1 //===--- CloneDetection.cpp - Finds code clones in an AST -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This file implements classes for searching and analyzing source code clones.
10 ///
11 //===----------------------------------------------------------------------===//
12
13 #include "clang/Analysis/CloneDetection.h"
14 #include "clang/AST/Attr.h"
15 #include "clang/AST/DataCollection.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/Basic/SourceManager.h"
18 #include "llvm/Support/MD5.h"
19 #include "llvm/Support/Path.h"
20
21 using namespace clang;
22
StmtSequence(const CompoundStmt * Stmt,const Decl * D,unsigned StartIndex,unsigned EndIndex)23 StmtSequence::StmtSequence(const CompoundStmt *Stmt, const Decl *D,
24 unsigned StartIndex, unsigned EndIndex)
25 : S(Stmt), D(D), StartIndex(StartIndex), EndIndex(EndIndex) {
26 assert(Stmt && "Stmt must not be a nullptr");
27 assert(StartIndex < EndIndex && "Given array should not be empty");
28 assert(EndIndex <= Stmt->size() && "Given array too big for this Stmt");
29 }
30
StmtSequence(const Stmt * Stmt,const Decl * D)31 StmtSequence::StmtSequence(const Stmt *Stmt, const Decl *D)
32 : S(Stmt), D(D), StartIndex(0), EndIndex(0) {}
33
StmtSequence()34 StmtSequence::StmtSequence()
35 : S(nullptr), D(nullptr), StartIndex(0), EndIndex(0) {}
36
contains(const StmtSequence & Other) const37 bool StmtSequence::contains(const StmtSequence &Other) const {
38 // If both sequences reside in different declarations, they can never contain
39 // each other.
40 if (D != Other.D)
41 return false;
42
43 const SourceManager &SM = getASTContext().getSourceManager();
44
45 // Otherwise check if the start and end locations of the current sequence
46 // surround the other sequence.
47 bool StartIsInBounds =
48 SM.isBeforeInTranslationUnit(getBeginLoc(), Other.getBeginLoc()) ||
49 getBeginLoc() == Other.getBeginLoc();
50 if (!StartIsInBounds)
51 return false;
52
53 bool EndIsInBounds =
54 SM.isBeforeInTranslationUnit(Other.getEndLoc(), getEndLoc()) ||
55 Other.getEndLoc() == getEndLoc();
56 return EndIsInBounds;
57 }
58
begin() const59 StmtSequence::iterator StmtSequence::begin() const {
60 if (!holdsSequence()) {
61 return &S;
62 }
63 auto CS = cast<CompoundStmt>(S);
64 return CS->body_begin() + StartIndex;
65 }
66
end() const67 StmtSequence::iterator StmtSequence::end() const {
68 if (!holdsSequence()) {
69 return reinterpret_cast<StmtSequence::iterator>(&S) + 1;
70 }
71 auto CS = cast<CompoundStmt>(S);
72 return CS->body_begin() + EndIndex;
73 }
74
getASTContext() const75 ASTContext &StmtSequence::getASTContext() const {
76 assert(D);
77 return D->getASTContext();
78 }
79
getBeginLoc() const80 SourceLocation StmtSequence::getBeginLoc() const {
81 return front()->getBeginLoc();
82 }
83
getEndLoc() const84 SourceLocation StmtSequence::getEndLoc() const { return back()->getEndLoc(); }
85
getSourceRange() const86 SourceRange StmtSequence::getSourceRange() const {
87 return SourceRange(getBeginLoc(), getEndLoc());
88 }
89
analyzeCodeBody(const Decl * D)90 void CloneDetector::analyzeCodeBody(const Decl *D) {
91 assert(D);
92 assert(D->hasBody());
93
94 Sequences.push_back(StmtSequence(D->getBody(), D));
95 }
96
97 /// Returns true if and only if \p Stmt contains at least one other
98 /// sequence in the \p Group.
containsAnyInGroup(StmtSequence & Seq,CloneDetector::CloneGroup & Group)99 static bool containsAnyInGroup(StmtSequence &Seq,
100 CloneDetector::CloneGroup &Group) {
101 for (StmtSequence &GroupSeq : Group) {
102 if (Seq.contains(GroupSeq))
103 return true;
104 }
105 return false;
106 }
107
108 /// Returns true if and only if all sequences in \p OtherGroup are
109 /// contained by a sequence in \p Group.
containsGroup(CloneDetector::CloneGroup & Group,CloneDetector::CloneGroup & OtherGroup)110 static bool containsGroup(CloneDetector::CloneGroup &Group,
111 CloneDetector::CloneGroup &OtherGroup) {
112 // We have less sequences in the current group than we have in the other,
113 // so we will never fulfill the requirement for returning true. This is only
114 // possible because we know that a sequence in Group can contain at most
115 // one sequence in OtherGroup.
116 if (Group.size() < OtherGroup.size())
117 return false;
118
119 for (StmtSequence &Stmt : Group) {
120 if (!containsAnyInGroup(Stmt, OtherGroup))
121 return false;
122 }
123 return true;
124 }
125
constrain(std::vector<CloneDetector::CloneGroup> & Result)126 void OnlyLargestCloneConstraint::constrain(
127 std::vector<CloneDetector::CloneGroup> &Result) {
128 std::vector<unsigned> IndexesToRemove;
129
130 // Compare every group in the result with the rest. If one groups contains
131 // another group, we only need to return the bigger group.
132 // Note: This doesn't scale well, so if possible avoid calling any heavy
133 // function from this loop to minimize the performance impact.
134 for (unsigned i = 0; i < Result.size(); ++i) {
135 for (unsigned j = 0; j < Result.size(); ++j) {
136 // Don't compare a group with itself.
137 if (i == j)
138 continue;
139
140 if (containsGroup(Result[j], Result[i])) {
141 IndexesToRemove.push_back(i);
142 break;
143 }
144 }
145 }
146
147 // Erasing a list of indexes from the vector should be done with decreasing
148 // indexes. As IndexesToRemove is constructed with increasing values, we just
149 // reverse iterate over it to get the desired order.
150 for (auto I = IndexesToRemove.rbegin(); I != IndexesToRemove.rend(); ++I) {
151 Result.erase(Result.begin() + *I);
152 }
153 }
154
isAutoGenerated(const CloneDetector::CloneGroup & Group)155 bool FilenamePatternConstraint::isAutoGenerated(
156 const CloneDetector::CloneGroup &Group) {
157 if (IgnoredFilesPattern.empty() || Group.empty() ||
158 !IgnoredFilesRegex->isValid())
159 return false;
160
161 for (const StmtSequence &S : Group) {
162 const SourceManager &SM = S.getASTContext().getSourceManager();
163 StringRef Filename = llvm::sys::path::filename(
164 SM.getFilename(S.getContainingDecl()->getLocation()));
165 if (IgnoredFilesRegex->match(Filename))
166 return true;
167 }
168
169 return false;
170 }
171
172 /// This class defines what a type II code clone is: If it collects for two
173 /// statements the same data, then those two statements are considered to be
174 /// clones of each other.
175 ///
176 /// All collected data is forwarded to the given data consumer of the type T.
177 /// The data consumer class needs to provide a member method with the signature:
178 /// update(StringRef Str)
179 namespace {
180 template <class T>
181 class CloneTypeIIStmtDataCollector
182 : public ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>> {
183 ASTContext &Context;
184 /// The data sink to which all data is forwarded.
185 T &DataConsumer;
186
addData(const Ty & Data)187 template <class Ty> void addData(const Ty &Data) {
188 data_collection::addDataToConsumer(DataConsumer, Data);
189 }
190
191 public:
CloneTypeIIStmtDataCollector(const Stmt * S,ASTContext & Context,T & DataConsumer)192 CloneTypeIIStmtDataCollector(const Stmt *S, ASTContext &Context,
193 T &DataConsumer)
194 : Context(Context), DataConsumer(DataConsumer) {
195 this->Visit(S);
196 }
197
198 // Define a visit method for each class to collect data and subsequently visit
199 // all parent classes. This uses a template so that custom visit methods by us
200 // take precedence.
201 #define DEF_ADD_DATA(CLASS, CODE) \
202 template <class = void> void Visit##CLASS(const CLASS *S) { \
203 CODE; \
204 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
205 }
206
207 #include "clang/AST/StmtDataCollectors.inc"
208
209 // Type II clones ignore variable names and literals, so let's skip them.
210 #define SKIP(CLASS) \
211 void Visit##CLASS(const CLASS *S) { \
212 ConstStmtVisitor<CloneTypeIIStmtDataCollector<T>>::Visit##CLASS(S); \
213 }
214 SKIP(DeclRefExpr)
215 SKIP(MemberExpr)
216 SKIP(IntegerLiteral)
217 SKIP(FloatingLiteral)
218 SKIP(StringLiteral)
219 SKIP(CXXBoolLiteralExpr)
220 SKIP(CharacterLiteral)
221 #undef SKIP
222 };
223 } // end anonymous namespace
224
createHash(llvm::MD5 & Hash)225 static size_t createHash(llvm::MD5 &Hash) {
226 size_t HashCode;
227
228 // Create the final hash code for the current Stmt.
229 llvm::MD5::MD5Result HashResult;
230 Hash.final(HashResult);
231
232 // Copy as much as possible of the generated hash code to the Stmt's hash
233 // code.
234 std::memcpy(&HashCode, &HashResult,
235 std::min(sizeof(HashCode), sizeof(HashResult)));
236
237 return HashCode;
238 }
239
240 /// Generates and saves a hash code for the given Stmt.
241 /// \param S The given Stmt.
242 /// \param D The Decl containing S.
243 /// \param StmtsByHash Output parameter that will contain the hash codes for
244 /// each StmtSequence in the given Stmt.
245 /// \return The hash code of the given Stmt.
246 ///
247 /// If the given Stmt is a CompoundStmt, this method will also generate
248 /// hashes for all possible StmtSequences in the children of this Stmt.
249 static size_t
saveHash(const Stmt * S,const Decl * D,std::vector<std::pair<size_t,StmtSequence>> & StmtsByHash)250 saveHash(const Stmt *S, const Decl *D,
251 std::vector<std::pair<size_t, StmtSequence>> &StmtsByHash) {
252 llvm::MD5 Hash;
253 ASTContext &Context = D->getASTContext();
254
255 CloneTypeIIStmtDataCollector<llvm::MD5>(S, Context, Hash);
256
257 auto CS = dyn_cast<CompoundStmt>(S);
258 SmallVector<size_t, 8> ChildHashes;
259
260 for (const Stmt *Child : S->children()) {
261 if (Child == nullptr) {
262 ChildHashes.push_back(0);
263 continue;
264 }
265 size_t ChildHash = saveHash(Child, D, StmtsByHash);
266 Hash.update(
267 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
268 ChildHashes.push_back(ChildHash);
269 }
270
271 if (CS) {
272 // If we're in a CompoundStmt, we hash all possible combinations of child
273 // statements to find clones in those subsequences.
274 // We first go through every possible starting position of a subsequence.
275 for (unsigned Pos = 0; Pos < CS->size(); ++Pos) {
276 // Then we try all possible lengths this subsequence could have and
277 // reuse the same hash object to make sure we only hash every child
278 // hash exactly once.
279 llvm::MD5 Hash;
280 for (unsigned Length = 1; Length <= CS->size() - Pos; ++Length) {
281 // Grab the current child hash and put it into our hash. We do
282 // -1 on the index because we start counting the length at 1.
283 size_t ChildHash = ChildHashes[Pos + Length - 1];
284 Hash.update(
285 StringRef(reinterpret_cast<char *>(&ChildHash), sizeof(ChildHash)));
286 // If we have at least two elements in our subsequence, we can start
287 // saving it.
288 if (Length > 1) {
289 llvm::MD5 SubHash = Hash;
290 StmtsByHash.push_back(std::make_pair(
291 createHash(SubHash), StmtSequence(CS, D, Pos, Pos + Length)));
292 }
293 }
294 }
295 }
296
297 size_t HashCode = createHash(Hash);
298 StmtsByHash.push_back(std::make_pair(HashCode, StmtSequence(S, D)));
299 return HashCode;
300 }
301
302 namespace {
303 /// Wrapper around FoldingSetNodeID that it can be used as the template
304 /// argument of the StmtDataCollector.
305 class FoldingSetNodeIDWrapper {
306
307 llvm::FoldingSetNodeID &FS;
308
309 public:
FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID & FS)310 FoldingSetNodeIDWrapper(llvm::FoldingSetNodeID &FS) : FS(FS) {}
311
update(StringRef Str)312 void update(StringRef Str) { FS.AddString(Str); }
313 };
314 } // end anonymous namespace
315
316 /// Writes the relevant data from all statements and child statements
317 /// in the given StmtSequence into the given FoldingSetNodeID.
CollectStmtSequenceData(const StmtSequence & Sequence,FoldingSetNodeIDWrapper & OutputData)318 static void CollectStmtSequenceData(const StmtSequence &Sequence,
319 FoldingSetNodeIDWrapper &OutputData) {
320 for (const Stmt *S : Sequence) {
321 CloneTypeIIStmtDataCollector<FoldingSetNodeIDWrapper>(
322 S, Sequence.getASTContext(), OutputData);
323
324 for (const Stmt *Child : S->children()) {
325 if (!Child)
326 continue;
327
328 CollectStmtSequenceData(StmtSequence(Child, Sequence.getContainingDecl()),
329 OutputData);
330 }
331 }
332 }
333
334 /// Returns true if both sequences are clones of each other.
areSequencesClones(const StmtSequence & LHS,const StmtSequence & RHS)335 static bool areSequencesClones(const StmtSequence &LHS,
336 const StmtSequence &RHS) {
337 // We collect the data from all statements in the sequence as we did before
338 // when generating a hash value for each sequence. But this time we don't
339 // hash the collected data and compare the whole data set instead. This
340 // prevents any false-positives due to hash code collisions.
341 llvm::FoldingSetNodeID DataLHS, DataRHS;
342 FoldingSetNodeIDWrapper LHSWrapper(DataLHS);
343 FoldingSetNodeIDWrapper RHSWrapper(DataRHS);
344
345 CollectStmtSequenceData(LHS, LHSWrapper);
346 CollectStmtSequenceData(RHS, RHSWrapper);
347
348 return DataLHS == DataRHS;
349 }
350
constrain(std::vector<CloneDetector::CloneGroup> & Sequences)351 void RecursiveCloneTypeIIHashConstraint::constrain(
352 std::vector<CloneDetector::CloneGroup> &Sequences) {
353 // FIXME: Maybe we can do this in-place and don't need this additional vector.
354 std::vector<CloneDetector::CloneGroup> Result;
355
356 for (CloneDetector::CloneGroup &Group : Sequences) {
357 // We assume in the following code that the Group is non-empty, so we
358 // skip all empty groups.
359 if (Group.empty())
360 continue;
361
362 std::vector<std::pair<size_t, StmtSequence>> StmtsByHash;
363
364 // Generate hash codes for all children of S and save them in StmtsByHash.
365 for (const StmtSequence &S : Group) {
366 saveHash(S.front(), S.getContainingDecl(), StmtsByHash);
367 }
368
369 // Sort hash_codes in StmtsByHash.
370 llvm::stable_sort(StmtsByHash, llvm::less_first());
371
372 // Check for each StmtSequence if its successor has the same hash value.
373 // We don't check the last StmtSequence as it has no successor.
374 // Note: The 'size - 1 ' in the condition is safe because we check for an
375 // empty Group vector at the beginning of this function.
376 for (unsigned i = 0; i < StmtsByHash.size() - 1; ++i) {
377 const auto Current = StmtsByHash[i];
378
379 // It's likely that we just found a sequence of StmtSequences that
380 // represent a CloneGroup, so we create a new group and start checking and
381 // adding the StmtSequences in this sequence.
382 CloneDetector::CloneGroup NewGroup;
383
384 size_t PrototypeHash = Current.first;
385
386 for (; i < StmtsByHash.size(); ++i) {
387 // A different hash value means we have reached the end of the sequence.
388 if (PrototypeHash != StmtsByHash[i].first) {
389 // The current sequence could be the start of a new CloneGroup. So we
390 // decrement i so that we visit it again in the outer loop.
391 // Note: i can never be 0 at this point because we are just comparing
392 // the hash of the Current StmtSequence with itself in the 'if' above.
393 assert(i != 0);
394 --i;
395 break;
396 }
397 // Same hash value means we should add the StmtSequence to the current
398 // group.
399 NewGroup.push_back(StmtsByHash[i].second);
400 }
401
402 // We created a new clone group with matching hash codes and move it to
403 // the result vector.
404 Result.push_back(NewGroup);
405 }
406 }
407 // Sequences is the output parameter, so we copy our result into it.
408 Sequences = Result;
409 }
410
constrain(std::vector<CloneDetector::CloneGroup> & Sequences)411 void RecursiveCloneTypeIIVerifyConstraint::constrain(
412 std::vector<CloneDetector::CloneGroup> &Sequences) {
413 CloneConstraint::splitCloneGroups(
414 Sequences, [](const StmtSequence &A, const StmtSequence &B) {
415 return areSequencesClones(A, B);
416 });
417 }
418
calculateStmtComplexity(const StmtSequence & Seq,std::size_t Limit,const std::string & ParentMacroStack)419 size_t MinComplexityConstraint::calculateStmtComplexity(
420 const StmtSequence &Seq, std::size_t Limit,
421 const std::string &ParentMacroStack) {
422 if (Seq.empty())
423 return 0;
424
425 size_t Complexity = 1;
426
427 ASTContext &Context = Seq.getASTContext();
428
429 // Look up what macros expanded into the current statement.
430 std::string MacroStack =
431 data_collection::getMacroStack(Seq.getBeginLoc(), Context);
432
433 // First, check if ParentMacroStack is not empty which means we are currently
434 // dealing with a parent statement which was expanded from a macro.
435 // If this parent statement was expanded from the same macros as this
436 // statement, we reduce the initial complexity of this statement to zero.
437 // This causes that a group of statements that were generated by a single
438 // macro expansion will only increase the total complexity by one.
439 // Note: This is not the final complexity of this statement as we still
440 // add the complexity of the child statements to the complexity value.
441 if (!ParentMacroStack.empty() && MacroStack == ParentMacroStack) {
442 Complexity = 0;
443 }
444
445 // Iterate over the Stmts in the StmtSequence and add their complexity values
446 // to the current complexity value.
447 if (Seq.holdsSequence()) {
448 for (const Stmt *S : Seq) {
449 Complexity += calculateStmtComplexity(
450 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
451 if (Complexity >= Limit)
452 return Limit;
453 }
454 } else {
455 for (const Stmt *S : Seq.front()->children()) {
456 Complexity += calculateStmtComplexity(
457 StmtSequence(S, Seq.getContainingDecl()), Limit, MacroStack);
458 if (Complexity >= Limit)
459 return Limit;
460 }
461 }
462 return Complexity;
463 }
464
constrain(std::vector<CloneDetector::CloneGroup> & CloneGroups)465 void MatchingVariablePatternConstraint::constrain(
466 std::vector<CloneDetector::CloneGroup> &CloneGroups) {
467 CloneConstraint::splitCloneGroups(
468 CloneGroups, [](const StmtSequence &A, const StmtSequence &B) {
469 VariablePattern PatternA(A);
470 VariablePattern PatternB(B);
471 return PatternA.countPatternDifferences(PatternB) == 0;
472 });
473 }
474
splitCloneGroups(std::vector<CloneDetector::CloneGroup> & CloneGroups,llvm::function_ref<bool (const StmtSequence &,const StmtSequence &)> Compare)475 void CloneConstraint::splitCloneGroups(
476 std::vector<CloneDetector::CloneGroup> &CloneGroups,
477 llvm::function_ref<bool(const StmtSequence &, const StmtSequence &)>
478 Compare) {
479 std::vector<CloneDetector::CloneGroup> Result;
480 for (auto &HashGroup : CloneGroups) {
481 // Contains all indexes in HashGroup that were already added to a
482 // CloneGroup.
483 std::vector<char> Indexes;
484 Indexes.resize(HashGroup.size());
485
486 for (unsigned i = 0; i < HashGroup.size(); ++i) {
487 // Skip indexes that are already part of a CloneGroup.
488 if (Indexes[i])
489 continue;
490
491 // Pick the first unhandled StmtSequence and consider it as the
492 // beginning
493 // of a new CloneGroup for now.
494 // We don't add i to Indexes because we never iterate back.
495 StmtSequence Prototype = HashGroup[i];
496 CloneDetector::CloneGroup PotentialGroup = {Prototype};
497 ++Indexes[i];
498
499 // Check all following StmtSequences for clones.
500 for (unsigned j = i + 1; j < HashGroup.size(); ++j) {
501 // Skip indexes that are already part of a CloneGroup.
502 if (Indexes[j])
503 continue;
504
505 // If a following StmtSequence belongs to our CloneGroup, we add it.
506 const StmtSequence &Candidate = HashGroup[j];
507
508 if (!Compare(Prototype, Candidate))
509 continue;
510
511 PotentialGroup.push_back(Candidate);
512 // Make sure we never visit this StmtSequence again.
513 ++Indexes[j];
514 }
515
516 // Otherwise, add it to the result and continue searching for more
517 // groups.
518 Result.push_back(PotentialGroup);
519 }
520
521 assert(llvm::all_of(Indexes, [](char c) { return c == 1; }));
522 }
523 CloneGroups = Result;
524 }
525
addVariableOccurence(const VarDecl * VarDecl,const Stmt * Mention)526 void VariablePattern::addVariableOccurence(const VarDecl *VarDecl,
527 const Stmt *Mention) {
528 // First check if we already reference this variable
529 for (size_t KindIndex = 0; KindIndex < Variables.size(); ++KindIndex) {
530 if (Variables[KindIndex] == VarDecl) {
531 // If yes, add a new occurrence that points to the existing entry in
532 // the Variables vector.
533 Occurences.emplace_back(KindIndex, Mention);
534 return;
535 }
536 }
537 // If this variable wasn't already referenced, add it to the list of
538 // referenced variables and add a occurrence that points to this new entry.
539 Occurences.emplace_back(Variables.size(), Mention);
540 Variables.push_back(VarDecl);
541 }
542
addVariables(const Stmt * S)543 void VariablePattern::addVariables(const Stmt *S) {
544 // Sometimes we get a nullptr (such as from IfStmts which often have nullptr
545 // children). We skip such statements as they don't reference any
546 // variables.
547 if (!S)
548 return;
549
550 // Check if S is a reference to a variable. If yes, add it to the pattern.
551 if (auto D = dyn_cast<DeclRefExpr>(S)) {
552 if (auto VD = dyn_cast<VarDecl>(D->getDecl()->getCanonicalDecl()))
553 addVariableOccurence(VD, D);
554 }
555
556 // Recursively check all children of the given statement.
557 for (const Stmt *Child : S->children()) {
558 addVariables(Child);
559 }
560 }
561
countPatternDifferences(const VariablePattern & Other,VariablePattern::SuspiciousClonePair * FirstMismatch)562 unsigned VariablePattern::countPatternDifferences(
563 const VariablePattern &Other,
564 VariablePattern::SuspiciousClonePair *FirstMismatch) {
565 unsigned NumberOfDifferences = 0;
566
567 assert(Other.Occurences.size() == Occurences.size());
568 for (unsigned i = 0; i < Occurences.size(); ++i) {
569 auto ThisOccurence = Occurences[i];
570 auto OtherOccurence = Other.Occurences[i];
571 if (ThisOccurence.KindID == OtherOccurence.KindID)
572 continue;
573
574 ++NumberOfDifferences;
575
576 // If FirstMismatch is not a nullptr, we need to store information about
577 // the first difference between the two patterns.
578 if (FirstMismatch == nullptr)
579 continue;
580
581 // Only proceed if we just found the first difference as we only store
582 // information about the first difference.
583 if (NumberOfDifferences != 1)
584 continue;
585
586 const VarDecl *FirstSuggestion = nullptr;
587 // If there is a variable available in the list of referenced variables
588 // which wouldn't break the pattern if it is used in place of the
589 // current variable, we provide this variable as the suggested fix.
590 if (OtherOccurence.KindID < Variables.size())
591 FirstSuggestion = Variables[OtherOccurence.KindID];
592
593 // Store information about the first clone.
594 FirstMismatch->FirstCloneInfo =
595 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
596 Variables[ThisOccurence.KindID], ThisOccurence.Mention,
597 FirstSuggestion);
598
599 // Same as above but with the other clone. We do this for both clones as
600 // we don't know which clone is the one containing the unintended
601 // pattern error.
602 const VarDecl *SecondSuggestion = nullptr;
603 if (ThisOccurence.KindID < Other.Variables.size())
604 SecondSuggestion = Other.Variables[ThisOccurence.KindID];
605
606 // Store information about the second clone.
607 FirstMismatch->SecondCloneInfo =
608 VariablePattern::SuspiciousClonePair::SuspiciousCloneInfo(
609 Other.Variables[OtherOccurence.KindID], OtherOccurence.Mention,
610 SecondSuggestion);
611
612 // SuspiciousClonePair guarantees that the first clone always has a
613 // suggested variable associated with it. As we know that one of the two
614 // clones in the pair always has suggestion, we swap the two clones
615 // in case the first clone has no suggested variable which means that
616 // the second clone has a suggested variable and should be first.
617 if (!FirstMismatch->FirstCloneInfo.Suggestion)
618 std::swap(FirstMismatch->FirstCloneInfo, FirstMismatch->SecondCloneInfo);
619
620 // This ensures that we always have at least one suggestion in a pair.
621 assert(FirstMismatch->FirstCloneInfo.Suggestion);
622 }
623
624 return NumberOfDifferences;
625 }
626