1 //===- ELFObjHandler.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===-----------------------------------------------------------------------===/
8
9 #include "llvm/InterfaceStub/ELFObjHandler.h"
10 #include "llvm/InterfaceStub/ELFStub.h"
11 #include "llvm/MC/StringTableBuilder.h"
12 #include "llvm/Object/Binary.h"
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/Object/ELFTypes.h"
15 #include "llvm/Support/Errc.h"
16 #include "llvm/Support/Error.h"
17 #include "llvm/Support/FileOutputBuffer.h"
18 #include "llvm/Support/MathExtras.h"
19 #include "llvm/Support/MemoryBuffer.h"
20
21 using llvm::MemoryBufferRef;
22 using llvm::object::ELFObjectFile;
23
24 using namespace llvm;
25 using namespace llvm::object;
26 using namespace llvm::ELF;
27
28 namespace llvm {
29 namespace elfabi {
30
31 // Simple struct to hold relevant .dynamic entries.
32 struct DynamicEntries {
33 uint64_t StrTabAddr = 0;
34 uint64_t StrSize = 0;
35 Optional<uint64_t> SONameOffset;
36 std::vector<uint64_t> NeededLibNames;
37 // Symbol table:
38 uint64_t DynSymAddr = 0;
39 // Hash tables:
40 Optional<uint64_t> ElfHash;
41 Optional<uint64_t> GnuHash;
42 };
43
44 /// This initializes an ELF file header with information specific to a binary
45 /// dynamic shared object.
46 /// Offsets, indexes, links, etc. for section and program headers are just
47 /// zero-initialized as they will be updated elsewhere.
48 ///
49 /// @param ElfHeader Target ELFT::Ehdr to populate.
50 /// @param Machine Target architecture (e_machine from ELF specifications).
51 template <class ELFT>
initELFHeader(typename ELFT::Ehdr & ElfHeader,uint16_t Machine)52 static void initELFHeader(typename ELFT::Ehdr &ElfHeader, uint16_t Machine) {
53 memset(&ElfHeader, 0, sizeof(ElfHeader));
54 // ELF identification.
55 ElfHeader.e_ident[EI_MAG0] = ElfMagic[EI_MAG0];
56 ElfHeader.e_ident[EI_MAG1] = ElfMagic[EI_MAG1];
57 ElfHeader.e_ident[EI_MAG2] = ElfMagic[EI_MAG2];
58 ElfHeader.e_ident[EI_MAG3] = ElfMagic[EI_MAG3];
59 ElfHeader.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
60 bool IsLittleEndian = ELFT::TargetEndianness == support::little;
61 ElfHeader.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
62 ElfHeader.e_ident[EI_VERSION] = EV_CURRENT;
63 ElfHeader.e_ident[EI_OSABI] = ELFOSABI_NONE;
64
65 // Remainder of ELF header.
66 ElfHeader.e_type = ET_DYN;
67 ElfHeader.e_machine = Machine;
68 ElfHeader.e_version = EV_CURRENT;
69 ElfHeader.e_ehsize = sizeof(typename ELFT::Ehdr);
70 ElfHeader.e_phentsize = sizeof(typename ELFT::Phdr);
71 ElfHeader.e_shentsize = sizeof(typename ELFT::Shdr);
72 }
73
74 namespace {
75 template <class ELFT> struct OutputSection {
76 using Elf_Shdr = typename ELFT::Shdr;
77 std::string Name;
78 Elf_Shdr Shdr;
79 uint64_t Addr;
80 uint64_t Offset;
81 uint64_t Size;
82 uint64_t Align;
83 uint32_t Index;
84 bool NoBits = true;
85 };
86
87 template <class T, class ELFT>
88 struct ContentSection : public OutputSection<ELFT> {
89 T Content;
ContentSectionllvm::elfabi::__anon2a7db18e0111::ContentSection90 ContentSection() { this->NoBits = false; }
91 };
92
93 // This class just wraps StringTableBuilder for the purpose of adding a
94 // default constructor.
95 class ELFStringTableBuilder : public StringTableBuilder {
96 public:
ELFStringTableBuilder()97 ELFStringTableBuilder() : StringTableBuilder(StringTableBuilder::ELF) {}
98 };
99
100 template <class ELFT> class ELFSymbolTableBuilder {
101 public:
102 using Elf_Sym = typename ELFT::Sym;
103
ELFSymbolTableBuilder()104 ELFSymbolTableBuilder() { Symbols.push_back({}); }
105
add(size_t StNameOffset,uint64_t StSize,uint8_t StBind,uint8_t StType,uint8_t StOther,uint16_t StShndx)106 void add(size_t StNameOffset, uint64_t StSize, uint8_t StBind, uint8_t StType,
107 uint8_t StOther, uint16_t StShndx) {
108 Elf_Sym S{};
109 S.st_name = StNameOffset;
110 S.st_size = StSize;
111 S.st_info = (StBind << 4) | (StType & 0xf);
112 S.st_other = StOther;
113 S.st_shndx = StShndx;
114 Symbols.push_back(S);
115 }
116
getSize() const117 size_t getSize() const { return Symbols.size() * sizeof(Elf_Sym); }
118
write(uint8_t * Buf) const119 void write(uint8_t *Buf) const {
120 memcpy(Buf, Symbols.data(), sizeof(Elf_Sym) * Symbols.size());
121 }
122
123 private:
124 llvm::SmallVector<Elf_Sym, 8> Symbols;
125 };
126
127 template <class ELFT> class ELFDynamicTableBuilder {
128 public:
129 using Elf_Dyn = typename ELFT::Dyn;
130
addAddr(uint64_t Tag,uint64_t Addr)131 size_t addAddr(uint64_t Tag, uint64_t Addr) {
132 Elf_Dyn Entry;
133 Entry.d_tag = Tag;
134 Entry.d_un.d_ptr = Addr;
135 Entries.push_back(Entry);
136 return Entries.size() - 1;
137 }
138
modifyAddr(size_t Index,uint64_t Addr)139 void modifyAddr(size_t Index, uint64_t Addr) {
140 Entries[Index].d_un.d_ptr = Addr;
141 }
142
addValue(uint64_t Tag,uint64_t Value)143 size_t addValue(uint64_t Tag, uint64_t Value) {
144 Elf_Dyn Entry;
145 Entry.d_tag = Tag;
146 Entry.d_un.d_val = Value;
147 Entries.push_back(Entry);
148 return Entries.size() - 1;
149 }
150
modifyValue(size_t Index,uint64_t Value)151 void modifyValue(size_t Index, uint64_t Value) {
152 Entries[Index].d_un.d_val = Value;
153 }
154
getSize() const155 size_t getSize() const {
156 // Add DT_NULL entry at the end.
157 return (Entries.size() + 1) * sizeof(Elf_Dyn);
158 }
159
write(uint8_t * Buf) const160 void write(uint8_t *Buf) const {
161 memcpy(Buf, Entries.data(), sizeof(Elf_Dyn) * Entries.size());
162 // Add DT_NULL entry at the end.
163 memset(Buf + sizeof(Elf_Dyn) * Entries.size(), 0, sizeof(Elf_Dyn));
164 }
165
166 private:
167 llvm::SmallVector<Elf_Dyn, 8> Entries;
168 };
169
170 template <class ELFT> class ELFStubBuilder {
171 public:
172 using Elf_Ehdr = typename ELFT::Ehdr;
173 using Elf_Shdr = typename ELFT::Shdr;
174 using Elf_Phdr = typename ELFT::Phdr;
175 using Elf_Sym = typename ELFT::Sym;
176 using Elf_Addr = typename ELFT::Addr;
177 using Elf_Dyn = typename ELFT::Dyn;
178
179 ELFStubBuilder(const ELFStubBuilder &) = delete;
180 ELFStubBuilder(ELFStubBuilder &&) = default;
181
ELFStubBuilder(const ELFStub & Stub)182 explicit ELFStubBuilder(const ELFStub &Stub) {
183 DynSym.Name = ".dynsym";
184 DynSym.Align = sizeof(Elf_Addr);
185 DynStr.Name = ".dynstr";
186 DynStr.Align = 1;
187 DynTab.Name = ".dynamic";
188 DynTab.Align = sizeof(Elf_Addr);
189 ShStrTab.Name = ".shstrtab";
190 ShStrTab.Align = 1;
191
192 // Populate string tables.
193 for (const ELFSymbol &Sym : Stub.Symbols)
194 DynStr.Content.add(Sym.Name);
195 for (const std::string &Lib : Stub.NeededLibs)
196 DynStr.Content.add(Lib);
197 if (Stub.SoName)
198 DynStr.Content.add(Stub.SoName.getValue());
199
200 std::vector<OutputSection<ELFT> *> Sections = {&DynSym, &DynStr, &DynTab,
201 &ShStrTab};
202 const OutputSection<ELFT> *LastSection = Sections.back();
203 // Now set the Index and put sections names into ".shstrtab".
204 uint64_t Index = 1;
205 for (OutputSection<ELFT> *Sec : Sections) {
206 Sec->Index = Index++;
207 ShStrTab.Content.add(Sec->Name);
208 }
209 ShStrTab.Content.finalize();
210 ShStrTab.Size = ShStrTab.Content.getSize();
211 DynStr.Content.finalize();
212 DynStr.Size = DynStr.Content.getSize();
213
214 // Populate dynamic symbol table.
215 for (const ELFSymbol &Sym : Stub.Symbols) {
216 uint8_t Bind = Sym.Weak ? STB_WEAK : STB_GLOBAL;
217 // For non-undefined symbols, value of the shndx is not relevant at link
218 // time as long as it is not SHN_UNDEF. Set shndx to 1, which
219 // points to ".dynsym".
220 uint16_t Shndx = Sym.Undefined ? SHN_UNDEF : 1;
221 DynSym.Content.add(DynStr.Content.getOffset(Sym.Name), Sym.Size, Bind,
222 (uint8_t)Sym.Type, 0, Shndx);
223 }
224 DynSym.Size = DynSym.Content.getSize();
225
226 // Poplulate dynamic table.
227 size_t DynSymIndex = DynTab.Content.addAddr(DT_SYMTAB, 0);
228 size_t DynStrIndex = DynTab.Content.addAddr(DT_STRTAB, 0);
229 for (const std::string &Lib : Stub.NeededLibs)
230 DynTab.Content.addValue(DT_NEEDED, DynStr.Content.getOffset(Lib));
231 if (Stub.SoName)
232 DynTab.Content.addValue(DT_SONAME,
233 DynStr.Content.getOffset(Stub.SoName.getValue()));
234 DynTab.Size = DynTab.Content.getSize();
235 // Calculate sections' addresses and offsets.
236 uint64_t CurrentOffset = sizeof(Elf_Ehdr);
237 for (OutputSection<ELFT> *Sec : Sections) {
238 Sec->Offset = alignTo(CurrentOffset, Sec->Align);
239 Sec->Addr = Sec->Offset;
240 CurrentOffset = Sec->Offset + Sec->Size;
241 }
242 // Fill Addr back to dynamic table.
243 DynTab.Content.modifyAddr(DynSymIndex, DynSym.Addr);
244 DynTab.Content.modifyAddr(DynStrIndex, DynStr.Addr);
245 // Write section headers of string tables.
246 fillSymTabShdr(DynSym, SHT_DYNSYM);
247 fillStrTabShdr(DynStr, SHF_ALLOC);
248 fillDynTabShdr(DynTab);
249 fillStrTabShdr(ShStrTab);
250
251 // Finish initializing the ELF header.
252 initELFHeader<ELFT>(ElfHeader, Stub.Arch);
253 ElfHeader.e_shstrndx = ShStrTab.Index;
254 ElfHeader.e_shnum = LastSection->Index + 1;
255 ElfHeader.e_shoff =
256 alignTo(LastSection->Offset + LastSection->Size, sizeof(Elf_Addr));
257 }
258
getSize() const259 size_t getSize() const {
260 return ElfHeader.e_shoff + ElfHeader.e_shnum * sizeof(Elf_Shdr);
261 }
262
write(uint8_t * Data) const263 void write(uint8_t *Data) const {
264 write(Data, ElfHeader);
265 DynSym.Content.write(Data + DynSym.Shdr.sh_offset);
266 DynStr.Content.write(Data + DynStr.Shdr.sh_offset);
267 DynTab.Content.write(Data + DynTab.Shdr.sh_offset);
268 ShStrTab.Content.write(Data + ShStrTab.Shdr.sh_offset);
269 writeShdr(Data, DynSym);
270 writeShdr(Data, DynStr);
271 writeShdr(Data, DynTab);
272 writeShdr(Data, ShStrTab);
273 }
274
275 private:
276 Elf_Ehdr ElfHeader;
277 ContentSection<ELFStringTableBuilder, ELFT> DynStr;
278 ContentSection<ELFStringTableBuilder, ELFT> ShStrTab;
279 ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> DynSym;
280 ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> DynTab;
281
write(uint8_t * Data,const T & Value)282 template <class T> static void write(uint8_t *Data, const T &Value) {
283 *reinterpret_cast<T *>(Data) = Value;
284 }
285
fillStrTabShdr(ContentSection<ELFStringTableBuilder,ELFT> & StrTab,uint32_t ShFlags=0) const286 void fillStrTabShdr(ContentSection<ELFStringTableBuilder, ELFT> &StrTab,
287 uint32_t ShFlags = 0) const {
288 StrTab.Shdr.sh_type = SHT_STRTAB;
289 StrTab.Shdr.sh_flags = ShFlags;
290 StrTab.Shdr.sh_addr = StrTab.Addr;
291 StrTab.Shdr.sh_offset = StrTab.Offset;
292 StrTab.Shdr.sh_info = 0;
293 StrTab.Shdr.sh_size = StrTab.Size;
294 StrTab.Shdr.sh_name = ShStrTab.Content.getOffset(StrTab.Name);
295 StrTab.Shdr.sh_addralign = StrTab.Align;
296 StrTab.Shdr.sh_entsize = 0;
297 StrTab.Shdr.sh_link = 0;
298 }
fillSymTabShdr(ContentSection<ELFSymbolTableBuilder<ELFT>,ELFT> & SymTab,uint32_t ShType) const299 void fillSymTabShdr(ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> &SymTab,
300 uint32_t ShType) const {
301 SymTab.Shdr.sh_type = ShType;
302 SymTab.Shdr.sh_flags = SHF_ALLOC;
303 SymTab.Shdr.sh_addr = SymTab.Addr;
304 SymTab.Shdr.sh_offset = SymTab.Offset;
305 SymTab.Shdr.sh_info = SymTab.Size / sizeof(Elf_Sym) > 1 ? 1 : 0;
306 SymTab.Shdr.sh_size = SymTab.Size;
307 SymTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(SymTab.Name);
308 SymTab.Shdr.sh_addralign = SymTab.Align;
309 SymTab.Shdr.sh_entsize = sizeof(Elf_Sym);
310 SymTab.Shdr.sh_link = this->DynStr.Index;
311 }
fillDynTabShdr(ContentSection<ELFDynamicTableBuilder<ELFT>,ELFT> & DynTab) const312 void fillDynTabShdr(
313 ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> &DynTab) const {
314 DynTab.Shdr.sh_type = SHT_DYNAMIC;
315 DynTab.Shdr.sh_flags = SHF_ALLOC;
316 DynTab.Shdr.sh_addr = DynTab.Addr;
317 DynTab.Shdr.sh_offset = DynTab.Offset;
318 DynTab.Shdr.sh_info = 0;
319 DynTab.Shdr.sh_size = DynTab.Size;
320 DynTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(DynTab.Name);
321 DynTab.Shdr.sh_addralign = DynTab.Align;
322 DynTab.Shdr.sh_entsize = sizeof(Elf_Dyn);
323 DynTab.Shdr.sh_link = this->DynStr.Index;
324 }
shdrOffset(const OutputSection<ELFT> & Sec) const325 uint64_t shdrOffset(const OutputSection<ELFT> &Sec) const {
326 return ElfHeader.e_shoff + Sec.Index * sizeof(Elf_Shdr);
327 }
328
writeShdr(uint8_t * Data,const OutputSection<ELFT> & Sec) const329 void writeShdr(uint8_t *Data, const OutputSection<ELFT> &Sec) const {
330 write(Data + shdrOffset(Sec), Sec.Shdr);
331 }
332 };
333 } // end anonymous namespace
334
335 /// This function behaves similarly to StringRef::substr(), but attempts to
336 /// terminate the returned StringRef at the first null terminator. If no null
337 /// terminator is found, an error is returned.
338 ///
339 /// @param Str Source string to create a substring from.
340 /// @param Offset The start index of the desired substring.
terminatedSubstr(StringRef Str,size_t Offset)341 static Expected<StringRef> terminatedSubstr(StringRef Str, size_t Offset) {
342 size_t StrEnd = Str.find('\0', Offset);
343 if (StrEnd == StringLiteral::npos) {
344 return createError(
345 "String overran bounds of string table (no null terminator)");
346 }
347
348 size_t StrLen = StrEnd - Offset;
349 return Str.substr(Offset, StrLen);
350 }
351
352 /// This function takes an error, and appends a string of text to the end of
353 /// that error. Since "appending" to an Error isn't supported behavior of an
354 /// Error, this function technically creates a new error with the combined
355 /// message and consumes the old error.
356 ///
357 /// @param Err Source error.
358 /// @param After Text to append at the end of Err's error message.
appendToError(Error Err,StringRef After)359 Error appendToError(Error Err, StringRef After) {
360 std::string Message;
361 raw_string_ostream Stream(Message);
362 Stream << Err;
363 Stream << " " << After;
364 consumeError(std::move(Err));
365 return createError(Stream.str().c_str());
366 }
367
368 /// This function populates a DynamicEntries struct using an ELFT::DynRange.
369 /// After populating the struct, the members are validated with
370 /// some basic sanity checks.
371 ///
372 /// @param Dyn Target DynamicEntries struct to populate.
373 /// @param DynTable Source dynamic table.
374 template <class ELFT>
populateDynamic(DynamicEntries & Dyn,typename ELFT::DynRange DynTable)375 static Error populateDynamic(DynamicEntries &Dyn,
376 typename ELFT::DynRange DynTable) {
377 if (DynTable.empty())
378 return createError("No .dynamic section found");
379
380 // Search .dynamic for relevant entries.
381 bool FoundDynStr = false;
382 bool FoundDynStrSz = false;
383 bool FoundDynSym = false;
384 for (auto &Entry : DynTable) {
385 switch (Entry.d_tag) {
386 case DT_SONAME:
387 Dyn.SONameOffset = Entry.d_un.d_val;
388 break;
389 case DT_STRTAB:
390 Dyn.StrTabAddr = Entry.d_un.d_ptr;
391 FoundDynStr = true;
392 break;
393 case DT_STRSZ:
394 Dyn.StrSize = Entry.d_un.d_val;
395 FoundDynStrSz = true;
396 break;
397 case DT_NEEDED:
398 Dyn.NeededLibNames.push_back(Entry.d_un.d_val);
399 break;
400 case DT_SYMTAB:
401 Dyn.DynSymAddr = Entry.d_un.d_ptr;
402 FoundDynSym = true;
403 break;
404 case DT_HASH:
405 Dyn.ElfHash = Entry.d_un.d_ptr;
406 break;
407 case DT_GNU_HASH:
408 Dyn.GnuHash = Entry.d_un.d_ptr;
409 }
410 }
411
412 if (!FoundDynStr) {
413 return createError(
414 "Couldn't locate dynamic string table (no DT_STRTAB entry)");
415 }
416 if (!FoundDynStrSz) {
417 return createError(
418 "Couldn't determine dynamic string table size (no DT_STRSZ entry)");
419 }
420 if (!FoundDynSym) {
421 return createError(
422 "Couldn't locate dynamic symbol table (no DT_SYMTAB entry)");
423 }
424 if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) {
425 return createStringError(object_error::parse_failed,
426 "DT_SONAME string offset (0x%016" PRIx64
427 ") outside of dynamic string table",
428 *Dyn.SONameOffset);
429 }
430 for (uint64_t Offset : Dyn.NeededLibNames) {
431 if (Offset >= Dyn.StrSize) {
432 return createStringError(object_error::parse_failed,
433 "DT_NEEDED string offset (0x%016" PRIx64
434 ") outside of dynamic string table",
435 Offset);
436 }
437 }
438
439 return Error::success();
440 }
441
442 /// This function finds the number of dynamic symbols using a GNU hash table.
443 ///
444 /// @param Table The GNU hash table for .dynsym.
445 template <class ELFT>
getDynSymtabSize(const typename ELFT::GnuHash & Table)446 static uint64_t getDynSymtabSize(const typename ELFT::GnuHash &Table) {
447 using Elf_Word = typename ELFT::Word;
448 if (Table.nbuckets == 0)
449 return Table.symndx + 1;
450 uint64_t LastSymIdx = 0;
451 uint64_t BucketVal = 0;
452 // Find the index of the first symbol in the last chain.
453 for (Elf_Word Val : Table.buckets()) {
454 BucketVal = std::max(BucketVal, (uint64_t)Val);
455 }
456 LastSymIdx += BucketVal;
457 const Elf_Word *It =
458 reinterpret_cast<const Elf_Word *>(Table.values(BucketVal).end());
459 // Locate the end of the chain to find the last symbol index.
460 while ((*It & 1) == 0) {
461 LastSymIdx++;
462 It++;
463 }
464 return LastSymIdx + 1;
465 }
466
467 /// This function determines the number of dynamic symbols.
468 /// Without access to section headers, the number of symbols must be determined
469 /// by parsing dynamic hash tables.
470 ///
471 /// @param Dyn Entries with the locations of hash tables.
472 /// @param ElfFile The ElfFile that the section contents reside in.
473 template <class ELFT>
getNumSyms(DynamicEntries & Dyn,const ELFFile<ELFT> & ElfFile)474 static Expected<uint64_t> getNumSyms(DynamicEntries &Dyn,
475 const ELFFile<ELFT> &ElfFile) {
476 using Elf_Hash = typename ELFT::Hash;
477 using Elf_GnuHash = typename ELFT::GnuHash;
478 // Search GNU hash table to try to find the upper bound of dynsym.
479 if (Dyn.GnuHash.hasValue()) {
480 Expected<const uint8_t *> TablePtr = ElfFile.toMappedAddr(*Dyn.GnuHash);
481 if (!TablePtr)
482 return TablePtr.takeError();
483 const Elf_GnuHash *Table =
484 reinterpret_cast<const Elf_GnuHash *>(TablePtr.get());
485 return getDynSymtabSize<ELFT>(*Table);
486 }
487 // Search SYSV hash table to try to find the upper bound of dynsym.
488 if (Dyn.ElfHash.hasValue()) {
489 Expected<const uint8_t *> TablePtr = ElfFile.toMappedAddr(*Dyn.ElfHash);
490 if (!TablePtr)
491 return TablePtr.takeError();
492 const Elf_Hash *Table = reinterpret_cast<const Elf_Hash *>(TablePtr.get());
493 return Table->nchain;
494 }
495 return 0;
496 }
497
498 /// This function extracts symbol type from a symbol's st_info member and
499 /// maps it to an ELFSymbolType enum.
500 /// Currently, STT_NOTYPE, STT_OBJECT, STT_FUNC, and STT_TLS are supported.
501 /// Other symbol types are mapped to ELFSymbolType::Unknown.
502 ///
503 /// @param Info Binary symbol st_info to extract symbol type from.
convertInfoToType(uint8_t Info)504 static ELFSymbolType convertInfoToType(uint8_t Info) {
505 Info = Info & 0xf;
506 switch (Info) {
507 case ELF::STT_NOTYPE:
508 return ELFSymbolType::NoType;
509 case ELF::STT_OBJECT:
510 return ELFSymbolType::Object;
511 case ELF::STT_FUNC:
512 return ELFSymbolType::Func;
513 case ELF::STT_TLS:
514 return ELFSymbolType::TLS;
515 default:
516 return ELFSymbolType::Unknown;
517 }
518 }
519
520 /// This function creates an ELFSymbol and populates all members using
521 /// information from a binary ELFT::Sym.
522 ///
523 /// @param SymName The desired name of the ELFSymbol.
524 /// @param RawSym ELFT::Sym to extract symbol information from.
525 template <class ELFT>
createELFSym(StringRef SymName,const typename ELFT::Sym & RawSym)526 static ELFSymbol createELFSym(StringRef SymName,
527 const typename ELFT::Sym &RawSym) {
528 ELFSymbol TargetSym{std::string(SymName)};
529 uint8_t Binding = RawSym.getBinding();
530 if (Binding == STB_WEAK)
531 TargetSym.Weak = true;
532 else
533 TargetSym.Weak = false;
534
535 TargetSym.Undefined = RawSym.isUndefined();
536 TargetSym.Type = convertInfoToType(RawSym.st_info);
537
538 if (TargetSym.Type == ELFSymbolType::Func) {
539 TargetSym.Size = 0;
540 } else {
541 TargetSym.Size = RawSym.st_size;
542 }
543 return TargetSym;
544 }
545
546 /// This function populates an ELFStub with symbols using information read
547 /// from an ELF binary.
548 ///
549 /// @param TargetStub ELFStub to add symbols to.
550 /// @param DynSym Range of dynamic symbols to add to TargetStub.
551 /// @param DynStr StringRef to the dynamic string table.
552 template <class ELFT>
populateSymbols(ELFStub & TargetStub,const typename ELFT::SymRange DynSym,StringRef DynStr)553 static Error populateSymbols(ELFStub &TargetStub,
554 const typename ELFT::SymRange DynSym,
555 StringRef DynStr) {
556 // Skips the first symbol since it's the NULL symbol.
557 for (auto RawSym : DynSym.drop_front(1)) {
558 // If a symbol does not have global or weak binding, ignore it.
559 uint8_t Binding = RawSym.getBinding();
560 if (!(Binding == STB_GLOBAL || Binding == STB_WEAK))
561 continue;
562 // If a symbol doesn't have default or protected visibility, ignore it.
563 uint8_t Visibility = RawSym.getVisibility();
564 if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED))
565 continue;
566 // Create an ELFSymbol and populate it with information from the symbol
567 // table entry.
568 Expected<StringRef> SymName = terminatedSubstr(DynStr, RawSym.st_name);
569 if (!SymName)
570 return SymName.takeError();
571 ELFSymbol Sym = createELFSym<ELFT>(*SymName, RawSym);
572 TargetStub.Symbols.insert(std::move(Sym));
573 // TODO: Populate symbol warning.
574 }
575 return Error::success();
576 }
577
578 /// Returns a new ELFStub with all members populated from an ELFObjectFile.
579 /// @param ElfObj Source ELFObjectFile.
580 template <class ELFT>
581 static Expected<std::unique_ptr<ELFStub>>
buildStub(const ELFObjectFile<ELFT> & ElfObj)582 buildStub(const ELFObjectFile<ELFT> &ElfObj) {
583 using Elf_Dyn_Range = typename ELFT::DynRange;
584 using Elf_Phdr_Range = typename ELFT::PhdrRange;
585 using Elf_Sym_Range = typename ELFT::SymRange;
586 using Elf_Sym = typename ELFT::Sym;
587 std::unique_ptr<ELFStub> DestStub = std::make_unique<ELFStub>();
588 const ELFFile<ELFT> &ElfFile = ElfObj.getELFFile();
589 // Fetch .dynamic table.
590 Expected<Elf_Dyn_Range> DynTable = ElfFile.dynamicEntries();
591 if (!DynTable) {
592 return DynTable.takeError();
593 }
594
595 // Fetch program headers.
596 Expected<Elf_Phdr_Range> PHdrs = ElfFile.program_headers();
597 if (!PHdrs) {
598 return PHdrs.takeError();
599 }
600
601 // Collect relevant .dynamic entries.
602 DynamicEntries DynEnt;
603 if (Error Err = populateDynamic<ELFT>(DynEnt, *DynTable))
604 return std::move(Err);
605
606 // Get pointer to in-memory location of .dynstr section.
607 Expected<const uint8_t *> DynStrPtr = ElfFile.toMappedAddr(DynEnt.StrTabAddr);
608 if (!DynStrPtr)
609 return appendToError(DynStrPtr.takeError(),
610 "when locating .dynstr section contents");
611
612 StringRef DynStr(reinterpret_cast<const char *>(DynStrPtr.get()),
613 DynEnt.StrSize);
614
615 // Populate Arch from ELF header.
616 DestStub->Arch = ElfFile.getHeader().e_machine;
617
618 // Populate SoName from .dynamic entries and dynamic string table.
619 if (DynEnt.SONameOffset.hasValue()) {
620 Expected<StringRef> NameOrErr =
621 terminatedSubstr(DynStr, *DynEnt.SONameOffset);
622 if (!NameOrErr) {
623 return appendToError(NameOrErr.takeError(), "when reading DT_SONAME");
624 }
625 DestStub->SoName = std::string(*NameOrErr);
626 }
627
628 // Populate NeededLibs from .dynamic entries and dynamic string table.
629 for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) {
630 Expected<StringRef> LibNameOrErr =
631 terminatedSubstr(DynStr, NeededStrOffset);
632 if (!LibNameOrErr) {
633 return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED");
634 }
635 DestStub->NeededLibs.push_back(std::string(*LibNameOrErr));
636 }
637
638 // Populate Symbols from .dynsym table and dynamic string table.
639 Expected<uint64_t> SymCount = getNumSyms(DynEnt, ElfFile);
640 if (!SymCount)
641 return SymCount.takeError();
642 if (*SymCount > 0) {
643 // Get pointer to in-memory location of .dynsym section.
644 Expected<const uint8_t *> DynSymPtr =
645 ElfFile.toMappedAddr(DynEnt.DynSymAddr);
646 if (!DynSymPtr)
647 return appendToError(DynSymPtr.takeError(),
648 "when locating .dynsym section contents");
649 Elf_Sym_Range DynSyms = ArrayRef<Elf_Sym>(
650 reinterpret_cast<const Elf_Sym *>(*DynSymPtr), *SymCount);
651 Error SymReadError = populateSymbols<ELFT>(*DestStub, DynSyms, DynStr);
652 if (SymReadError)
653 return appendToError(std::move(SymReadError),
654 "when reading dynamic symbols");
655 }
656
657 return std::move(DestStub);
658 }
659
660 /// This function opens a file for writing and then writes a binary ELF stub to
661 /// the file.
662 ///
663 /// @param FilePath File path for writing the ELF binary.
664 /// @param Stub Source ELFStub to generate a binary ELF stub from.
665 template <class ELFT>
writeELFBinaryToFile(StringRef FilePath,const ELFStub & Stub)666 static Error writeELFBinaryToFile(StringRef FilePath, const ELFStub &Stub) {
667 ELFStubBuilder<ELFT> Builder{Stub};
668 Expected<std::unique_ptr<FileOutputBuffer>> BufOrError =
669 FileOutputBuffer::create(FilePath, Builder.getSize());
670 if (!BufOrError)
671 return createStringError(errc::invalid_argument,
672 toString(BufOrError.takeError()) +
673 " when trying to open `" + FilePath +
674 "` for writing");
675
676 // Write binary to file.
677 std::unique_ptr<FileOutputBuffer> Buf = std::move(*BufOrError);
678 Builder.write(Buf->getBufferStart());
679
680 if (Error E = Buf->commit())
681 return E;
682
683 return Error::success();
684 }
685
readELFFile(MemoryBufferRef Buf)686 Expected<std::unique_ptr<ELFStub>> readELFFile(MemoryBufferRef Buf) {
687 Expected<std::unique_ptr<Binary>> BinOrErr = createBinary(Buf);
688 if (!BinOrErr) {
689 return BinOrErr.takeError();
690 }
691
692 Binary *Bin = BinOrErr->get();
693 if (auto Obj = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
694 return buildStub(*Obj);
695 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
696 return buildStub(*Obj);
697 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
698 return buildStub(*Obj);
699 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
700 return buildStub(*Obj);
701 }
702 return createStringError(errc::not_supported, "unsupported binary format");
703 }
704
705 // This function wraps the ELFT writeELFBinaryToFile() so writeBinaryStub()
706 // can be called without having to use ELFType templates directly.
writeBinaryStub(StringRef FilePath,const ELFStub & Stub,ELFTarget OutputFormat)707 Error writeBinaryStub(StringRef FilePath, const ELFStub &Stub,
708 ELFTarget OutputFormat) {
709 if (OutputFormat == ELFTarget::ELF32LE)
710 return writeELFBinaryToFile<ELF32LE>(FilePath, Stub);
711 if (OutputFormat == ELFTarget::ELF32BE)
712 return writeELFBinaryToFile<ELF32BE>(FilePath, Stub);
713 if (OutputFormat == ELFTarget::ELF64LE)
714 return writeELFBinaryToFile<ELF64LE>(FilePath, Stub);
715 if (OutputFormat == ELFTarget::ELF64BE)
716 return writeELFBinaryToFile<ELF64BE>(FilePath, Stub);
717 llvm_unreachable("invalid binary output target");
718 }
719
720 } // end namespace elfabi
721 } // end namespace llvm
722