1 //===--- USRLocFinder.cpp - Clang refactoring library ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Methods for finding all instances of a USR. Our strategy is very
11 /// simple; we just compare the USR at every relevant AST node with the one
12 /// provided.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Tooling/Refactoring/Rename/USRLocFinder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ParentMapContext.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/Basic/LLVM.h"
21 #include "clang/Basic/SourceLocation.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Lex/Lexer.h"
24 #include "clang/Tooling/Refactoring/Lookup.h"
25 #include "clang/Tooling/Refactoring/RecursiveSymbolVisitor.h"
26 #include "clang/Tooling/Refactoring/Rename/SymbolName.h"
27 #include "clang/Tooling/Refactoring/Rename/USRFinder.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Support/Casting.h"
30 #include <cstddef>
31 #include <set>
32 #include <string>
33 #include <vector>
34
35 using namespace llvm;
36
37 namespace clang {
38 namespace tooling {
39
40 namespace {
41
42 // Returns true if the given Loc is valid for edit. We don't edit the
43 // SourceLocations that are valid or in temporary buffer.
IsValidEditLoc(const clang::SourceManager & SM,clang::SourceLocation Loc)44 bool IsValidEditLoc(const clang::SourceManager& SM, clang::SourceLocation Loc) {
45 if (Loc.isInvalid())
46 return false;
47 const clang::FullSourceLoc FullLoc(Loc, SM);
48 std::pair<clang::FileID, unsigned> FileIdAndOffset =
49 FullLoc.getSpellingLoc().getDecomposedLoc();
50 return SM.getFileEntryForID(FileIdAndOffset.first) != nullptr;
51 }
52
53 // This visitor recursively searches for all instances of a USR in a
54 // translation unit and stores them for later usage.
55 class USRLocFindingASTVisitor
56 : public RecursiveSymbolVisitor<USRLocFindingASTVisitor> {
57 public:
USRLocFindingASTVisitor(const std::vector<std::string> & USRs,StringRef PrevName,const ASTContext & Context)58 explicit USRLocFindingASTVisitor(const std::vector<std::string> &USRs,
59 StringRef PrevName,
60 const ASTContext &Context)
61 : RecursiveSymbolVisitor(Context.getSourceManager(),
62 Context.getLangOpts()),
63 USRSet(USRs.begin(), USRs.end()), PrevName(PrevName), Context(Context) {
64 }
65
visitSymbolOccurrence(const NamedDecl * ND,ArrayRef<SourceRange> NameRanges)66 bool visitSymbolOccurrence(const NamedDecl *ND,
67 ArrayRef<SourceRange> NameRanges) {
68 if (USRSet.find(getUSRForDecl(ND)) != USRSet.end()) {
69 assert(NameRanges.size() == 1 &&
70 "Multiple name pieces are not supported yet!");
71 SourceLocation Loc = NameRanges[0].getBegin();
72 const SourceManager &SM = Context.getSourceManager();
73 // TODO: Deal with macro occurrences correctly.
74 if (Loc.isMacroID())
75 Loc = SM.getSpellingLoc(Loc);
76 checkAndAddLocation(Loc);
77 }
78 return true;
79 }
80
81 // Non-visitors:
82
83 /// Returns a set of unique symbol occurrences. Duplicate or
84 /// overlapping occurrences are erroneous and should be reported!
takeOccurrences()85 SymbolOccurrences takeOccurrences() { return std::move(Occurrences); }
86
87 private:
checkAndAddLocation(SourceLocation Loc)88 void checkAndAddLocation(SourceLocation Loc) {
89 const SourceLocation BeginLoc = Loc;
90 const SourceLocation EndLoc = Lexer::getLocForEndOfToken(
91 BeginLoc, 0, Context.getSourceManager(), Context.getLangOpts());
92 StringRef TokenName =
93 Lexer::getSourceText(CharSourceRange::getTokenRange(BeginLoc, EndLoc),
94 Context.getSourceManager(), Context.getLangOpts());
95 size_t Offset = TokenName.find(PrevName.getNamePieces()[0]);
96
97 // The token of the source location we find actually has the old
98 // name.
99 if (Offset != StringRef::npos)
100 Occurrences.emplace_back(PrevName, SymbolOccurrence::MatchingSymbol,
101 BeginLoc.getLocWithOffset(Offset));
102 }
103
104 const std::set<std::string> USRSet;
105 const SymbolName PrevName;
106 SymbolOccurrences Occurrences;
107 const ASTContext &Context;
108 };
109
StartLocationForType(TypeLoc TL)110 SourceLocation StartLocationForType(TypeLoc TL) {
111 // For elaborated types (e.g. `struct a::A`) we want the portion after the
112 // `struct` but including the namespace qualifier, `a::`.
113 if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>()) {
114 NestedNameSpecifierLoc NestedNameSpecifier =
115 ElaboratedTypeLoc.getQualifierLoc();
116 if (NestedNameSpecifier.getNestedNameSpecifier())
117 return NestedNameSpecifier.getBeginLoc();
118 TL = TL.getNextTypeLoc();
119 }
120 return TL.getBeginLoc();
121 }
122
EndLocationForType(TypeLoc TL)123 SourceLocation EndLocationForType(TypeLoc TL) {
124 // Dig past any namespace or keyword qualifications.
125 while (TL.getTypeLocClass() == TypeLoc::Elaborated ||
126 TL.getTypeLocClass() == TypeLoc::Qualified)
127 TL = TL.getNextTypeLoc();
128
129 // The location for template specializations (e.g. Foo<int>) includes the
130 // templated types in its location range. We want to restrict this to just
131 // before the `<` character.
132 if (TL.getTypeLocClass() == TypeLoc::TemplateSpecialization) {
133 return TL.castAs<TemplateSpecializationTypeLoc>()
134 .getLAngleLoc()
135 .getLocWithOffset(-1);
136 }
137 return TL.getEndLoc();
138 }
139
GetNestedNameForType(TypeLoc TL)140 NestedNameSpecifier *GetNestedNameForType(TypeLoc TL) {
141 // Dig past any keyword qualifications.
142 while (TL.getTypeLocClass() == TypeLoc::Qualified)
143 TL = TL.getNextTypeLoc();
144
145 // For elaborated types (e.g. `struct a::A`) we want the portion after the
146 // `struct` but including the namespace qualifier, `a::`.
147 if (auto ElaboratedTypeLoc = TL.getAs<clang::ElaboratedTypeLoc>())
148 return ElaboratedTypeLoc.getQualifierLoc().getNestedNameSpecifier();
149 return nullptr;
150 }
151
152 // Find all locations identified by the given USRs for rename.
153 //
154 // This class will traverse the AST and find every AST node whose USR is in the
155 // given USRs' set.
156 class RenameLocFinder : public RecursiveASTVisitor<RenameLocFinder> {
157 public:
RenameLocFinder(llvm::ArrayRef<std::string> USRs,ASTContext & Context)158 RenameLocFinder(llvm::ArrayRef<std::string> USRs, ASTContext &Context)
159 : USRSet(USRs.begin(), USRs.end()), Context(Context) {}
160
161 // A structure records all information of a symbol reference being renamed.
162 // We try to add as few prefix qualifiers as possible.
163 struct RenameInfo {
164 // The begin location of a symbol being renamed.
165 SourceLocation Begin;
166 // The end location of a symbol being renamed.
167 SourceLocation End;
168 // The declaration of a symbol being renamed (can be nullptr).
169 const NamedDecl *FromDecl;
170 // The declaration in which the nested name is contained (can be nullptr).
171 const Decl *Context;
172 // The nested name being replaced (can be nullptr).
173 const NestedNameSpecifier *Specifier;
174 // Determine whether the prefix qualifiers of the NewName should be ignored.
175 // Normally, we set it to true for the symbol declaration and definition to
176 // avoid adding prefix qualifiers.
177 // For example, if it is true and NewName is "a::b::foo", then the symbol
178 // occurrence which the RenameInfo points to will be renamed to "foo".
179 bool IgnorePrefixQualifers;
180 };
181
VisitNamedDecl(const NamedDecl * Decl)182 bool VisitNamedDecl(const NamedDecl *Decl) {
183 // UsingDecl has been handled in other place.
184 if (llvm::isa<UsingDecl>(Decl))
185 return true;
186
187 // DestructorDecl has been handled in Typeloc.
188 if (llvm::isa<CXXDestructorDecl>(Decl))
189 return true;
190
191 if (Decl->isImplicit())
192 return true;
193
194 if (isInUSRSet(Decl)) {
195 // For the case of renaming an alias template, we actually rename the
196 // underlying alias declaration of the template.
197 if (const auto* TAT = dyn_cast<TypeAliasTemplateDecl>(Decl))
198 Decl = TAT->getTemplatedDecl();
199
200 auto StartLoc = Decl->getLocation();
201 auto EndLoc = StartLoc;
202 if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
203 RenameInfo Info = {StartLoc,
204 EndLoc,
205 /*FromDecl=*/nullptr,
206 /*Context=*/nullptr,
207 /*Specifier=*/nullptr,
208 /*IgnorePrefixQualifers=*/true};
209 RenameInfos.push_back(Info);
210 }
211 }
212 return true;
213 }
214
VisitMemberExpr(const MemberExpr * Expr)215 bool VisitMemberExpr(const MemberExpr *Expr) {
216 const NamedDecl *Decl = Expr->getFoundDecl();
217 auto StartLoc = Expr->getMemberLoc();
218 auto EndLoc = Expr->getMemberLoc();
219 if (isInUSRSet(Decl)) {
220 RenameInfos.push_back({StartLoc, EndLoc,
221 /*FromDecl=*/nullptr,
222 /*Context=*/nullptr,
223 /*Specifier=*/nullptr,
224 /*IgnorePrefixQualifiers=*/true});
225 }
226 return true;
227 }
228
VisitCXXConstructorDecl(const CXXConstructorDecl * CD)229 bool VisitCXXConstructorDecl(const CXXConstructorDecl *CD) {
230 // Fix the constructor initializer when renaming class members.
231 for (const auto *Initializer : CD->inits()) {
232 // Ignore implicit initializers.
233 if (!Initializer->isWritten())
234 continue;
235
236 if (const FieldDecl *FD = Initializer->getMember()) {
237 if (isInUSRSet(FD)) {
238 auto Loc = Initializer->getSourceLocation();
239 RenameInfos.push_back({Loc, Loc,
240 /*FromDecl=*/nullptr,
241 /*Context=*/nullptr,
242 /*Specifier=*/nullptr,
243 /*IgnorePrefixQualifiers=*/true});
244 }
245 }
246 }
247 return true;
248 }
249
VisitDeclRefExpr(const DeclRefExpr * Expr)250 bool VisitDeclRefExpr(const DeclRefExpr *Expr) {
251 const NamedDecl *Decl = Expr->getFoundDecl();
252 // Get the underlying declaration of the shadow declaration introduced by a
253 // using declaration.
254 if (auto *UsingShadow = llvm::dyn_cast<UsingShadowDecl>(Decl)) {
255 Decl = UsingShadow->getTargetDecl();
256 }
257
258 auto StartLoc = Expr->getBeginLoc();
259 // For template function call expressions like `foo<int>()`, we want to
260 // restrict the end of location to just before the `<` character.
261 SourceLocation EndLoc = Expr->hasExplicitTemplateArgs()
262 ? Expr->getLAngleLoc().getLocWithOffset(-1)
263 : Expr->getEndLoc();
264
265 if (const auto *MD = llvm::dyn_cast<CXXMethodDecl>(Decl)) {
266 if (isInUSRSet(MD)) {
267 // Handle renaming static template class methods, we only rename the
268 // name without prefix qualifiers and restrict the source range to the
269 // name.
270 RenameInfos.push_back({EndLoc, EndLoc,
271 /*FromDecl=*/nullptr,
272 /*Context=*/nullptr,
273 /*Specifier=*/nullptr,
274 /*IgnorePrefixQualifiers=*/true});
275 return true;
276 }
277 }
278
279 // In case of renaming an enum declaration, we have to explicitly handle
280 // unscoped enum constants referenced in expressions (e.g.
281 // "auto r = ns1::ns2::Green" where Green is an enum constant of an unscoped
282 // enum decl "ns1::ns2::Color") as these enum constants cannot be caught by
283 // TypeLoc.
284 if (const auto *T = llvm::dyn_cast<EnumConstantDecl>(Decl)) {
285 // FIXME: Handle the enum constant without prefix qualifiers (`a = Green`)
286 // when renaming an unscoped enum declaration with a new namespace.
287 if (!Expr->hasQualifier())
288 return true;
289
290 if (const auto *ED =
291 llvm::dyn_cast_or_null<EnumDecl>(getClosestAncestorDecl(*T))) {
292 if (ED->isScoped())
293 return true;
294 Decl = ED;
295 }
296 // The current fix would qualify "ns1::ns2::Green" as
297 // "ns1::ns2::Color::Green".
298 //
299 // Get the EndLoc of the replacement by moving 1 character backward (
300 // to exclude the last '::').
301 //
302 // ns1::ns2::Green;
303 // ^ ^^
304 // BeginLoc |EndLoc of the qualifier
305 // new EndLoc
306 EndLoc = Expr->getQualifierLoc().getEndLoc().getLocWithOffset(-1);
307 assert(EndLoc.isValid() &&
308 "The enum constant should have prefix qualifers.");
309 }
310 if (isInUSRSet(Decl) &&
311 IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
312 RenameInfo Info = {StartLoc,
313 EndLoc,
314 Decl,
315 getClosestAncestorDecl(*Expr),
316 Expr->getQualifier(),
317 /*IgnorePrefixQualifers=*/false};
318 RenameInfos.push_back(Info);
319 }
320
321 return true;
322 }
323
VisitUsingDecl(const UsingDecl * Using)324 bool VisitUsingDecl(const UsingDecl *Using) {
325 for (const auto *UsingShadow : Using->shadows()) {
326 if (isInUSRSet(UsingShadow->getTargetDecl())) {
327 UsingDecls.push_back(Using);
328 break;
329 }
330 }
331 return true;
332 }
333
VisitNestedNameSpecifierLocations(NestedNameSpecifierLoc NestedLoc)334 bool VisitNestedNameSpecifierLocations(NestedNameSpecifierLoc NestedLoc) {
335 if (!NestedLoc.getNestedNameSpecifier()->getAsType())
336 return true;
337
338 if (const auto *TargetDecl =
339 getSupportedDeclFromTypeLoc(NestedLoc.getTypeLoc())) {
340 if (isInUSRSet(TargetDecl)) {
341 RenameInfo Info = {NestedLoc.getBeginLoc(),
342 EndLocationForType(NestedLoc.getTypeLoc()),
343 TargetDecl,
344 getClosestAncestorDecl(NestedLoc),
345 NestedLoc.getNestedNameSpecifier()->getPrefix(),
346 /*IgnorePrefixQualifers=*/false};
347 RenameInfos.push_back(Info);
348 }
349 }
350 return true;
351 }
352
VisitTypeLoc(TypeLoc Loc)353 bool VisitTypeLoc(TypeLoc Loc) {
354 auto Parents = Context.getParents(Loc);
355 TypeLoc ParentTypeLoc;
356 if (!Parents.empty()) {
357 // Handle cases of nested name specificier locations.
358 //
359 // The VisitNestedNameSpecifierLoc interface is not impelmented in
360 // RecursiveASTVisitor, we have to handle it explicitly.
361 if (const auto *NSL = Parents[0].get<NestedNameSpecifierLoc>()) {
362 VisitNestedNameSpecifierLocations(*NSL);
363 return true;
364 }
365
366 if (const auto *TL = Parents[0].get<TypeLoc>())
367 ParentTypeLoc = *TL;
368 }
369
370 // Handle the outermost TypeLoc which is directly linked to the interesting
371 // declaration and don't handle nested name specifier locations.
372 if (const auto *TargetDecl = getSupportedDeclFromTypeLoc(Loc)) {
373 if (isInUSRSet(TargetDecl)) {
374 // Only handle the outermost typeLoc.
375 //
376 // For a type like "a::Foo", there will be two typeLocs for it.
377 // One ElaboratedType, the other is RecordType:
378 //
379 // ElaboratedType 0x33b9390 'a::Foo' sugar
380 // `-RecordType 0x338fef0 'class a::Foo'
381 // `-CXXRecord 0x338fe58 'Foo'
382 //
383 // Skip if this is an inner typeLoc.
384 if (!ParentTypeLoc.isNull() &&
385 isInUSRSet(getSupportedDeclFromTypeLoc(ParentTypeLoc)))
386 return true;
387
388 auto StartLoc = StartLocationForType(Loc);
389 auto EndLoc = EndLocationForType(Loc);
390 if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
391 RenameInfo Info = {StartLoc,
392 EndLoc,
393 TargetDecl,
394 getClosestAncestorDecl(Loc),
395 GetNestedNameForType(Loc),
396 /*IgnorePrefixQualifers=*/false};
397 RenameInfos.push_back(Info);
398 }
399 return true;
400 }
401 }
402
403 // Handle specific template class specialiation cases.
404 if (const auto *TemplateSpecType =
405 dyn_cast<TemplateSpecializationType>(Loc.getType())) {
406 TypeLoc TargetLoc = Loc;
407 if (!ParentTypeLoc.isNull()) {
408 if (llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
409 TargetLoc = ParentTypeLoc;
410 }
411
412 if (isInUSRSet(TemplateSpecType->getTemplateName().getAsTemplateDecl())) {
413 TypeLoc TargetLoc = Loc;
414 // FIXME: Find a better way to handle this case.
415 // For the qualified template class specification type like
416 // "ns::Foo<int>" in "ns::Foo<int>& f();", we want the parent typeLoc
417 // (ElaboratedType) of the TemplateSpecializationType in order to
418 // catch the prefix qualifiers "ns::".
419 if (!ParentTypeLoc.isNull() &&
420 llvm::isa<ElaboratedType>(ParentTypeLoc.getType()))
421 TargetLoc = ParentTypeLoc;
422
423 auto StartLoc = StartLocationForType(TargetLoc);
424 auto EndLoc = EndLocationForType(TargetLoc);
425 if (IsValidEditLoc(Context.getSourceManager(), StartLoc)) {
426 RenameInfo Info = {
427 StartLoc,
428 EndLoc,
429 TemplateSpecType->getTemplateName().getAsTemplateDecl(),
430 getClosestAncestorDecl(DynTypedNode::create(TargetLoc)),
431 GetNestedNameForType(TargetLoc),
432 /*IgnorePrefixQualifers=*/false};
433 RenameInfos.push_back(Info);
434 }
435 }
436 }
437 return true;
438 }
439
440 // Returns a list of RenameInfo.
getRenameInfos() const441 const std::vector<RenameInfo> &getRenameInfos() const { return RenameInfos; }
442
443 // Returns a list of using declarations which are needed to update.
getUsingDecls() const444 const std::vector<const UsingDecl *> &getUsingDecls() const {
445 return UsingDecls;
446 }
447
448 private:
449 // Get the supported declaration from a given typeLoc. If the declaration type
450 // is not supported, returns nullptr.
getSupportedDeclFromTypeLoc(TypeLoc Loc)451 const NamedDecl *getSupportedDeclFromTypeLoc(TypeLoc Loc) {
452 if (const auto* TT = Loc.getType()->getAs<clang::TypedefType>())
453 return TT->getDecl();
454 if (const auto *RD = Loc.getType()->getAsCXXRecordDecl())
455 return RD;
456 if (const auto *ED =
457 llvm::dyn_cast_or_null<EnumDecl>(Loc.getType()->getAsTagDecl()))
458 return ED;
459 return nullptr;
460 }
461
462 // Get the closest ancester which is a declaration of a given AST node.
463 template <typename ASTNodeType>
getClosestAncestorDecl(const ASTNodeType & Node)464 const Decl *getClosestAncestorDecl(const ASTNodeType &Node) {
465 auto Parents = Context.getParents(Node);
466 // FIXME: figure out how to handle it when there are multiple parents.
467 if (Parents.size() != 1)
468 return nullptr;
469 if (ASTNodeKind::getFromNodeKind<Decl>().isBaseOf(Parents[0].getNodeKind()))
470 return Parents[0].template get<Decl>();
471 return getClosestAncestorDecl(Parents[0]);
472 }
473
474 // Get the parent typeLoc of a given typeLoc. If there is no such parent,
475 // return nullptr.
getParentTypeLoc(TypeLoc Loc) const476 const TypeLoc *getParentTypeLoc(TypeLoc Loc) const {
477 auto Parents = Context.getParents(Loc);
478 // FIXME: figure out how to handle it when there are multiple parents.
479 if (Parents.size() != 1)
480 return nullptr;
481 return Parents[0].get<TypeLoc>();
482 }
483
484 // Check whether the USR of a given Decl is in the USRSet.
isInUSRSet(const Decl * Decl) const485 bool isInUSRSet(const Decl *Decl) const {
486 auto USR = getUSRForDecl(Decl);
487 if (USR.empty())
488 return false;
489 return llvm::is_contained(USRSet, USR);
490 }
491
492 const std::set<std::string> USRSet;
493 ASTContext &Context;
494 std::vector<RenameInfo> RenameInfos;
495 // Record all interested using declarations which contains the using-shadow
496 // declarations of the symbol declarations being renamed.
497 std::vector<const UsingDecl *> UsingDecls;
498 };
499
500 } // namespace
501
getOccurrencesOfUSRs(ArrayRef<std::string> USRs,StringRef PrevName,Decl * Decl)502 SymbolOccurrences getOccurrencesOfUSRs(ArrayRef<std::string> USRs,
503 StringRef PrevName, Decl *Decl) {
504 USRLocFindingASTVisitor Visitor(USRs, PrevName, Decl->getASTContext());
505 Visitor.TraverseDecl(Decl);
506 return Visitor.takeOccurrences();
507 }
508
509 std::vector<tooling::AtomicChange>
createRenameAtomicChanges(llvm::ArrayRef<std::string> USRs,llvm::StringRef NewName,Decl * TranslationUnitDecl)510 createRenameAtomicChanges(llvm::ArrayRef<std::string> USRs,
511 llvm::StringRef NewName, Decl *TranslationUnitDecl) {
512 RenameLocFinder Finder(USRs, TranslationUnitDecl->getASTContext());
513 Finder.TraverseDecl(TranslationUnitDecl);
514
515 const SourceManager &SM =
516 TranslationUnitDecl->getASTContext().getSourceManager();
517
518 std::vector<tooling::AtomicChange> AtomicChanges;
519 auto Replace = [&](SourceLocation Start, SourceLocation End,
520 llvm::StringRef Text) {
521 tooling::AtomicChange ReplaceChange = tooling::AtomicChange(SM, Start);
522 llvm::Error Err = ReplaceChange.replace(
523 SM, CharSourceRange::getTokenRange(Start, End), Text);
524 if (Err) {
525 llvm::errs() << "Failed to add replacement to AtomicChange: "
526 << llvm::toString(std::move(Err)) << "\n";
527 return;
528 }
529 AtomicChanges.push_back(std::move(ReplaceChange));
530 };
531
532 for (const auto &RenameInfo : Finder.getRenameInfos()) {
533 std::string ReplacedName = NewName.str();
534 if (RenameInfo.IgnorePrefixQualifers) {
535 // Get the name without prefix qualifiers from NewName.
536 size_t LastColonPos = NewName.find_last_of(':');
537 if (LastColonPos != std::string::npos)
538 ReplacedName = std::string(NewName.substr(LastColonPos + 1));
539 } else {
540 if (RenameInfo.FromDecl && RenameInfo.Context) {
541 if (!llvm::isa<clang::TranslationUnitDecl>(
542 RenameInfo.Context->getDeclContext())) {
543 ReplacedName = tooling::replaceNestedName(
544 RenameInfo.Specifier, RenameInfo.Begin,
545 RenameInfo.Context->getDeclContext(), RenameInfo.FromDecl,
546 NewName.startswith("::") ? NewName.str()
547 : ("::" + NewName).str());
548 } else {
549 // This fixes the case where type `T` is a parameter inside a function
550 // type (e.g. `std::function<void(T)>`) and the DeclContext of `T`
551 // becomes the translation unit. As a workaround, we simply use
552 // fully-qualified name here for all references whose `DeclContext` is
553 // the translation unit and ignore the possible existence of
554 // using-decls (in the global scope) that can shorten the replaced
555 // name.
556 llvm::StringRef ActualName = Lexer::getSourceText(
557 CharSourceRange::getTokenRange(
558 SourceRange(RenameInfo.Begin, RenameInfo.End)),
559 SM, TranslationUnitDecl->getASTContext().getLangOpts());
560 // Add the leading "::" back if the name written in the code contains
561 // it.
562 if (ActualName.startswith("::") && !NewName.startswith("::")) {
563 ReplacedName = "::" + NewName.str();
564 }
565 }
566 }
567 // If the NewName contains leading "::", add it back.
568 if (NewName.startswith("::") && NewName.substr(2) == ReplacedName)
569 ReplacedName = NewName.str();
570 }
571 Replace(RenameInfo.Begin, RenameInfo.End, ReplacedName);
572 }
573
574 // Hanlde using declarations explicitly as "using a::Foo" don't trigger
575 // typeLoc for "a::Foo".
576 for (const auto *Using : Finder.getUsingDecls())
577 Replace(Using->getBeginLoc(), Using->getEndLoc(), "using " + NewName.str());
578
579 return AtomicChanges;
580 }
581
582 } // end namespace tooling
583 } // end namespace clang
584