1 // Copyright 2018 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "VkPipeline.hpp"
16
17 #include "VkDestroy.hpp"
18 #include "VkDevice.hpp"
19 #include "VkPipelineCache.hpp"
20 #include "VkPipelineLayout.hpp"
21 #include "VkRenderPass.hpp"
22 #include "VkShaderModule.hpp"
23 #include "VkStringify.hpp"
24 #include "Pipeline/ComputeProgram.hpp"
25 #include "Pipeline/SpirvShader.hpp"
26
27 #include "marl/trace.h"
28
29 #include "spirv-tools/optimizer.hpp"
30
31 #include <iostream>
32
33 namespace {
34
35 // preprocessSpirv applies and freezes specializations into constants, and inlines all functions.
preprocessSpirv(std::vector<uint32_t> const & code,VkSpecializationInfo const * specializationInfo,bool optimize)36 std::vector<uint32_t> preprocessSpirv(
37 std::vector<uint32_t> const &code,
38 VkSpecializationInfo const *specializationInfo,
39 bool optimize)
40 {
41 spvtools::Optimizer opt{ vk::SPIRV_VERSION };
42
43 opt.SetMessageConsumer([](spv_message_level_t level, const char *source, const spv_position_t &position, const char *message) {
44 switch(level)
45 {
46 case SPV_MSG_FATAL: sw::warn("SPIR-V FATAL: %d:%d %s\n", int(position.line), int(position.column), message);
47 case SPV_MSG_INTERNAL_ERROR: sw::warn("SPIR-V INTERNAL_ERROR: %d:%d %s\n", int(position.line), int(position.column), message);
48 case SPV_MSG_ERROR: sw::warn("SPIR-V ERROR: %d:%d %s\n", int(position.line), int(position.column), message);
49 case SPV_MSG_WARNING: sw::warn("SPIR-V WARNING: %d:%d %s\n", int(position.line), int(position.column), message);
50 case SPV_MSG_INFO: sw::trace("SPIR-V INFO: %d:%d %s\n", int(position.line), int(position.column), message);
51 case SPV_MSG_DEBUG: sw::trace("SPIR-V DEBUG: %d:%d %s\n", int(position.line), int(position.column), message);
52 default: sw::trace("SPIR-V MESSAGE: %d:%d %s\n", int(position.line), int(position.column), message);
53 }
54 });
55
56 // If the pipeline uses specialization, apply the specializations before freezing
57 if(specializationInfo)
58 {
59 std::unordered_map<uint32_t, std::vector<uint32_t>> specializations;
60 for(auto i = 0u; i < specializationInfo->mapEntryCount; ++i)
61 {
62 auto const &e = specializationInfo->pMapEntries[i];
63 auto value_ptr =
64 static_cast<uint32_t const *>(specializationInfo->pData) + e.offset / sizeof(uint32_t);
65 specializations.emplace(e.constantID,
66 std::vector<uint32_t>{ value_ptr, value_ptr + e.size / sizeof(uint32_t) });
67 }
68 opt.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(specializations));
69 }
70
71 if(optimize)
72 {
73 // Full optimization list taken from spirv-opt.
74 opt.RegisterPerformancePasses();
75 }
76
77 spvtools::OptimizerOptions optimizerOptions = {};
78 #if defined(NDEBUG)
79 optimizerOptions.set_run_validator(false);
80 #else
81 optimizerOptions.set_run_validator(true);
82 spvtools::ValidatorOptions validatorOptions = {};
83 validatorOptions.SetScalarBlockLayout(true); // VK_EXT_scalar_block_layout
84 validatorOptions.SetUniformBufferStandardLayout(true); // VK_KHR_uniform_buffer_standard_layout
85 optimizerOptions.set_validator_options(validatorOptions);
86 #endif
87
88 std::vector<uint32_t> optimized;
89 opt.Run(code.data(), code.size(), &optimized, optimizerOptions);
90
91 if(false)
92 {
93 spvtools::SpirvTools core(vk::SPIRV_VERSION);
94 std::string preOpt;
95 core.Disassemble(code, &preOpt, SPV_BINARY_TO_TEXT_OPTION_NONE);
96 std::string postOpt;
97 core.Disassemble(optimized, &postOpt, SPV_BINARY_TO_TEXT_OPTION_NONE);
98 std::cout << "PRE-OPT: " << preOpt << std::endl
99 << "POST-OPT: " << postOpt << std::endl;
100 }
101
102 return optimized;
103 }
104
createShader(const vk::PipelineCache::SpirvShaderKey & key,const vk::ShaderModule * module,bool robustBufferAccess,const std::shared_ptr<vk::dbg::Context> & dbgctx)105 std::shared_ptr<sw::SpirvShader> createShader(
106 const vk::PipelineCache::SpirvShaderKey &key,
107 const vk::ShaderModule *module,
108 bool robustBufferAccess,
109 const std::shared_ptr<vk::dbg::Context> &dbgctx)
110 {
111 // Do not optimize the shader if we have a debugger context.
112 // Optimization passes are likely to damage debug information, and reorder
113 // instructions.
114 const bool optimize = !dbgctx;
115
116 auto code = preprocessSpirv(key.getInsns(), key.getSpecializationInfo(), optimize);
117 ASSERT(code.size() > 0);
118
119 // If the pipeline has specialization constants, assume they're unique and
120 // use a new serial ID so the shader gets recompiled.
121 uint32_t codeSerialID = (key.getSpecializationInfo() ? vk::ShaderModule::nextSerialID() : module->getSerialID());
122
123 // TODO(b/119409619): use allocator.
124 return std::make_shared<sw::SpirvShader>(codeSerialID, key.getPipelineStage(), key.getEntryPointName().c_str(),
125 code, key.getRenderPass(), key.getSubpassIndex(), robustBufferAccess, dbgctx);
126 }
127
createProgram(vk::Device * device,const vk::PipelineCache::ComputeProgramKey & key)128 std::shared_ptr<sw::ComputeProgram> createProgram(vk::Device *device, const vk::PipelineCache::ComputeProgramKey &key)
129 {
130 MARL_SCOPED_EVENT("createProgram");
131
132 vk::DescriptorSet::Bindings descriptorSets; // FIXME(b/129523279): Delay code generation until invoke time.
133 // TODO(b/119409619): use allocator.
134 auto program = std::make_shared<sw::ComputeProgram>(device, key.getShader(), key.getLayout(), descriptorSets);
135 program->generate();
136 program->finalize("ComputeProgram");
137 return program;
138 }
139
140 } // anonymous namespace
141
142 namespace vk {
143
Pipeline(PipelineLayout * layout,Device * device)144 Pipeline::Pipeline(PipelineLayout *layout, Device *device)
145 : layout(layout)
146 , device(device)
147 , robustBufferAccess(device->getEnabledFeatures().robustBufferAccess)
148 {
149 layout->incRefCount();
150 }
151
destroy(const VkAllocationCallbacks * pAllocator)152 void Pipeline::destroy(const VkAllocationCallbacks *pAllocator)
153 {
154 destroyPipeline(pAllocator);
155
156 vk::release(static_cast<VkPipelineLayout>(*layout), pAllocator);
157 }
158
GraphicsPipeline(const VkGraphicsPipelineCreateInfo * pCreateInfo,void * mem,Device * device)159 GraphicsPipeline::GraphicsPipeline(const VkGraphicsPipelineCreateInfo *pCreateInfo, void *mem, Device *device)
160 : Pipeline(vk::Cast(pCreateInfo->layout), device)
161 , state(device, pCreateInfo, layout, robustBufferAccess)
162 , inputs(pCreateInfo->pVertexInputState)
163 {
164 }
165
destroyPipeline(const VkAllocationCallbacks * pAllocator)166 void GraphicsPipeline::destroyPipeline(const VkAllocationCallbacks *pAllocator)
167 {
168 vertexShader.reset();
169 fragmentShader.reset();
170 }
171
ComputeRequiredAllocationSize(const VkGraphicsPipelineCreateInfo * pCreateInfo)172 size_t GraphicsPipeline::ComputeRequiredAllocationSize(const VkGraphicsPipelineCreateInfo *pCreateInfo)
173 {
174 return 0;
175 }
176
getIndexBuffers(uint32_t count,uint32_t first,bool indexed,std::vector<std::pair<uint32_t,void * >> * indexBuffers) const177 void GraphicsPipeline::getIndexBuffers(uint32_t count, uint32_t first, bool indexed, std::vector<std::pair<uint32_t, void *>> *indexBuffers) const
178 {
179 indexBuffer.getIndexBuffers(state.getTopology(), count, first, indexed, state.hasPrimitiveRestartEnable(), indexBuffers);
180 }
181
containsImageWrite() const182 bool GraphicsPipeline::containsImageWrite() const
183 {
184 return (vertexShader.get() && vertexShader->containsImageWrite()) ||
185 (fragmentShader.get() && fragmentShader->containsImageWrite());
186 }
187
setShader(const VkShaderStageFlagBits & stage,const std::shared_ptr<sw::SpirvShader> spirvShader)188 void GraphicsPipeline::setShader(const VkShaderStageFlagBits &stage, const std::shared_ptr<sw::SpirvShader> spirvShader)
189 {
190 switch(stage)
191 {
192 case VK_SHADER_STAGE_VERTEX_BIT:
193 ASSERT(vertexShader.get() == nullptr);
194 vertexShader = spirvShader;
195 break;
196
197 case VK_SHADER_STAGE_FRAGMENT_BIT:
198 ASSERT(fragmentShader.get() == nullptr);
199 fragmentShader = spirvShader;
200 break;
201
202 default:
203 UNSUPPORTED("Unsupported stage");
204 break;
205 }
206 }
207
getShader(const VkShaderStageFlagBits & stage) const208 const std::shared_ptr<sw::SpirvShader> GraphicsPipeline::getShader(const VkShaderStageFlagBits &stage) const
209 {
210 switch(stage)
211 {
212 case VK_SHADER_STAGE_VERTEX_BIT:
213 return vertexShader;
214 case VK_SHADER_STAGE_FRAGMENT_BIT:
215 return fragmentShader;
216 default:
217 UNSUPPORTED("Unsupported stage");
218 return fragmentShader;
219 }
220 }
221
compileShaders(const VkAllocationCallbacks * pAllocator,const VkGraphicsPipelineCreateInfo * pCreateInfo,PipelineCache * pPipelineCache)222 void GraphicsPipeline::compileShaders(const VkAllocationCallbacks *pAllocator, const VkGraphicsPipelineCreateInfo *pCreateInfo, PipelineCache *pPipelineCache)
223 {
224 for(auto pStage = pCreateInfo->pStages; pStage != pCreateInfo->pStages + pCreateInfo->stageCount; pStage++)
225 {
226 if(pStage->flags != 0)
227 {
228 // Vulkan 1.2: "flags must be 0"
229 UNSUPPORTED("pStage->flags %d", int(pStage->flags));
230 }
231
232 const ShaderModule *module = vk::Cast(pStage->module);
233 const PipelineCache::SpirvShaderKey key(pStage->stage, pStage->pName, module->getCode(),
234 vk::Cast(pCreateInfo->renderPass), pCreateInfo->subpass,
235 pStage->pSpecializationInfo);
236 auto pipelineStage = key.getPipelineStage();
237
238 if(pPipelineCache)
239 {
240 auto shader = pPipelineCache->getOrCreateShader(key, [&] {
241 return createShader(key, module, robustBufferAccess, device->getDebuggerContext());
242 });
243 setShader(pipelineStage, shader);
244 }
245 else
246 {
247 auto shader = createShader(key, module, robustBufferAccess, device->getDebuggerContext());
248 setShader(pipelineStage, shader);
249 }
250 }
251 }
252
ComputePipeline(const VkComputePipelineCreateInfo * pCreateInfo,void * mem,Device * device)253 ComputePipeline::ComputePipeline(const VkComputePipelineCreateInfo *pCreateInfo, void *mem, Device *device)
254 : Pipeline(vk::Cast(pCreateInfo->layout), device)
255 {
256 }
257
destroyPipeline(const VkAllocationCallbacks * pAllocator)258 void ComputePipeline::destroyPipeline(const VkAllocationCallbacks *pAllocator)
259 {
260 shader.reset();
261 program.reset();
262 }
263
ComputeRequiredAllocationSize(const VkComputePipelineCreateInfo * pCreateInfo)264 size_t ComputePipeline::ComputeRequiredAllocationSize(const VkComputePipelineCreateInfo *pCreateInfo)
265 {
266 return 0;
267 }
268
compileShaders(const VkAllocationCallbacks * pAllocator,const VkComputePipelineCreateInfo * pCreateInfo,PipelineCache * pPipelineCache)269 void ComputePipeline::compileShaders(const VkAllocationCallbacks *pAllocator, const VkComputePipelineCreateInfo *pCreateInfo, PipelineCache *pPipelineCache)
270 {
271 auto &stage = pCreateInfo->stage;
272 const ShaderModule *module = vk::Cast(stage.module);
273
274 ASSERT(shader.get() == nullptr);
275 ASSERT(program.get() == nullptr);
276
277 const PipelineCache::SpirvShaderKey shaderKey(
278 stage.stage, stage.pName, module->getCode(), nullptr, 0, stage.pSpecializationInfo);
279 if(pPipelineCache)
280 {
281 shader = pPipelineCache->getOrCreateShader(shaderKey, [&] {
282 return createShader(shaderKey, module, robustBufferAccess, device->getDebuggerContext());
283 });
284
285 const PipelineCache::ComputeProgramKey programKey(shader.get(), layout);
286 program = pPipelineCache->getOrCreateComputeProgram(programKey, [&] {
287 return createProgram(device, programKey);
288 });
289 }
290 else
291 {
292 shader = createShader(shaderKey, module, robustBufferAccess, device->getDebuggerContext());
293 const PipelineCache::ComputeProgramKey programKey(shader.get(), layout);
294 program = createProgram(device, programKey);
295 }
296 }
297
run(uint32_t baseGroupX,uint32_t baseGroupY,uint32_t baseGroupZ,uint32_t groupCountX,uint32_t groupCountY,uint32_t groupCountZ,vk::DescriptorSet::Array const & descriptorSetObjects,vk::DescriptorSet::Bindings const & descriptorSets,vk::DescriptorSet::DynamicOffsets const & descriptorDynamicOffsets,vk::Pipeline::PushConstantStorage const & pushConstants)298 void ComputePipeline::run(uint32_t baseGroupX, uint32_t baseGroupY, uint32_t baseGroupZ,
299 uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ,
300 vk::DescriptorSet::Array const &descriptorSetObjects,
301 vk::DescriptorSet::Bindings const &descriptorSets,
302 vk::DescriptorSet::DynamicOffsets const &descriptorDynamicOffsets,
303 vk::Pipeline::PushConstantStorage const &pushConstants)
304 {
305 ASSERT_OR_RETURN(program != nullptr);
306 program->run(
307 descriptorSetObjects, descriptorSets, descriptorDynamicOffsets, pushConstants,
308 baseGroupX, baseGroupY, baseGroupZ,
309 groupCountX, groupCountY, groupCountZ);
310 }
311
312 } // namespace vk
313