using metadata 2 3Using [TensorFlow Lite Metadata](../convert/metadata), developers can generate 4wrapper code to enable integration on Android. For most developers, the 5graphical interface of [Android Studio ML Model Binding](#mlbinding) is the 6easiest to use. If you require more customisation or are using command line 7tooling, the [TensorFlow Lite Codegen](#codegen) is also available. 8 9## Use Android Studio ML Model Binding {:#mlbinding} 10 11For TensorFlow Lite models enhanced with [metadata](../convert/metadata.md), 12developers can use Android Studio ML Model Binding to automatically configure 13settings for the project and generate wrapper classes based on the model 14metadata. The wrapper code removes the need to interact directly with 15`ByteBuffer`. Instead, developers can interact with the TensorFlow Lite model 16with typed objects such as `Bitmap` and `Rect`. 17 18Note: Required [Android Studio 4.1](https://developer.android.com/studio) or 19above 20 21### Import a TensorFlow Lite model in Android Studio 22 231. Right-click on the module you would like to use the TFLite model or click on 24 `File`, then `New` > `Other` > `TensorFlow Lite Model` 25 ![Right-click menus to access the TensorFlow Lite import functionality](../images/android/right_click_menu.png) 26 271. Select the location of your TFLite file. Note that the tooling will 28 configure the module's dependency on your behalf with ML Model binding and 29 all dependencies automatically inserted into your Android module's 30 `build.gradle` file. 31 32 Optional: Select the second checkbox for importing TensorFlow GPU if you 33 want to use GPU acceleration. 34 ![Import dialog for TFLite model](../images/android/import_dialog.png) 35 361. Click `Finish`. 37 381. The following screen will appear after the import is successful. To start 39 using the model, select Kotlin or Java, copy and paste the code under the 40 `Sample Code` section. You can get back to this screen by double clicking 41 the TFLite model under the `ml` directory in Android Studio. 42 ![Model details page in Android Studio](../images/android/model_details.png) 43 44### Accelerating model inference {:#acceleration} 45 46ML Model Binding provides a way for developers to accelerate their code through 47the use of delegates and the number of threads. 48 49Note: The TensorFlow Lite Interpreter must be created on the same thread as when 50is is run. Otherwise, TfLiteGpuDelegate Invoke: GpuDelegate must run on the same 51thread where it was initialized. may occur. 52 53Step 1. Check the module `build.gradle` file that it contains the following 54dependency: 55 56```java 57 dependencies { 58 ... 59 // TFLite GPU delegate 2.3.0 or above is required. 60 implementation 'org.tensorflow:tensorflow-lite-gpu:2.3.0' 61 } 62``` 63 64Step 2. Detect if GPU running on the device is compatible with TensorFlow GPU 65delegate, if not run the model using multiple CPU threads: 66 67<div> 68 <devsite-selector> 69 <section> 70 <h3>Kotlin</h3> 71 <p><pre class="prettyprint lang-kotlin"> 72 import org.tensorflow.lite.gpu.CompatibilityList 73 import org.tensorflow.lite.gpu.GpuDelegate 74 75 val compatList = CompatibilityList() 76 77 val options = if(compatList.isDelegateSupportedOnThisDevice) { 78 // if the device has a supported GPU, add the GPU delegate 79 Model.Options.Builder().setDevice(Model.Device.GPU).build() 80 } else { 81 // if the GPU is not supported, run on 4 threads 82 Model.Options.Builder().setNumThreads(4).build() 83 } 84 85 // Initialize the model as usual feeding in the options object 86 val myModel = MyModel.newInstance(context, options) 87 88 // Run inference per sample code 89 </pre></p> 90 </section> 91 <section> 92 <h3>Java</h3> 93 <p><pre class="prettyprint lang-java"> 94 import org.tensorflow.lite.support.model.Model 95 import org.tensorflow.lite.gpu.CompatibilityList; 96 import org.tensorflow.lite.gpu.GpuDelegate; 97 98 // Initialize interpreter with GPU delegate 99 Model.Options options; 100 CompatibilityList compatList = CompatibilityList(); 101 102 if(compatList.isDelegateSupportedOnThisDevice()){ 103 // if the device has a supported GPU, add the GPU delegate 104 options = Model.Options.Builder().setDevice(Model.Device.GPU).build(); 105 } else { 106 // if the GPU is not supported, run on 4 threads 107 options = Model.Options.Builder().setNumThreads(4).build(); 108 } 109 110 MyModel myModel = new MyModel.newInstance(context, options); 111 112 // Run inference per sample code 113 </pre></p> 114 </section> 115 </devsite-selector> 116</div> 117 118## Generate model interfaces with TensorFlow Lite code generator {:#codegen} 119 120Note: TensorFlow Lite wrapper code generator currently only supports Android. 121 122For TensorFlow Lite model enhanced with [metadata](../convert/metadata.md), 123developers can use the TensorFlow Lite Android wrapper code generator to create 124platform specific wrapper code. The wrapper code removes the need to interact 125directly with `ByteBuffer`. Instead, developers can interact with the TensorFlow 126Lite model with typed objects such as `Bitmap` and `Rect`. 127 128The usefulness of the code generator depend on the completeness of the 129TensorFlow Lite model's metadata entry. Refer to the `<Codegen usage>` section 130under relevant fields in 131[metadata_schema.fbs](https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/metadata/metadata_schema.fbs), 132to see how the codegen tool parses each field. 133 134### Generate wrapper Code 135 136You will need to install the following tooling in your terminal: 137 138```sh 139pip install tflite-support 140``` 141 142Once completed, the code generator can be used using the following syntax: 143 144```sh 145tflite_codegen --model=./model_with_metadata/mobilenet_v1_0.75_160_quantized.tflite \ 146 --package_name=org.tensorflow.lite.classify \ 147 --model_class_name=MyClassifierModel \ 148 --destination=./classify_wrapper 149``` 150 151The resulting code will be located in the destination directory. If you are 152using [Google Colab](https://colab.research.google.com/) or other remote 153environment, it maybe easier to zip up the result in a zip archive and download 154it to your Android Studio project: 155 156```python 157# Zip up the generated code 158!zip -r classify_wrapper.zip classify_wrapper/ 159 160# Download the archive 161from google.colab import files 162files.download('classify_wrapper.zip') 163``` 164 165### Using the generated code 166 167#### Step 1: Import the generated code 168 169Unzip the generated code if necessary into a directory structure. The root of 170the generated code is assumed to be `SRC_ROOT`. 171 172Open the Android Studio project where you would like to use the TensorFlow lite 173model and import the generated module by: And File -> New -> Import Module -> 174select `SRC_ROOT` 175 176Using the above example, the directory and the module imported would be called 177`classify_wrapper`. 178 179#### Step 2: Update the app's `build.gradle` file 180 181In the app module that will be consuming the generated library module: 182 183Under the android section, add the following: 184 185```build 186aaptOptions { 187 noCompress "tflite" 188} 189``` 190 191Under the dependencies section, add the following: 192 193```build 194implementation project(":classify_wrapper") 195``` 196 197#### Step 3: Using the model 198 199```java 200// 1. Initialize the model 201MyClassifierModel myImageClassifier = null; 202 203try { 204 myImageClassifier = new MyClassifierModel(this); 205} catch (IOException io){ 206 // Error reading the model 207} 208 209if(null != myImageClassifier) { 210 211 // 2. Set the input with a Bitmap called inputBitmap 212 MyClassifierModel.Inputs inputs = myImageClassifier.createInputs(); 213 inputs.loadImage(inputBitmap)); 214 215 // 3. Run the model 216 MyClassifierModel.Outputs outputs = myImageClassifier.run(inputs); 217 218 // 4. Retrieve the result 219 Map<String, Float> labeledProbability = outputs.getProbability(); 220} 221``` 222 223### Accelerating model inference 224 225The generated code provides a way for developers to accelerate their code 226through the use of [delegates](../performance/delegates.md) and the number of 227threads. These can be set when initiatizing the model object as it takes three 228parameters: 229 230* **`Context`**: Context from the Android Activity or Service 231* (Optional) **`Device`**: TFLite acceleration delegate for example 232 GPUDelegate or NNAPIDelegate 233* (Optional) **`numThreads`**: Number of threads used to run the model - 234 default is one. 235 236For example, to use a NNAPI delegate and up to three threads, you can initialize 237the model like this: 238 239```java 240try { 241 myImageClassifier = new MyClassifierModel(this, Model.Device.NNAPI, 3); 242} catch (IOException io){ 243 // Error reading the model 244} 245``` 246 247### Troubleshooting 248 249If you get a 'java.io.FileNotFoundException: This file can not be opened as a 250file descriptor; it is probably compressed' error, insert the following lines 251under the android section of the app module that will uses the library module: 252 253```build 254aaptOptions { 255 noCompress "tflite" 256} 257``` 258