1 //===- ReservoirSampler.cpp - Tests for the ReservoirSampler --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/FuzzMutate/Random.h"
10 #include "gtest/gtest.h"
11 #include <random>
12 
13 using namespace llvm;
14 
TEST(ReservoirSamplerTest,OneItem)15 TEST(ReservoirSamplerTest, OneItem) {
16   std::mt19937 Rand;
17   auto Sampler = makeSampler(Rand, 7, 1);
18   ASSERT_FALSE(Sampler.isEmpty());
19   ASSERT_EQ(7, Sampler.getSelection());
20 }
21 
TEST(ReservoirSamplerTest,NoWeight)22 TEST(ReservoirSamplerTest, NoWeight) {
23   std::mt19937 Rand;
24   auto Sampler = makeSampler(Rand, 7, 0);
25   ASSERT_TRUE(Sampler.isEmpty());
26 }
27 
TEST(ReservoirSamplerTest,Uniform)28 TEST(ReservoirSamplerTest, Uniform) {
29   std::mt19937 Rand;
30 
31   // Run three chi-squared tests to check that the distribution is reasonably
32   // uniform.
33   std::vector<int> Items = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
34 
35   int Failures = 0;
36   for (int Run = 0; Run < 3; ++Run) {
37     std::vector<int> Counts(Items.size(), 0);
38 
39     // We need $np_s > 5$ at minimum, but we're better off going a couple of
40     // orders of magnitude larger.
41     int N = Items.size() * 5 * 100;
42     for (int I = 0; I < N; ++I) {
43       auto Sampler = makeSampler(Rand, Items);
44       Counts[Sampler.getSelection()] += 1;
45     }
46 
47     // Knuth. TAOCP Vol. 2, 3.3.1 (8):
48     // $V = \frac{1}{n} \sum_{s=1}^{k} \left(\frac{Y_s^2}{p_s}\right) - n$
49     double Ps = 1.0 / Items.size();
50     double Sum = 0.0;
51     for (int Ys : Counts)
52       Sum += Ys * Ys / Ps;
53     double V = (Sum / N) - N;
54 
55     assert(Items.size() == 10 && "Our chi-squared values assume 10 items");
56     // Since we have 10 items, there are 9 degrees of freedom and the table of
57     // chi-squared values is as follows:
58     //
59     //     | p=1%  |   5%  |  25%  |  50%  |  75%  |  95%  |  99%  |
60     // v=9 | 2.088 | 3.325 | 5.899 | 8.343 | 11.39 | 16.92 | 21.67 |
61     //
62     // Check that we're in the likely range of results.
63     //if (V < 2.088 || V > 21.67)
64     if (V < 2.088 || V > 21.67)
65       ++Failures;
66   }
67   EXPECT_LT(Failures, 3) << "Non-uniform distribution?";
68 }
69