1 //===- UnwindInfoSection.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "UnwindInfoSection.h"
10 #include "Config.h"
11 #include "InputSection.h"
12 #include "MergedOutputSection.h"
13 #include "OutputSection.h"
14 #include "OutputSegment.h"
15 #include "Symbols.h"
16 #include "SyntheticSections.h"
17 #include "Target.h"
18 
19 #include "lld/Common/ErrorHandler.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/BinaryFormat/MachO.h"
22 
23 using namespace llvm;
24 using namespace llvm::MachO;
25 using namespace lld;
26 using namespace lld::macho;
27 
28 // Compact Unwind format is a Mach-O evolution of DWARF Unwind that
29 // optimizes space and exception-time lookup.  Most DWARF unwind
30 // entries can be replaced with Compact Unwind entries, but the ones
31 // that cannot are retained in DWARF form.
32 //
33 // This comment will address macro-level organization of the pre-link
34 // and post-link compact unwind tables. For micro-level organization
35 // pertaining to the bitfield layout of the 32-bit compact unwind
36 // entries, see libunwind/include/mach-o/compact_unwind_encoding.h
37 //
38 // Important clarifying factoids:
39 //
40 // * __LD,__compact_unwind is the compact unwind format for compiler
41 // output and linker input. It is never a final output. It could be
42 // an intermediate output with the `-r` option which retains relocs.
43 //
44 // * __TEXT,__unwind_info is the compact unwind format for final
45 // linker output. It is never an input.
46 //
47 // * __TEXT,__eh_frame is the DWARF format for both linker input and output.
48 //
49 // * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
50 // level) by ascending address, and the pages are referenced by an
51 // index (1st level) in the section header.
52 //
53 // * Following the headers in __TEXT,__unwind_info, the bulk of the
54 // section contains a vector of compact unwind entries
55 // `{functionOffset, encoding}` sorted by ascending `functionOffset`.
56 // Adjacent entries with the same encoding can be folded to great
57 // advantage, achieving a 3-order-of-magnitude reduction in the
58 // number of entries.
59 //
60 // * The __TEXT,__unwind_info format can accommodate up to 127 unique
61 // encodings for the space-efficient compressed format. In practice,
62 // fewer than a dozen unique encodings are used by C++ programs of
63 // all sizes. Therefore, we don't even bother implementing the regular
64 // non-compressed format. Time will tell if anyone in the field ever
65 // overflows the 127-encodings limit.
66 
67 // TODO(gkm): prune __eh_frame entries superseded by __unwind_info
68 // TODO(gkm): how do we align the 2nd-level pages?
69 
UnwindInfoSection()70 UnwindInfoSection::UnwindInfoSection()
71     : SyntheticSection(segment_names::text, section_names::unwindInfo) {
72   align = WordSize; // TODO(gkm): make this 4 KiB ?
73 }
74 
isNeeded() const75 bool UnwindInfoSection::isNeeded() const {
76   return (compactUnwindSection != nullptr);
77 }
78 
79 // Scan the __LD,__compact_unwind entries and compute the space needs of
80 // __TEXT,__unwind_info and __TEXT,__eh_frame
81 
finalize()82 void UnwindInfoSection::finalize() {
83   if (compactUnwindSection == nullptr)
84     return;
85 
86   // At this point, the address space for __TEXT,__text has been
87   // assigned, so we can relocate the __LD,__compact_unwind entries
88   // into a temporary buffer. Relocation is necessary in order to sort
89   // the CU entries by function address. Sorting is necessary so that
90   // we can fold adjacent CU entries with identical
91   // encoding+personality+lsda. Folding is necessary because it reduces
92   // the number of CU entries by as much as 3 orders of magnitude!
93   compactUnwindSection->finalize();
94   assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry64) == 0);
95   size_t cuCount =
96       compactUnwindSection->getSize() / sizeof(CompactUnwindEntry64);
97   cuVector.resize(cuCount);
98   // Relocate all __LD,__compact_unwind entries
99   compactUnwindSection->writeTo(reinterpret_cast<uint8_t *>(cuVector.data()));
100 
101   // Rather than sort & fold the 32-byte entries directly, we create a
102   // vector of pointers to entries and sort & fold that instead.
103   cuPtrVector.reserve(cuCount);
104   for (const auto &cuEntry : cuVector)
105     cuPtrVector.emplace_back(&cuEntry);
106   std::sort(cuPtrVector.begin(), cuPtrVector.end(),
107             [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
108               return a->functionAddress < b->functionAddress;
109             });
110 
111   // Fold adjacent entries with matching encoding+personality+lsda
112   // We use three iterators on the same cuPtrVector to fold in-situ:
113   // (1) `foldBegin` is the first of a potential sequence of matching entries
114   // (2) `foldEnd` is the first non-matching entry after `foldBegin`.
115   // The semi-open interval [ foldBegin .. foldEnd ) contains a range
116   // entries that can be folded into a single entry and written to ...
117   // (3) `foldWrite`
118   auto foldWrite = cuPtrVector.begin();
119   for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
120     auto foldEnd = foldBegin;
121     while (++foldEnd < cuPtrVector.end() &&
122            (*foldBegin)->encoding == (*foldEnd)->encoding &&
123            (*foldBegin)->personality == (*foldEnd)->personality &&
124            (*foldBegin)->lsda == (*foldEnd)->lsda)
125       ;
126     *foldWrite++ = *foldBegin;
127     foldBegin = foldEnd;
128   }
129   cuPtrVector.erase(foldWrite, cuPtrVector.end());
130 
131   // Count frequencies of the folded encodings
132   llvm::DenseMap<compact_unwind_encoding_t, size_t> encodingFrequencies;
133   for (auto cuPtrEntry : cuPtrVector)
134     encodingFrequencies[cuPtrEntry->encoding]++;
135   if (encodingFrequencies.size() > UNWIND_INFO_COMMON_ENCODINGS_MAX)
136     error("TODO(gkm): handle common encodings table overflow");
137 
138   // Make a table of encodings, sorted by descending frequency
139   for (const auto &frequency : encodingFrequencies)
140     commonEncodings.emplace_back(frequency);
141   std::sort(commonEncodings.begin(), commonEncodings.end(),
142             [](const std::pair<compact_unwind_encoding_t, size_t> &a,
143                const std::pair<compact_unwind_encoding_t, size_t> &b) {
144               if (a.second == b.second)
145                 // When frequencies match, secondarily sort on encoding
146                 // to maintain parity with validate-unwind-info.py
147                 return a.first > b.first;
148               return a.second > b.second;
149             });
150 
151   // Split folded encodings into pages, limited by capacity of a page
152   // and the 24-bit range of function offset
153   //
154   // Record the page splits as a vector of iterators on cuPtrVector
155   // such that successive elements form a semi-open interval. E.g.,
156   // page X's bounds are thus: [ pageBounds[X] .. pageBounds[X+1] )
157   //
158   // Note that pageBounds.size() is one greater than the number of
159   // pages, and pageBounds.back() holds the sentinel cuPtrVector.cend()
160   pageBounds.push_back(cuPtrVector.cbegin());
161   // TODO(gkm): cut 1st page entries short to accommodate section headers ???
162   CompactUnwindEntry64 cuEntryKey;
163   for (size_t i = 0;;) {
164     // Limit the search to entries that can fit within a 4 KiB page.
165     const auto pageBegin = pageBounds[0] + i;
166     const auto pageMax =
167         pageBounds[0] +
168         std::min(i + UNWIND_INFO_COMPRESSED_SECOND_LEVEL_ENTRIES_MAX,
169                  cuPtrVector.size());
170     // Exclude entries with functionOffset that would overflow 24 bits
171     cuEntryKey.functionAddress = (*pageBegin)->functionAddress +
172                                  UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
173     const auto pageBreak = std::lower_bound(
174         pageBegin, pageMax, &cuEntryKey,
175         [](const CompactUnwindEntry64 *a, const CompactUnwindEntry64 *b) {
176           return a->functionAddress < b->functionAddress;
177         });
178     pageBounds.push_back(pageBreak);
179     if (pageBreak == cuPtrVector.cend())
180       break;
181     i = pageBreak - cuPtrVector.cbegin();
182   }
183 
184   // compute size of __TEXT,__unwind_info section
185   level2PagesOffset =
186       sizeof(unwind_info_section_header) +
187       commonEncodings.size() * sizeof(uint32_t) +
188       personalities.size() * sizeof(uint32_t) +
189       pageBounds.size() * sizeof(unwind_info_section_header_index_entry) +
190       lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
191   unwindInfoSize = level2PagesOffset +
192                    (pageBounds.size() - 1) *
193                        sizeof(unwind_info_compressed_second_level_page_header) +
194                    cuPtrVector.size() * sizeof(uint32_t);
195 }
196 
197 // All inputs are relocated and output addresses are known, so write!
198 
writeTo(uint8_t * buf) const199 void UnwindInfoSection::writeTo(uint8_t *buf) const {
200   // section header
201   auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
202   uip->version = 1;
203   uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
204   uip->commonEncodingsArrayCount = commonEncodings.size();
205   uip->personalityArraySectionOffset =
206       uip->commonEncodingsArraySectionOffset +
207       (uip->commonEncodingsArrayCount * sizeof(uint32_t));
208   uip->personalityArrayCount = personalities.size();
209   uip->indexSectionOffset = uip->personalityArraySectionOffset +
210                             (uip->personalityArrayCount * sizeof(uint32_t));
211   uip->indexCount = pageBounds.size();
212 
213   // Common encodings
214   auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
215   for (const auto &encoding : commonEncodings)
216     *i32p++ = encoding.first;
217 
218   // Personalities
219   for (const auto &personality : personalities)
220     *i32p++ = personality;
221 
222   // Level-1 index
223   uint32_t lsdaOffset =
224       uip->indexSectionOffset +
225       uip->indexCount * sizeof(unwind_info_section_header_index_entry);
226   uint64_t l2PagesOffset = level2PagesOffset;
227   auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
228   for (size_t i = 0; i < pageBounds.size() - 1; i++) {
229     iep->functionOffset = (*pageBounds[i])->functionAddress;
230     iep->secondLevelPagesSectionOffset = l2PagesOffset;
231     iep->lsdaIndexArraySectionOffset = lsdaOffset;
232     iep++;
233     // TODO(gkm): pad to 4 KiB page boundary ???
234     size_t entryCount = pageBounds[i + 1] - pageBounds[i];
235     uint64_t pageSize = sizeof(unwind_info_section_header_index_entry) +
236                         entryCount * sizeof(uint32_t);
237     l2PagesOffset += pageSize;
238   }
239   // Level-1 sentinel
240   const CompactUnwindEntry64 &cuEnd = cuVector.back();
241   iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
242   iep->secondLevelPagesSectionOffset = 0;
243   iep->lsdaIndexArraySectionOffset = lsdaOffset;
244   iep++;
245 
246   // LSDAs
247   auto *lep =
248       reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
249   for (const auto &lsda : lsdaEntries) {
250     lep->functionOffset = lsda.functionOffset;
251     lep->lsdaOffset = lsda.lsdaOffset;
252   }
253 
254   // create map from encoding to common-encoding-table index compact
255   // encoding entries use 7 bits to index the common-encoding table
256   size_t i = 0;
257   llvm::DenseMap<compact_unwind_encoding_t, size_t> commonEncodingIndexes;
258   for (const auto &encoding : commonEncodings)
259     commonEncodingIndexes[encoding.first] = i++;
260 
261   // Level-2 pages
262   auto *p2p =
263       reinterpret_cast<unwind_info_compressed_second_level_page_header *>(lep);
264   for (size_t i = 0; i < pageBounds.size() - 1; i++) {
265     p2p->kind = UNWIND_SECOND_LEVEL_COMPRESSED;
266     p2p->entryPageOffset =
267         sizeof(unwind_info_compressed_second_level_page_header);
268     p2p->entryCount = pageBounds[i + 1] - pageBounds[i];
269     p2p->encodingsPageOffset =
270         p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
271     p2p->encodingsCount = 0;
272     auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
273     auto cuPtrVectorIt = pageBounds[i];
274     uintptr_t functionAddressBase = (*cuPtrVectorIt)->functionAddress;
275     while (cuPtrVectorIt < pageBounds[i + 1]) {
276       const CompactUnwindEntry64 *cuep = *cuPtrVectorIt++;
277       size_t cueIndex = commonEncodingIndexes.lookup(cuep->encoding);
278       *ep++ = ((cueIndex << UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
279                (cuep->functionAddress - functionAddressBase));
280     }
281     p2p =
282         reinterpret_cast<unwind_info_compressed_second_level_page_header *>(ep);
283   }
284   assert(getSize() ==
285          static_cast<size_t>((reinterpret_cast<uint8_t *>(p2p) - buf)));
286 }
287