1 //===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is part of the X86 Disassembler.
11 // It contains the implementation of the instruction decoder.
12 // Documentation for the disassembler can be found in X86Disassembler.h.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include <cstdarg>   /* for va_*()       */
17 #include <cstdio>    /* for vsnprintf()  */
18 #include <cstdlib>   /* for exit()       */
19 #include <cstring>   /* for memset()     */
20 
21 #include "X86DisassemblerDecoder.h"
22 
23 using namespace llvm::X86Disassembler;
24 
25 /// Specifies whether a ModR/M byte is needed and (if so) which
26 /// instruction each possible value of the ModR/M byte corresponds to.  Once
27 /// this information is known, we have narrowed down to a single instruction.
28 struct ModRMDecision {
29   uint8_t modrm_type;
30   uint16_t instructionIDs;
31 };
32 
33 /// Specifies which set of ModR/M->instruction tables to look at
34 /// given a particular opcode.
35 struct OpcodeDecision {
36   ModRMDecision modRMDecisions[256];
37 };
38 
39 /// Specifies which opcode->instruction tables to look at given
40 /// a particular context (set of attributes).  Since there are many possible
41 /// contexts, the decoder first uses CONTEXTS_SYM to determine which context
42 /// applies given a specific set of attributes.  Hence there are only IC_max
43 /// entries in this table, rather than 2^(ATTR_max).
44 struct ContextDecision {
45   OpcodeDecision opcodeDecisions[IC_max];
46 };
47 
48 #include "X86GenDisassemblerTables.inc"
49 
50 #ifndef NDEBUG
51 #define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0)
52 #else
53 #define debug(s) do { } while (0)
54 #endif
55 
56 /*
57  * contextForAttrs - Client for the instruction context table.  Takes a set of
58  *   attributes and returns the appropriate decode context.
59  *
60  * @param attrMask  - Attributes, from the enumeration attributeBits.
61  * @return          - The InstructionContext to use when looking up an
62  *                    an instruction with these attributes.
63  */
contextForAttrs(uint16_t attrMask)64 static InstructionContext contextForAttrs(uint16_t attrMask) {
65   return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]);
66 }
67 
68 /*
69  * modRMRequired - Reads the appropriate instruction table to determine whether
70  *   the ModR/M byte is required to decode a particular instruction.
71  *
72  * @param type        - The opcode type (i.e., how many bytes it has).
73  * @param insnContext - The context for the instruction, as returned by
74  *                      contextForAttrs.
75  * @param opcode      - The last byte of the instruction's opcode, not counting
76  *                      ModR/M extensions and escapes.
77  * @return            - true if the ModR/M byte is required, false otherwise.
78  */
modRMRequired(OpcodeType type,InstructionContext insnContext,uint16_t opcode)79 static int modRMRequired(OpcodeType type,
80                          InstructionContext insnContext,
81                          uint16_t opcode) {
82   const struct ContextDecision* decision = nullptr;
83 
84   switch (type) {
85   case ONEBYTE:
86     decision = &ONEBYTE_SYM;
87     break;
88   case TWOBYTE:
89     decision = &TWOBYTE_SYM;
90     break;
91   case THREEBYTE_38:
92     decision = &THREEBYTE38_SYM;
93     break;
94   case THREEBYTE_3A:
95     decision = &THREEBYTE3A_SYM;
96     break;
97   case XOP8_MAP:
98     decision = &XOP8_MAP_SYM;
99     break;
100   case XOP9_MAP:
101     decision = &XOP9_MAP_SYM;
102     break;
103   case XOPA_MAP:
104     decision = &XOPA_MAP_SYM;
105     break;
106   }
107 
108   return decision->opcodeDecisions[insnContext].modRMDecisions[opcode].
109     modrm_type != MODRM_ONEENTRY;
110 }
111 
112 /*
113  * decode - Reads the appropriate instruction table to obtain the unique ID of
114  *   an instruction.
115  *
116  * @param type        - See modRMRequired().
117  * @param insnContext - See modRMRequired().
118  * @param opcode      - See modRMRequired().
119  * @param modRM       - The ModR/M byte if required, or any value if not.
120  * @return            - The UID of the instruction, or 0 on failure.
121  */
decode(OpcodeType type,InstructionContext insnContext,uint8_t opcode,uint8_t modRM)122 static InstrUID decode(OpcodeType type,
123                        InstructionContext insnContext,
124                        uint8_t opcode,
125                        uint8_t modRM) {
126   const struct ModRMDecision* dec = nullptr;
127 
128   switch (type) {
129   case ONEBYTE:
130     dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
131     break;
132   case TWOBYTE:
133     dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
134     break;
135   case THREEBYTE_38:
136     dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
137     break;
138   case THREEBYTE_3A:
139     dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
140     break;
141   case XOP8_MAP:
142     dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
143     break;
144   case XOP9_MAP:
145     dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
146     break;
147   case XOPA_MAP:
148     dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode];
149     break;
150   }
151 
152   switch (dec->modrm_type) {
153   default:
154     debug("Corrupt table!  Unknown modrm_type");
155     return 0;
156   case MODRM_ONEENTRY:
157     return modRMTable[dec->instructionIDs];
158   case MODRM_SPLITRM:
159     if (modFromModRM(modRM) == 0x3)
160       return modRMTable[dec->instructionIDs+1];
161     return modRMTable[dec->instructionIDs];
162   case MODRM_SPLITREG:
163     if (modFromModRM(modRM) == 0x3)
164       return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8];
165     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
166   case MODRM_SPLITMISC:
167     if (modFromModRM(modRM) == 0x3)
168       return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8];
169     return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)];
170   case MODRM_FULL:
171     return modRMTable[dec->instructionIDs+modRM];
172   }
173 }
174 
175 /*
176  * specifierForUID - Given a UID, returns the name and operand specification for
177  *   that instruction.
178  *
179  * @param uid - The unique ID for the instruction.  This should be returned by
180  *              decode(); specifierForUID will not check bounds.
181  * @return    - A pointer to the specification for that instruction.
182  */
specifierForUID(InstrUID uid)183 static const struct InstructionSpecifier *specifierForUID(InstrUID uid) {
184   return &INSTRUCTIONS_SYM[uid];
185 }
186 
187 /*
188  * consumeByte - Uses the reader function provided by the user to consume one
189  *   byte from the instruction's memory and advance the cursor.
190  *
191  * @param insn  - The instruction with the reader function to use.  The cursor
192  *                for this instruction is advanced.
193  * @param byte  - A pointer to a pre-allocated memory buffer to be populated
194  *                with the data read.
195  * @return      - 0 if the read was successful; nonzero otherwise.
196  */
consumeByte(struct InternalInstruction * insn,uint8_t * byte)197 static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) {
198   int ret = insn->reader(insn->readerArg, byte, insn->readerCursor);
199 
200   if (!ret)
201     ++(insn->readerCursor);
202 
203   return ret;
204 }
205 
206 /*
207  * lookAtByte - Like consumeByte, but does not advance the cursor.
208  *
209  * @param insn  - See consumeByte().
210  * @param byte  - See consumeByte().
211  * @return      - See consumeByte().
212  */
lookAtByte(struct InternalInstruction * insn,uint8_t * byte)213 static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) {
214   return insn->reader(insn->readerArg, byte, insn->readerCursor);
215 }
216 
unconsumeByte(struct InternalInstruction * insn)217 static void unconsumeByte(struct InternalInstruction* insn) {
218   insn->readerCursor--;
219 }
220 
221 #define CONSUME_FUNC(name, type)                                  \
222   static int name(struct InternalInstruction* insn, type* ptr) {  \
223     type combined = 0;                                            \
224     unsigned offset;                                              \
225     for (offset = 0; offset < sizeof(type); ++offset) {           \
226       uint8_t byte;                                               \
227       int ret = insn->reader(insn->readerArg,                     \
228                              &byte,                               \
229                              insn->readerCursor + offset);        \
230       if (ret)                                                    \
231         return ret;                                               \
232       combined = combined | ((uint64_t)byte << (offset * 8));     \
233     }                                                             \
234     *ptr = combined;                                              \
235     insn->readerCursor += sizeof(type);                           \
236     return 0;                                                     \
237   }
238 
239 /*
240  * consume* - Use the reader function provided by the user to consume data
241  *   values of various sizes from the instruction's memory and advance the
242  *   cursor appropriately.  These readers perform endian conversion.
243  *
244  * @param insn    - See consumeByte().
245  * @param ptr     - A pointer to a pre-allocated memory of appropriate size to
246  *                  be populated with the data read.
247  * @return        - See consumeByte().
248  */
CONSUME_FUNC(consumeInt8,int8_t)249 CONSUME_FUNC(consumeInt8, int8_t)
250 CONSUME_FUNC(consumeInt16, int16_t)
251 CONSUME_FUNC(consumeInt32, int32_t)
252 CONSUME_FUNC(consumeUInt16, uint16_t)
253 CONSUME_FUNC(consumeUInt32, uint32_t)
254 CONSUME_FUNC(consumeUInt64, uint64_t)
255 
256 /*
257  * dbgprintf - Uses the logging function provided by the user to log a single
258  *   message, typically without a carriage-return.
259  *
260  * @param insn    - The instruction containing the logging function.
261  * @param format  - See printf().
262  * @param ...     - See printf().
263  */
264 static void dbgprintf(struct InternalInstruction* insn,
265                       const char* format,
266                       ...) {
267   char buffer[256];
268   va_list ap;
269 
270   if (!insn->dlog)
271     return;
272 
273   va_start(ap, format);
274   (void)vsnprintf(buffer, sizeof(buffer), format, ap);
275   va_end(ap);
276 
277   insn->dlog(insn->dlogArg, buffer);
278 }
279 
280 /*
281  * setPrefixPresent - Marks that a particular prefix is present at a particular
282  *   location.
283  *
284  * @param insn      - The instruction to be marked as having the prefix.
285  * @param prefix    - The prefix that is present.
286  * @param location  - The location where the prefix is located (in the address
287  *                    space of the instruction's reader).
288  */
setPrefixPresent(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)289 static void setPrefixPresent(struct InternalInstruction* insn,
290                                     uint8_t prefix,
291                                     uint64_t location)
292 {
293   insn->prefixPresent[prefix] = 1;
294   insn->prefixLocations[prefix] = location;
295 }
296 
297 /*
298  * isPrefixAtLocation - Queries an instruction to determine whether a prefix is
299  *   present at a given location.
300  *
301  * @param insn      - The instruction to be queried.
302  * @param prefix    - The prefix.
303  * @param location  - The location to query.
304  * @return          - Whether the prefix is at that location.
305  */
isPrefixAtLocation(struct InternalInstruction * insn,uint8_t prefix,uint64_t location)306 static bool isPrefixAtLocation(struct InternalInstruction* insn,
307                                uint8_t prefix,
308                                uint64_t location)
309 {
310   return insn->prefixPresent[prefix] == 1 &&
311      insn->prefixLocations[prefix] == location;
312 }
313 
314 /*
315  * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the
316  *   instruction as having them.  Also sets the instruction's default operand,
317  *   address, and other relevant data sizes to report operands correctly.
318  *
319  * @param insn  - The instruction whose prefixes are to be read.
320  * @return      - 0 if the instruction could be read until the end of the prefix
321  *                bytes, and no prefixes conflicted; nonzero otherwise.
322  */
readPrefixes(struct InternalInstruction * insn)323 static int readPrefixes(struct InternalInstruction* insn) {
324   bool isPrefix = true;
325   bool prefixGroups[4] = { false };
326   uint64_t prefixLocation;
327   uint8_t byte = 0;
328   uint8_t nextByte;
329 
330   bool hasAdSize = false;
331   bool hasOpSize = false;
332 
333   dbgprintf(insn, "readPrefixes()");
334 
335   while (isPrefix) {
336     prefixLocation = insn->readerCursor;
337 
338     /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */
339     if (consumeByte(insn, &byte))
340       break;
341 
342     /*
343      * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then
344      * break and let it be disassembled as a normal "instruction".
345      */
346     if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0)
347       break;
348 
349     if (insn->readerCursor - 1 == insn->startLocation
350         && (byte == 0xf2 || byte == 0xf3)
351         && !lookAtByte(insn, &nextByte))
352     {
353       /*
354        * If the byte is 0xf2 or 0xf3, and any of the following conditions are
355        * met:
356        * - it is followed by a LOCK (0xf0) prefix
357        * - it is followed by an xchg instruction
358        * then it should be disassembled as a xacquire/xrelease not repne/rep.
359        */
360       if ((byte == 0xf2 || byte == 0xf3) &&
361           ((nextByte == 0xf0) ||
362           ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90)))
363         insn->xAcquireRelease = true;
364       /*
365        * Also if the byte is 0xf3, and the following condition is met:
366        * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or
367        *                       "mov mem, imm" (opcode 0xc6/0xc7) instructions.
368        * then it should be disassembled as an xrelease not rep.
369        */
370       if (byte == 0xf3 &&
371           (nextByte == 0x88 || nextByte == 0x89 ||
372            nextByte == 0xc6 || nextByte == 0xc7))
373         insn->xAcquireRelease = true;
374       if (insn->mode == MODE_64BIT && (nextByte & 0xf0) == 0x40) {
375         if (consumeByte(insn, &nextByte))
376           return -1;
377         if (lookAtByte(insn, &nextByte))
378           return -1;
379         unconsumeByte(insn);
380       }
381       if (nextByte != 0x0f && nextByte != 0x90)
382         break;
383     }
384 
385     switch (byte) {
386     case 0xf0:  /* LOCK */
387     case 0xf2:  /* REPNE/REPNZ */
388     case 0xf3:  /* REP or REPE/REPZ */
389       if (prefixGroups[0])
390         dbgprintf(insn, "Redundant Group 1 prefix");
391       prefixGroups[0] = true;
392       setPrefixPresent(insn, byte, prefixLocation);
393       break;
394     case 0x2e:  /* CS segment override -OR- Branch not taken */
395     case 0x36:  /* SS segment override -OR- Branch taken */
396     case 0x3e:  /* DS segment override */
397     case 0x26:  /* ES segment override */
398     case 0x64:  /* FS segment override */
399     case 0x65:  /* GS segment override */
400       switch (byte) {
401       case 0x2e:
402         insn->segmentOverride = SEG_OVERRIDE_CS;
403         break;
404       case 0x36:
405         insn->segmentOverride = SEG_OVERRIDE_SS;
406         break;
407       case 0x3e:
408         insn->segmentOverride = SEG_OVERRIDE_DS;
409         break;
410       case 0x26:
411         insn->segmentOverride = SEG_OVERRIDE_ES;
412         break;
413       case 0x64:
414         insn->segmentOverride = SEG_OVERRIDE_FS;
415         break;
416       case 0x65:
417         insn->segmentOverride = SEG_OVERRIDE_GS;
418         break;
419       default:
420         debug("Unhandled override");
421         return -1;
422       }
423       if (prefixGroups[1])
424         dbgprintf(insn, "Redundant Group 2 prefix");
425       prefixGroups[1] = true;
426       setPrefixPresent(insn, byte, prefixLocation);
427       break;
428     case 0x66:  /* Operand-size override */
429       if (prefixGroups[2])
430         dbgprintf(insn, "Redundant Group 3 prefix");
431       prefixGroups[2] = true;
432       hasOpSize = true;
433       setPrefixPresent(insn, byte, prefixLocation);
434       break;
435     case 0x67:  /* Address-size override */
436       if (prefixGroups[3])
437         dbgprintf(insn, "Redundant Group 4 prefix");
438       prefixGroups[3] = true;
439       hasAdSize = true;
440       setPrefixPresent(insn, byte, prefixLocation);
441       break;
442     default:    /* Not a prefix byte */
443       isPrefix = false;
444       break;
445     }
446 
447     if (isPrefix)
448       dbgprintf(insn, "Found prefix 0x%hhx", byte);
449   }
450 
451   insn->vectorExtensionType = TYPE_NO_VEX_XOP;
452 
453   if (byte == 0x62) {
454     uint8_t byte1, byte2;
455 
456     if (consumeByte(insn, &byte1)) {
457       dbgprintf(insn, "Couldn't read second byte of EVEX prefix");
458       return -1;
459     }
460 
461     if (lookAtByte(insn, &byte2)) {
462       dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
463       return -1;
464     }
465 
466     if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) &&
467        ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) {
468       insn->vectorExtensionType = TYPE_EVEX;
469     } else {
470       unconsumeByte(insn); /* unconsume byte1 */
471       unconsumeByte(insn); /* unconsume byte  */
472       insn->necessaryPrefixLocation = insn->readerCursor - 2;
473     }
474 
475     if (insn->vectorExtensionType == TYPE_EVEX) {
476       insn->vectorExtensionPrefix[0] = byte;
477       insn->vectorExtensionPrefix[1] = byte1;
478       if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) {
479         dbgprintf(insn, "Couldn't read third byte of EVEX prefix");
480         return -1;
481       }
482       if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) {
483         dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix");
484         return -1;
485       }
486 
487       /* We simulate the REX prefix for simplicity's sake */
488       if (insn->mode == MODE_64BIT) {
489         insn->rexPrefix = 0x40
490                         | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3)
491                         | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2)
492                         | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1)
493                         | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0);
494       }
495 
496       dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx",
497               insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
498               insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]);
499     }
500   } else if (byte == 0xc4) {
501     uint8_t byte1;
502 
503     if (lookAtByte(insn, &byte1)) {
504       dbgprintf(insn, "Couldn't read second byte of VEX");
505       return -1;
506     }
507 
508     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
509       insn->vectorExtensionType = TYPE_VEX_3B;
510       insn->necessaryPrefixLocation = insn->readerCursor - 1;
511     } else {
512       unconsumeByte(insn);
513       insn->necessaryPrefixLocation = insn->readerCursor - 1;
514     }
515 
516     if (insn->vectorExtensionType == TYPE_VEX_3B) {
517       insn->vectorExtensionPrefix[0] = byte;
518       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
519       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
520 
521       /* We simulate the REX prefix for simplicity's sake */
522 
523       if (insn->mode == MODE_64BIT) {
524         insn->rexPrefix = 0x40
525                         | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3)
526                         | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2)
527                         | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1)
528                         | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0);
529       }
530 
531       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx",
532                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
533                 insn->vectorExtensionPrefix[2]);
534     }
535   } else if (byte == 0xc5) {
536     uint8_t byte1;
537 
538     if (lookAtByte(insn, &byte1)) {
539       dbgprintf(insn, "Couldn't read second byte of VEX");
540       return -1;
541     }
542 
543     if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) {
544       insn->vectorExtensionType = TYPE_VEX_2B;
545     } else {
546       unconsumeByte(insn);
547     }
548 
549     if (insn->vectorExtensionType == TYPE_VEX_2B) {
550       insn->vectorExtensionPrefix[0] = byte;
551       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
552 
553       if (insn->mode == MODE_64BIT) {
554         insn->rexPrefix = 0x40
555                         | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2);
556       }
557 
558       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
559       default:
560         break;
561       case VEX_PREFIX_66:
562         hasOpSize = true;
563         break;
564       }
565 
566       dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx",
567                 insn->vectorExtensionPrefix[0],
568                 insn->vectorExtensionPrefix[1]);
569     }
570   } else if (byte == 0x8f) {
571     uint8_t byte1;
572 
573     if (lookAtByte(insn, &byte1)) {
574       dbgprintf(insn, "Couldn't read second byte of XOP");
575       return -1;
576     }
577 
578     if ((byte1 & 0x38) != 0x0) { /* 0 in these 3 bits is a POP instruction. */
579       insn->vectorExtensionType = TYPE_XOP;
580       insn->necessaryPrefixLocation = insn->readerCursor - 1;
581     } else {
582       unconsumeByte(insn);
583       insn->necessaryPrefixLocation = insn->readerCursor - 1;
584     }
585 
586     if (insn->vectorExtensionType == TYPE_XOP) {
587       insn->vectorExtensionPrefix[0] = byte;
588       consumeByte(insn, &insn->vectorExtensionPrefix[1]);
589       consumeByte(insn, &insn->vectorExtensionPrefix[2]);
590 
591       /* We simulate the REX prefix for simplicity's sake */
592 
593       if (insn->mode == MODE_64BIT) {
594         insn->rexPrefix = 0x40
595                         | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3)
596                         | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2)
597                         | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1)
598                         | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0);
599       }
600 
601       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
602       default:
603         break;
604       case VEX_PREFIX_66:
605         hasOpSize = true;
606         break;
607       }
608 
609       dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx",
610                 insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1],
611                 insn->vectorExtensionPrefix[2]);
612     }
613   } else {
614     if (insn->mode == MODE_64BIT) {
615       if ((byte & 0xf0) == 0x40) {
616         uint8_t opcodeByte;
617 
618         if (lookAtByte(insn, &opcodeByte) || ((opcodeByte & 0xf0) == 0x40)) {
619           dbgprintf(insn, "Redundant REX prefix");
620           return -1;
621         }
622 
623         insn->rexPrefix = byte;
624         insn->necessaryPrefixLocation = insn->readerCursor - 2;
625 
626         dbgprintf(insn, "Found REX prefix 0x%hhx", byte);
627       } else {
628         unconsumeByte(insn);
629         insn->necessaryPrefixLocation = insn->readerCursor - 1;
630       }
631     } else {
632       unconsumeByte(insn);
633       insn->necessaryPrefixLocation = insn->readerCursor - 1;
634     }
635   }
636 
637   if (insn->mode == MODE_16BIT) {
638     insn->registerSize       = (hasOpSize ? 4 : 2);
639     insn->addressSize        = (hasAdSize ? 4 : 2);
640     insn->displacementSize   = (hasAdSize ? 4 : 2);
641     insn->immediateSize      = (hasOpSize ? 4 : 2);
642   } else if (insn->mode == MODE_32BIT) {
643     insn->registerSize       = (hasOpSize ? 2 : 4);
644     insn->addressSize        = (hasAdSize ? 2 : 4);
645     insn->displacementSize   = (hasAdSize ? 2 : 4);
646     insn->immediateSize      = (hasOpSize ? 2 : 4);
647   } else if (insn->mode == MODE_64BIT) {
648     if (insn->rexPrefix && wFromREX(insn->rexPrefix)) {
649       insn->registerSize       = 8;
650       insn->addressSize        = (hasAdSize ? 4 : 8);
651       insn->displacementSize   = 4;
652       insn->immediateSize      = 4;
653     } else if (insn->rexPrefix) {
654       insn->registerSize       = (hasOpSize ? 2 : 4);
655       insn->addressSize        = (hasAdSize ? 4 : 8);
656       insn->displacementSize   = (hasOpSize ? 2 : 4);
657       insn->immediateSize      = (hasOpSize ? 2 : 4);
658     } else {
659       insn->registerSize       = (hasOpSize ? 2 : 4);
660       insn->addressSize        = (hasAdSize ? 4 : 8);
661       insn->displacementSize   = (hasOpSize ? 2 : 4);
662       insn->immediateSize      = (hasOpSize ? 2 : 4);
663     }
664   }
665 
666   return 0;
667 }
668 
669 /*
670  * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of
671  *   extended or escape opcodes).
672  *
673  * @param insn  - The instruction whose opcode is to be read.
674  * @return      - 0 if the opcode could be read successfully; nonzero otherwise.
675  */
readOpcode(struct InternalInstruction * insn)676 static int readOpcode(struct InternalInstruction* insn) {
677   /* Determine the length of the primary opcode */
678 
679   uint8_t current;
680 
681   dbgprintf(insn, "readOpcode()");
682 
683   insn->opcodeType = ONEBYTE;
684 
685   if (insn->vectorExtensionType == TYPE_EVEX) {
686     switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) {
687     default:
688       dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)",
689                 mmFromEVEX2of4(insn->vectorExtensionPrefix[1]));
690       return -1;
691     case VEX_LOB_0F:
692       insn->opcodeType = TWOBYTE;
693       return consumeByte(insn, &insn->opcode);
694     case VEX_LOB_0F38:
695       insn->opcodeType = THREEBYTE_38;
696       return consumeByte(insn, &insn->opcode);
697     case VEX_LOB_0F3A:
698       insn->opcodeType = THREEBYTE_3A;
699       return consumeByte(insn, &insn->opcode);
700     }
701   } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
702     switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) {
703     default:
704       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
705                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
706       return -1;
707     case VEX_LOB_0F:
708       insn->opcodeType = TWOBYTE;
709       return consumeByte(insn, &insn->opcode);
710     case VEX_LOB_0F38:
711       insn->opcodeType = THREEBYTE_38;
712       return consumeByte(insn, &insn->opcode);
713     case VEX_LOB_0F3A:
714       insn->opcodeType = THREEBYTE_3A;
715       return consumeByte(insn, &insn->opcode);
716     }
717   } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
718     insn->opcodeType = TWOBYTE;
719     return consumeByte(insn, &insn->opcode);
720   } else if (insn->vectorExtensionType == TYPE_XOP) {
721     switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) {
722     default:
723       dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)",
724                 mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1]));
725       return -1;
726     case XOP_MAP_SELECT_8:
727       insn->opcodeType = XOP8_MAP;
728       return consumeByte(insn, &insn->opcode);
729     case XOP_MAP_SELECT_9:
730       insn->opcodeType = XOP9_MAP;
731       return consumeByte(insn, &insn->opcode);
732     case XOP_MAP_SELECT_A:
733       insn->opcodeType = XOPA_MAP;
734       return consumeByte(insn, &insn->opcode);
735     }
736   }
737 
738   if (consumeByte(insn, &current))
739     return -1;
740 
741   if (current == 0x0f) {
742     dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current);
743 
744     if (consumeByte(insn, &current))
745       return -1;
746 
747     if (current == 0x38) {
748       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
749 
750       if (consumeByte(insn, &current))
751         return -1;
752 
753       insn->opcodeType = THREEBYTE_38;
754     } else if (current == 0x3a) {
755       dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current);
756 
757       if (consumeByte(insn, &current))
758         return -1;
759 
760       insn->opcodeType = THREEBYTE_3A;
761     } else {
762       dbgprintf(insn, "Didn't find a three-byte escape prefix");
763 
764       insn->opcodeType = TWOBYTE;
765     }
766   }
767 
768   /*
769    * At this point we have consumed the full opcode.
770    * Anything we consume from here on must be unconsumed.
771    */
772 
773   insn->opcode = current;
774 
775   return 0;
776 }
777 
778 static int readModRM(struct InternalInstruction* insn);
779 
780 /*
781  * getIDWithAttrMask - Determines the ID of an instruction, consuming
782  *   the ModR/M byte as appropriate for extended and escape opcodes,
783  *   and using a supplied attribute mask.
784  *
785  * @param instructionID - A pointer whose target is filled in with the ID of the
786  *                        instruction.
787  * @param insn          - The instruction whose ID is to be determined.
788  * @param attrMask      - The attribute mask to search.
789  * @return              - 0 if the ModR/M could be read when needed or was not
790  *                        needed; nonzero otherwise.
791  */
getIDWithAttrMask(uint16_t * instructionID,struct InternalInstruction * insn,uint16_t attrMask)792 static int getIDWithAttrMask(uint16_t* instructionID,
793                              struct InternalInstruction* insn,
794                              uint16_t attrMask) {
795   bool hasModRMExtension;
796 
797   InstructionContext instructionClass = contextForAttrs(attrMask);
798 
799   hasModRMExtension = modRMRequired(insn->opcodeType,
800                                     instructionClass,
801                                     insn->opcode);
802 
803   if (hasModRMExtension) {
804     if (readModRM(insn))
805       return -1;
806 
807     *instructionID = decode(insn->opcodeType,
808                             instructionClass,
809                             insn->opcode,
810                             insn->modRM);
811   } else {
812     *instructionID = decode(insn->opcodeType,
813                             instructionClass,
814                             insn->opcode,
815                             0);
816   }
817 
818   return 0;
819 }
820 
821 /*
822  * is16BitEquivalent - Determines whether two instruction names refer to
823  * equivalent instructions but one is 16-bit whereas the other is not.
824  *
825  * @param orig  - The instruction that is not 16-bit
826  * @param equiv - The instruction that is 16-bit
827  */
is16BitEquivalent(const char * orig,const char * equiv)828 static bool is16BitEquivalent(const char* orig, const char* equiv) {
829   off_t i;
830 
831   for (i = 0;; i++) {
832     if (orig[i] == '\0' && equiv[i] == '\0')
833       return true;
834     if (orig[i] == '\0' || equiv[i] == '\0')
835       return false;
836     if (orig[i] != equiv[i]) {
837       if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W')
838         continue;
839       if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1')
840         continue;
841       if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6')
842         continue;
843       return false;
844     }
845   }
846 }
847 
848 /*
849  * is64Bit - Determines whether this instruction is a 64-bit instruction.
850  *
851  * @param name - The instruction that is not 16-bit
852  */
is64Bit(const char * name)853 static bool is64Bit(const char* name) {
854   off_t i;
855 
856   for (i = 0;; ++i) {
857     if (name[i] == '\0')
858       return false;
859     if (name[i] == '6' && name[i+1] == '4')
860       return true;
861   }
862 }
863 
864 /*
865  * getID - Determines the ID of an instruction, consuming the ModR/M byte as
866  *   appropriate for extended and escape opcodes.  Determines the attributes and
867  *   context for the instruction before doing so.
868  *
869  * @param insn  - The instruction whose ID is to be determined.
870  * @return      - 0 if the ModR/M could be read when needed or was not needed;
871  *                nonzero otherwise.
872  */
getID(struct InternalInstruction * insn,const void * miiArg)873 static int getID(struct InternalInstruction* insn, const void *miiArg) {
874   uint16_t attrMask;
875   uint16_t instructionID;
876 
877   dbgprintf(insn, "getID()");
878 
879   attrMask = ATTR_NONE;
880 
881   if (insn->mode == MODE_64BIT)
882     attrMask |= ATTR_64BIT;
883 
884   if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
885     attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX;
886 
887     if (insn->vectorExtensionType == TYPE_EVEX) {
888       switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) {
889       case VEX_PREFIX_66:
890         attrMask |= ATTR_OPSIZE;
891         break;
892       case VEX_PREFIX_F3:
893         attrMask |= ATTR_XS;
894         break;
895       case VEX_PREFIX_F2:
896         attrMask |= ATTR_XD;
897         break;
898       }
899 
900       if (zFromEVEX4of4(insn->vectorExtensionPrefix[3]))
901         attrMask |= ATTR_EVEXKZ;
902       if (bFromEVEX4of4(insn->vectorExtensionPrefix[3]))
903         attrMask |= ATTR_EVEXB;
904       if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]))
905         attrMask |= ATTR_EVEXK;
906       if (lFromEVEX4of4(insn->vectorExtensionPrefix[3]))
907         attrMask |= ATTR_EVEXL;
908       if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]))
909         attrMask |= ATTR_EVEXL2;
910     } else if (insn->vectorExtensionType == TYPE_VEX_3B) {
911       switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) {
912       case VEX_PREFIX_66:
913         attrMask |= ATTR_OPSIZE;
914         break;
915       case VEX_PREFIX_F3:
916         attrMask |= ATTR_XS;
917         break;
918       case VEX_PREFIX_F2:
919         attrMask |= ATTR_XD;
920         break;
921       }
922 
923       if (lFromVEX3of3(insn->vectorExtensionPrefix[2]))
924         attrMask |= ATTR_VEXL;
925     } else if (insn->vectorExtensionType == TYPE_VEX_2B) {
926       switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) {
927       case VEX_PREFIX_66:
928         attrMask |= ATTR_OPSIZE;
929         break;
930       case VEX_PREFIX_F3:
931         attrMask |= ATTR_XS;
932         break;
933       case VEX_PREFIX_F2:
934         attrMask |= ATTR_XD;
935         break;
936       }
937 
938       if (lFromVEX2of2(insn->vectorExtensionPrefix[1]))
939         attrMask |= ATTR_VEXL;
940     } else if (insn->vectorExtensionType == TYPE_XOP) {
941       switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) {
942       case VEX_PREFIX_66:
943         attrMask |= ATTR_OPSIZE;
944         break;
945       case VEX_PREFIX_F3:
946         attrMask |= ATTR_XS;
947         break;
948       case VEX_PREFIX_F2:
949         attrMask |= ATTR_XD;
950         break;
951       }
952 
953       if (lFromXOP3of3(insn->vectorExtensionPrefix[2]))
954         attrMask |= ATTR_VEXL;
955     } else {
956       return -1;
957     }
958   } else {
959     if (insn->mode != MODE_16BIT && isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation))
960       attrMask |= ATTR_OPSIZE;
961     else if (isPrefixAtLocation(insn, 0x67, insn->necessaryPrefixLocation))
962       attrMask |= ATTR_ADSIZE;
963     else if (isPrefixAtLocation(insn, 0xf3, insn->necessaryPrefixLocation))
964       attrMask |= ATTR_XS;
965     else if (isPrefixAtLocation(insn, 0xf2, insn->necessaryPrefixLocation))
966       attrMask |= ATTR_XD;
967   }
968 
969   if (insn->rexPrefix & 0x08)
970     attrMask |= ATTR_REXW;
971 
972   /*
973    * JCXZ/JECXZ need special handling for 16-bit mode because the meaning
974    * of the AdSize prefix is inverted w.r.t. 32-bit mode.
975    */
976   if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE &&
977       insn->opcode == 0xE3)
978     attrMask ^= ATTR_ADSIZE;
979 
980   /*
981    * In 64-bit mode all f64 superscripted opcodes ignore opcode size prefix
982    * CALL/JMP/JCC instructions need to ignore 0x66 and consume 4 bytes
983    */
984 
985   if (insn->mode == MODE_64BIT &&
986       isPrefixAtLocation(insn, 0x66, insn->necessaryPrefixLocation)) {
987     switch (insn->opcode) {
988     case 0xE8:
989     case 0xE9:
990       // Take care of psubsb and other mmx instructions.
991       if (insn->opcodeType == ONEBYTE) {
992         attrMask ^= ATTR_OPSIZE;
993         insn->immediateSize = 4;
994         insn->displacementSize = 4;
995       }
996       break;
997     case 0x82:
998     case 0x83:
999     case 0x84:
1000     case 0x85:
1001     case 0x86:
1002     case 0x87:
1003     case 0x88:
1004     case 0x89:
1005     case 0x8A:
1006     case 0x8B:
1007     case 0x8C:
1008     case 0x8D:
1009     case 0x8E:
1010     case 0x8F:
1011       // Take care of lea and three byte ops.
1012       if (insn->opcodeType == TWOBYTE) {
1013         attrMask ^= ATTR_OPSIZE;
1014         insn->immediateSize = 4;
1015         insn->displacementSize = 4;
1016       }
1017       break;
1018     }
1019   }
1020 
1021   if (getIDWithAttrMask(&instructionID, insn, attrMask))
1022     return -1;
1023 
1024   /* The following clauses compensate for limitations of the tables. */
1025 
1026   if (insn->mode != MODE_64BIT &&
1027       insn->vectorExtensionType != TYPE_NO_VEX_XOP) {
1028     /*
1029      * The tables can't distinquish between cases where the W-bit is used to
1030      * select register size and cases where its a required part of the opcode.
1031      */
1032     if ((insn->vectorExtensionType == TYPE_EVEX &&
1033          wFromEVEX3of4(insn->vectorExtensionPrefix[2])) ||
1034         (insn->vectorExtensionType == TYPE_VEX_3B &&
1035          wFromVEX3of3(insn->vectorExtensionPrefix[2])) ||
1036         (insn->vectorExtensionType == TYPE_XOP &&
1037          wFromXOP3of3(insn->vectorExtensionPrefix[2]))) {
1038 
1039       uint16_t instructionIDWithREXW;
1040       if (getIDWithAttrMask(&instructionIDWithREXW,
1041                             insn, attrMask | ATTR_REXW)) {
1042         insn->instructionID = instructionID;
1043         insn->spec = specifierForUID(instructionID);
1044         return 0;
1045       }
1046 
1047       const char *SpecName = GetInstrName(instructionIDWithREXW, miiArg);
1048       // If not a 64-bit instruction. Switch the opcode.
1049       if (!is64Bit(SpecName)) {
1050         insn->instructionID = instructionIDWithREXW;
1051         insn->spec = specifierForUID(instructionIDWithREXW);
1052         return 0;
1053       }
1054     }
1055   }
1056 
1057   /*
1058    * Absolute moves need special handling.
1059    * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are
1060    *  inverted w.r.t.
1061    * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in
1062    *  any position.
1063    */
1064   if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) {
1065     /* Make sure we observed the prefixes in any position. */
1066     if (insn->prefixPresent[0x67])
1067       attrMask |= ATTR_ADSIZE;
1068     if (insn->prefixPresent[0x66])
1069       attrMask |= ATTR_OPSIZE;
1070 
1071     /* In 16-bit, invert the attributes. */
1072     if (insn->mode == MODE_16BIT)
1073       attrMask ^= ATTR_ADSIZE | ATTR_OPSIZE;
1074 
1075     if (getIDWithAttrMask(&instructionID, insn, attrMask))
1076       return -1;
1077 
1078     insn->instructionID = instructionID;
1079     insn->spec = specifierForUID(instructionID);
1080     return 0;
1081   }
1082 
1083   if ((insn->mode == MODE_16BIT || insn->prefixPresent[0x66]) &&
1084       !(attrMask & ATTR_OPSIZE)) {
1085     /*
1086      * The instruction tables make no distinction between instructions that
1087      * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a
1088      * particular spot (i.e., many MMX operations).  In general we're
1089      * conservative, but in the specific case where OpSize is present but not
1090      * in the right place we check if there's a 16-bit operation.
1091      */
1092 
1093     const struct InstructionSpecifier *spec;
1094     uint16_t instructionIDWithOpsize;
1095     const char *specName, *specWithOpSizeName;
1096 
1097     spec = specifierForUID(instructionID);
1098 
1099     if (getIDWithAttrMask(&instructionIDWithOpsize,
1100                           insn,
1101                           attrMask | ATTR_OPSIZE)) {
1102       /*
1103        * ModRM required with OpSize but not present; give up and return version
1104        * without OpSize set
1105        */
1106 
1107       insn->instructionID = instructionID;
1108       insn->spec = spec;
1109       return 0;
1110     }
1111 
1112     specName = GetInstrName(instructionID, miiArg);
1113     specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg);
1114 
1115     if (is16BitEquivalent(specName, specWithOpSizeName) &&
1116         (insn->mode == MODE_16BIT) ^ insn->prefixPresent[0x66]) {
1117       insn->instructionID = instructionIDWithOpsize;
1118       insn->spec = specifierForUID(instructionIDWithOpsize);
1119     } else {
1120       insn->instructionID = instructionID;
1121       insn->spec = spec;
1122     }
1123     return 0;
1124   }
1125 
1126   if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 &&
1127       insn->rexPrefix & 0x01) {
1128     /*
1129      * NOOP shouldn't decode as NOOP if REX.b is set. Instead
1130      * it should decode as XCHG %r8, %eax.
1131      */
1132 
1133     const struct InstructionSpecifier *spec;
1134     uint16_t instructionIDWithNewOpcode;
1135     const struct InstructionSpecifier *specWithNewOpcode;
1136 
1137     spec = specifierForUID(instructionID);
1138 
1139     /* Borrow opcode from one of the other XCHGar opcodes */
1140     insn->opcode = 0x91;
1141 
1142     if (getIDWithAttrMask(&instructionIDWithNewOpcode,
1143                           insn,
1144                           attrMask)) {
1145       insn->opcode = 0x90;
1146 
1147       insn->instructionID = instructionID;
1148       insn->spec = spec;
1149       return 0;
1150     }
1151 
1152     specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode);
1153 
1154     /* Change back */
1155     insn->opcode = 0x90;
1156 
1157     insn->instructionID = instructionIDWithNewOpcode;
1158     insn->spec = specWithNewOpcode;
1159 
1160     return 0;
1161   }
1162 
1163   insn->instructionID = instructionID;
1164   insn->spec = specifierForUID(insn->instructionID);
1165 
1166   return 0;
1167 }
1168 
1169 /*
1170  * readSIB - Consumes the SIB byte to determine addressing information for an
1171  *   instruction.
1172  *
1173  * @param insn  - The instruction whose SIB byte is to be read.
1174  * @return      - 0 if the SIB byte was successfully read; nonzero otherwise.
1175  */
readSIB(struct InternalInstruction * insn)1176 static int readSIB(struct InternalInstruction* insn) {
1177   SIBIndex sibIndexBase = SIB_INDEX_NONE;
1178   SIBBase sibBaseBase = SIB_BASE_NONE;
1179   uint8_t index, base;
1180 
1181   dbgprintf(insn, "readSIB()");
1182 
1183   if (insn->consumedSIB)
1184     return 0;
1185 
1186   insn->consumedSIB = true;
1187 
1188   switch (insn->addressSize) {
1189   case 2:
1190     dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode");
1191     return -1;
1192   case 4:
1193     sibIndexBase = SIB_INDEX_EAX;
1194     sibBaseBase = SIB_BASE_EAX;
1195     break;
1196   case 8:
1197     sibIndexBase = SIB_INDEX_RAX;
1198     sibBaseBase = SIB_BASE_RAX;
1199     break;
1200   }
1201 
1202   if (consumeByte(insn, &insn->sib))
1203     return -1;
1204 
1205   index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3);
1206 
1207   // FIXME: The fifth bit (bit index 4) is only to be used for instructions
1208   // that understand VSIB indexing. ORing the bit in here is mildy dangerous
1209   // because performing math on an 'enum SIBIndex' can produce garbage.
1210   // Excluding the "none" value, it should cover 6 spaces of register names:
1211   //   - 16 possibilities for 16-bit GPR starting at SIB_INDEX_BX_SI
1212   //   - 16 possibilities for 32-bit GPR starting at SIB_INDEX_EAX
1213   //   - 16 possibilities for 64-bit GPR starting at SIB_INDEX_RAX
1214   //   - 32 possibilities for each of XMM, YMM, ZMM registers
1215   // When sibIndexBase gets assigned SIB_INDEX_RAX as it does in 64-bit mode,
1216   // summing in a fully decoded index between 0 and 31 can end up with a value
1217   // that looks like something in the low half of the XMM range.
1218   // translateRMMemory() tries to reverse the damage, with only partial success,
1219   // as evidenced by known bugs in "test/MC/Disassembler/X86/x86-64.txt"
1220   if (insn->vectorExtensionType == TYPE_EVEX)
1221     index |= v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4;
1222 
1223   if (index == 0x4) {
1224     insn->sibIndex = SIB_INDEX_NONE;
1225   } else {
1226     insn->sibIndex = (SIBIndex)(sibIndexBase + index);
1227   }
1228 
1229   insn->sibScale = 1 << scaleFromSIB(insn->sib);
1230 
1231   base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3);
1232 
1233   switch (base) {
1234   case 0x5:
1235   case 0xd:
1236     switch (modFromModRM(insn->modRM)) {
1237     case 0x0:
1238       insn->eaDisplacement = EA_DISP_32;
1239       insn->sibBase = SIB_BASE_NONE;
1240       break;
1241     case 0x1:
1242       insn->eaDisplacement = EA_DISP_8;
1243       insn->sibBase = (SIBBase)(sibBaseBase + base);
1244       break;
1245     case 0x2:
1246       insn->eaDisplacement = EA_DISP_32;
1247       insn->sibBase = (SIBBase)(sibBaseBase + base);
1248       break;
1249     case 0x3:
1250       debug("Cannot have Mod = 0b11 and a SIB byte");
1251       return -1;
1252     }
1253     break;
1254   default:
1255     insn->sibBase = (SIBBase)(sibBaseBase + base);
1256     break;
1257   }
1258 
1259   return 0;
1260 }
1261 
1262 /*
1263  * readDisplacement - Consumes the displacement of an instruction.
1264  *
1265  * @param insn  - The instruction whose displacement is to be read.
1266  * @return      - 0 if the displacement byte was successfully read; nonzero
1267  *                otherwise.
1268  */
readDisplacement(struct InternalInstruction * insn)1269 static int readDisplacement(struct InternalInstruction* insn) {
1270   int8_t d8;
1271   int16_t d16;
1272   int32_t d32;
1273 
1274   dbgprintf(insn, "readDisplacement()");
1275 
1276   if (insn->consumedDisplacement)
1277     return 0;
1278 
1279   insn->consumedDisplacement = true;
1280   insn->displacementOffset = insn->readerCursor - insn->startLocation;
1281 
1282   switch (insn->eaDisplacement) {
1283   case EA_DISP_NONE:
1284     insn->consumedDisplacement = false;
1285     break;
1286   case EA_DISP_8:
1287     if (consumeInt8(insn, &d8))
1288       return -1;
1289     insn->displacement = d8;
1290     break;
1291   case EA_DISP_16:
1292     if (consumeInt16(insn, &d16))
1293       return -1;
1294     insn->displacement = d16;
1295     break;
1296   case EA_DISP_32:
1297     if (consumeInt32(insn, &d32))
1298       return -1;
1299     insn->displacement = d32;
1300     break;
1301   }
1302 
1303   insn->consumedDisplacement = true;
1304   return 0;
1305 }
1306 
1307 /*
1308  * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and
1309  *   displacement) for an instruction and interprets it.
1310  *
1311  * @param insn  - The instruction whose addressing information is to be read.
1312  * @return      - 0 if the information was successfully read; nonzero otherwise.
1313  */
readModRM(struct InternalInstruction * insn)1314 static int readModRM(struct InternalInstruction* insn) {
1315   uint8_t mod, rm, reg;
1316 
1317   dbgprintf(insn, "readModRM()");
1318 
1319   if (insn->consumedModRM)
1320     return 0;
1321 
1322   if (consumeByte(insn, &insn->modRM))
1323     return -1;
1324   insn->consumedModRM = true;
1325 
1326   mod     = modFromModRM(insn->modRM);
1327   rm      = rmFromModRM(insn->modRM);
1328   reg     = regFromModRM(insn->modRM);
1329 
1330   /*
1331    * This goes by insn->registerSize to pick the correct register, which messes
1332    * up if we're using (say) XMM or 8-bit register operands.  That gets fixed in
1333    * fixupReg().
1334    */
1335   switch (insn->registerSize) {
1336   case 2:
1337     insn->regBase = MODRM_REG_AX;
1338     insn->eaRegBase = EA_REG_AX;
1339     break;
1340   case 4:
1341     insn->regBase = MODRM_REG_EAX;
1342     insn->eaRegBase = EA_REG_EAX;
1343     break;
1344   case 8:
1345     insn->regBase = MODRM_REG_RAX;
1346     insn->eaRegBase = EA_REG_RAX;
1347     break;
1348   }
1349 
1350   reg |= rFromREX(insn->rexPrefix) << 3;
1351   rm  |= bFromREX(insn->rexPrefix) << 3;
1352   if (insn->vectorExtensionType == TYPE_EVEX) {
1353     reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1354     rm  |=  xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4;
1355   }
1356 
1357   insn->reg = (Reg)(insn->regBase + reg);
1358 
1359   switch (insn->addressSize) {
1360   case 2:
1361     insn->eaBaseBase = EA_BASE_BX_SI;
1362 
1363     switch (mod) {
1364     case 0x0:
1365       if (rm == 0x6) {
1366         insn->eaBase = EA_BASE_NONE;
1367         insn->eaDisplacement = EA_DISP_16;
1368         if (readDisplacement(insn))
1369           return -1;
1370       } else {
1371         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1372         insn->eaDisplacement = EA_DISP_NONE;
1373       }
1374       break;
1375     case 0x1:
1376       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1377       insn->eaDisplacement = EA_DISP_8;
1378       insn->displacementSize = 1;
1379       if (readDisplacement(insn))
1380         return -1;
1381       break;
1382     case 0x2:
1383       insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1384       insn->eaDisplacement = EA_DISP_16;
1385       if (readDisplacement(insn))
1386         return -1;
1387       break;
1388     case 0x3:
1389       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1390       if (readDisplacement(insn))
1391         return -1;
1392       break;
1393     }
1394     break;
1395   case 4:
1396   case 8:
1397     insn->eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX);
1398 
1399     switch (mod) {
1400     case 0x0:
1401       insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */
1402       // In determining whether RIP-relative mode is used (rm=5),
1403       // or whether a SIB byte is present (rm=4),
1404       // the extension bits (REX.b and EVEX.x) are ignored.
1405       switch (rm & 7) {
1406       case 0x4: // SIB byte is present
1407         insn->eaBase = (insn->addressSize == 4 ?
1408                         EA_BASE_sib : EA_BASE_sib64);
1409         if (readSIB(insn) || readDisplacement(insn))
1410           return -1;
1411         break;
1412       case 0x5: // RIP-relative
1413         insn->eaBase = EA_BASE_NONE;
1414         insn->eaDisplacement = EA_DISP_32;
1415         if (readDisplacement(insn))
1416           return -1;
1417         break;
1418       default:
1419         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1420         break;
1421       }
1422       break;
1423     case 0x1:
1424       insn->displacementSize = 1;
1425       /* FALLTHROUGH */
1426     case 0x2:
1427       insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32);
1428       switch (rm & 7) {
1429       case 0x4: // SIB byte is present
1430         insn->eaBase = EA_BASE_sib;
1431         if (readSIB(insn) || readDisplacement(insn))
1432           return -1;
1433         break;
1434       default:
1435         insn->eaBase = (EABase)(insn->eaBaseBase + rm);
1436         if (readDisplacement(insn))
1437           return -1;
1438         break;
1439       }
1440       break;
1441     case 0x3:
1442       insn->eaDisplacement = EA_DISP_NONE;
1443       insn->eaBase = (EABase)(insn->eaRegBase + rm);
1444       break;
1445     }
1446     break;
1447   } /* switch (insn->addressSize) */
1448 
1449   return 0;
1450 }
1451 
1452 #define GENERIC_FIXUP_FUNC(name, base, prefix)            \
1453   static uint16_t name(struct InternalInstruction *insn,  \
1454                        OperandType type,                  \
1455                        uint8_t index,                     \
1456                        uint8_t *valid) {                  \
1457     *valid = 1;                                           \
1458     switch (type) {                                       \
1459     default:                                              \
1460       debug("Unhandled register type");                   \
1461       *valid = 0;                                         \
1462       return 0;                                           \
1463     case TYPE_Rv:                                         \
1464       return base + index;                                \
1465     case TYPE_R8:                                         \
1466       if (insn->rexPrefix &&                              \
1467          index >= 4 && index <= 7) {                      \
1468         return prefix##_SPL + (index - 4);                \
1469       } else {                                            \
1470         return prefix##_AL + index;                       \
1471       }                                                   \
1472     case TYPE_R16:                                        \
1473       return prefix##_AX + index;                         \
1474     case TYPE_R32:                                        \
1475       return prefix##_EAX + index;                        \
1476     case TYPE_R64:                                        \
1477       return prefix##_RAX + index;                        \
1478     case TYPE_XMM512:                                     \
1479       return prefix##_ZMM0 + index;                       \
1480     case TYPE_XMM256:                                     \
1481       return prefix##_YMM0 + index;                       \
1482     case TYPE_XMM128:                                     \
1483     case TYPE_XMM64:                                      \
1484     case TYPE_XMM32:                                      \
1485       return prefix##_XMM0 + index;                       \
1486     case TYPE_VK1:                                        \
1487     case TYPE_VK2:                                        \
1488     case TYPE_VK4:                                        \
1489     case TYPE_VK8:                                        \
1490     case TYPE_VK16:                                       \
1491     case TYPE_VK32:                                       \
1492     case TYPE_VK64:                                       \
1493       if (index > 7)                                      \
1494         *valid = 0;                                       \
1495       return prefix##_K0 + index;                         \
1496     case TYPE_MM64:                                       \
1497       return prefix##_MM0 + (index & 0x7);                \
1498     case TYPE_SEGMENTREG:                                 \
1499       if (index > 5)                                      \
1500         *valid = 0;                                       \
1501       return prefix##_ES + index;                         \
1502     case TYPE_DEBUGREG:                                   \
1503       return prefix##_DR0 + index;                        \
1504     case TYPE_CONTROLREG:                                 \
1505       return prefix##_CR0 + index;                        \
1506     case TYPE_BNDR:                                       \
1507       if (index > 3)                                      \
1508         *valid = 0;                                       \
1509       return prefix##_BND0 + index;                       \
1510     }                                                     \
1511   }
1512 
1513 /*
1514  * fixup*Value - Consults an operand type to determine the meaning of the
1515  *   reg or R/M field.  If the operand is an XMM operand, for example, an
1516  *   operand would be XMM0 instead of AX, which readModRM() would otherwise
1517  *   misinterpret it as.
1518  *
1519  * @param insn  - The instruction containing the operand.
1520  * @param type  - The operand type.
1521  * @param index - The existing value of the field as reported by readModRM().
1522  * @param valid - The address of a uint8_t.  The target is set to 1 if the
1523  *                field is valid for the register class; 0 if not.
1524  * @return      - The proper value.
1525  */
1526 GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase,    MODRM_REG)
1527 GENERIC_FIXUP_FUNC(fixupRMValue,  insn->eaRegBase,  EA_REG)
1528 
1529 /*
1530  * fixupReg - Consults an operand specifier to determine which of the
1531  *   fixup*Value functions to use in correcting readModRM()'ss interpretation.
1532  *
1533  * @param insn  - See fixup*Value().
1534  * @param op    - The operand specifier.
1535  * @return      - 0 if fixup was successful; -1 if the register returned was
1536  *                invalid for its class.
1537  */
fixupReg(struct InternalInstruction * insn,const struct OperandSpecifier * op)1538 static int fixupReg(struct InternalInstruction *insn,
1539                     const struct OperandSpecifier *op) {
1540   uint8_t valid;
1541 
1542   dbgprintf(insn, "fixupReg()");
1543 
1544   switch ((OperandEncoding)op->encoding) {
1545   default:
1546     debug("Expected a REG or R/M encoding in fixupReg");
1547     return -1;
1548   case ENCODING_VVVV:
1549     insn->vvvv = (Reg)fixupRegValue(insn,
1550                                     (OperandType)op->type,
1551                                     insn->vvvv,
1552                                     &valid);
1553     if (!valid)
1554       return -1;
1555     break;
1556   case ENCODING_REG:
1557     insn->reg = (Reg)fixupRegValue(insn,
1558                                    (OperandType)op->type,
1559                                    insn->reg - insn->regBase,
1560                                    &valid);
1561     if (!valid)
1562       return -1;
1563     break;
1564   CASE_ENCODING_RM:
1565     if (insn->eaBase >= insn->eaRegBase) {
1566       insn->eaBase = (EABase)fixupRMValue(insn,
1567                                           (OperandType)op->type,
1568                                           insn->eaBase - insn->eaRegBase,
1569                                           &valid);
1570       if (!valid)
1571         return -1;
1572     }
1573     break;
1574   }
1575 
1576   return 0;
1577 }
1578 
1579 /*
1580  * readOpcodeRegister - Reads an operand from the opcode field of an
1581  *   instruction and interprets it appropriately given the operand width.
1582  *   Handles AddRegFrm instructions.
1583  *
1584  * @param insn  - the instruction whose opcode field is to be read.
1585  * @param size  - The width (in bytes) of the register being specified.
1586  *                1 means AL and friends, 2 means AX, 4 means EAX, and 8 means
1587  *                RAX.
1588  * @return      - 0 on success; nonzero otherwise.
1589  */
readOpcodeRegister(struct InternalInstruction * insn,uint8_t size)1590 static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) {
1591   dbgprintf(insn, "readOpcodeRegister()");
1592 
1593   if (size == 0)
1594     size = insn->registerSize;
1595 
1596   switch (size) {
1597   case 1:
1598     insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3)
1599                                                   | (insn->opcode & 7)));
1600     if (insn->rexPrefix &&
1601         insn->opcodeRegister >= MODRM_REG_AL + 0x4 &&
1602         insn->opcodeRegister < MODRM_REG_AL + 0x8) {
1603       insn->opcodeRegister = (Reg)(MODRM_REG_SPL
1604                                    + (insn->opcodeRegister - MODRM_REG_AL - 4));
1605     }
1606 
1607     break;
1608   case 2:
1609     insn->opcodeRegister = (Reg)(MODRM_REG_AX
1610                                  + ((bFromREX(insn->rexPrefix) << 3)
1611                                     | (insn->opcode & 7)));
1612     break;
1613   case 4:
1614     insn->opcodeRegister = (Reg)(MODRM_REG_EAX
1615                                  + ((bFromREX(insn->rexPrefix) << 3)
1616                                     | (insn->opcode & 7)));
1617     break;
1618   case 8:
1619     insn->opcodeRegister = (Reg)(MODRM_REG_RAX
1620                                  + ((bFromREX(insn->rexPrefix) << 3)
1621                                     | (insn->opcode & 7)));
1622     break;
1623   }
1624 
1625   return 0;
1626 }
1627 
1628 /*
1629  * readImmediate - Consumes an immediate operand from an instruction, given the
1630  *   desired operand size.
1631  *
1632  * @param insn  - The instruction whose operand is to be read.
1633  * @param size  - The width (in bytes) of the operand.
1634  * @return      - 0 if the immediate was successfully consumed; nonzero
1635  *                otherwise.
1636  */
readImmediate(struct InternalInstruction * insn,uint8_t size)1637 static int readImmediate(struct InternalInstruction* insn, uint8_t size) {
1638   uint8_t imm8;
1639   uint16_t imm16;
1640   uint32_t imm32;
1641   uint64_t imm64;
1642 
1643   dbgprintf(insn, "readImmediate()");
1644 
1645   if (insn->numImmediatesConsumed == 2) {
1646     debug("Already consumed two immediates");
1647     return -1;
1648   }
1649 
1650   if (size == 0)
1651     size = insn->immediateSize;
1652   else
1653     insn->immediateSize = size;
1654   insn->immediateOffset = insn->readerCursor - insn->startLocation;
1655 
1656   switch (size) {
1657   case 1:
1658     if (consumeByte(insn, &imm8))
1659       return -1;
1660     insn->immediates[insn->numImmediatesConsumed] = imm8;
1661     break;
1662   case 2:
1663     if (consumeUInt16(insn, &imm16))
1664       return -1;
1665     insn->immediates[insn->numImmediatesConsumed] = imm16;
1666     break;
1667   case 4:
1668     if (consumeUInt32(insn, &imm32))
1669       return -1;
1670     insn->immediates[insn->numImmediatesConsumed] = imm32;
1671     break;
1672   case 8:
1673     if (consumeUInt64(insn, &imm64))
1674       return -1;
1675     insn->immediates[insn->numImmediatesConsumed] = imm64;
1676     break;
1677   }
1678 
1679   insn->numImmediatesConsumed++;
1680 
1681   return 0;
1682 }
1683 
1684 /*
1685  * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix.
1686  *
1687  * @param insn  - The instruction whose operand is to be read.
1688  * @return      - 0 if the vvvv was successfully consumed; nonzero
1689  *                otherwise.
1690  */
readVVVV(struct InternalInstruction * insn)1691 static int readVVVV(struct InternalInstruction* insn) {
1692   dbgprintf(insn, "readVVVV()");
1693 
1694   int vvvv;
1695   if (insn->vectorExtensionType == TYPE_EVEX)
1696     vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 |
1697             vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2]));
1698   else if (insn->vectorExtensionType == TYPE_VEX_3B)
1699     vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]);
1700   else if (insn->vectorExtensionType == TYPE_VEX_2B)
1701     vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]);
1702   else if (insn->vectorExtensionType == TYPE_XOP)
1703     vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]);
1704   else
1705     return -1;
1706 
1707   if (insn->mode != MODE_64BIT)
1708     vvvv &= 0x7;
1709 
1710   insn->vvvv = static_cast<Reg>(vvvv);
1711   return 0;
1712 }
1713 
1714 /*
1715  * readMaskRegister - Reads an mask register from the opcode field of an
1716  *   instruction.
1717  *
1718  * @param insn    - The instruction whose opcode field is to be read.
1719  * @return        - 0 on success; nonzero otherwise.
1720  */
readMaskRegister(struct InternalInstruction * insn)1721 static int readMaskRegister(struct InternalInstruction* insn) {
1722   dbgprintf(insn, "readMaskRegister()");
1723 
1724   if (insn->vectorExtensionType != TYPE_EVEX)
1725     return -1;
1726 
1727   insn->writemask =
1728       static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3]));
1729   return 0;
1730 }
1731 
1732 /*
1733  * readOperands - Consults the specifier for an instruction and consumes all
1734  *   operands for that instruction, interpreting them as it goes.
1735  *
1736  * @param insn  - The instruction whose operands are to be read and interpreted.
1737  * @return      - 0 if all operands could be read; nonzero otherwise.
1738  */
readOperands(struct InternalInstruction * insn)1739 static int readOperands(struct InternalInstruction* insn) {
1740   int hasVVVV, needVVVV;
1741   int sawRegImm = 0;
1742 
1743   dbgprintf(insn, "readOperands()");
1744 
1745   /* If non-zero vvvv specified, need to make sure one of the operands
1746      uses it. */
1747   hasVVVV = !readVVVV(insn);
1748   needVVVV = hasVVVV && (insn->vvvv != 0);
1749 
1750   for (const auto &Op : x86OperandSets[insn->spec->operands]) {
1751     switch (Op.encoding) {
1752     case ENCODING_NONE:
1753     case ENCODING_SI:
1754     case ENCODING_DI:
1755       break;
1756     case ENCODING_REG:
1757     CASE_ENCODING_RM:
1758       if (readModRM(insn))
1759         return -1;
1760       if (fixupReg(insn, &Op))
1761         return -1;
1762       // Apply the AVX512 compressed displacement scaling factor.
1763       if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8)
1764         insn->displacement *= 1 << (Op.encoding - ENCODING_RM);
1765       break;
1766     case ENCODING_IB:
1767       if (sawRegImm) {
1768         /* Saw a register immediate so don't read again and instead split the
1769            previous immediate.  FIXME: This is a hack. */
1770         insn->immediates[insn->numImmediatesConsumed] =
1771           insn->immediates[insn->numImmediatesConsumed - 1] & 0xf;
1772         ++insn->numImmediatesConsumed;
1773         break;
1774       }
1775       if (readImmediate(insn, 1))
1776         return -1;
1777       if (Op.type == TYPE_XMM128 ||
1778           Op.type == TYPE_XMM256)
1779         sawRegImm = 1;
1780       break;
1781     case ENCODING_IW:
1782       if (readImmediate(insn, 2))
1783         return -1;
1784       break;
1785     case ENCODING_ID:
1786       if (readImmediate(insn, 4))
1787         return -1;
1788       break;
1789     case ENCODING_IO:
1790       if (readImmediate(insn, 8))
1791         return -1;
1792       break;
1793     case ENCODING_Iv:
1794       if (readImmediate(insn, insn->immediateSize))
1795         return -1;
1796       break;
1797     case ENCODING_Ia:
1798       if (readImmediate(insn, insn->addressSize))
1799         return -1;
1800       break;
1801     case ENCODING_RB:
1802       if (readOpcodeRegister(insn, 1))
1803         return -1;
1804       break;
1805     case ENCODING_RW:
1806       if (readOpcodeRegister(insn, 2))
1807         return -1;
1808       break;
1809     case ENCODING_RD:
1810       if (readOpcodeRegister(insn, 4))
1811         return -1;
1812       break;
1813     case ENCODING_RO:
1814       if (readOpcodeRegister(insn, 8))
1815         return -1;
1816       break;
1817     case ENCODING_Rv:
1818       if (readOpcodeRegister(insn, 0))
1819         return -1;
1820       break;
1821     case ENCODING_FP:
1822       break;
1823     case ENCODING_VVVV:
1824       needVVVV = 0; /* Mark that we have found a VVVV operand. */
1825       if (!hasVVVV)
1826         return -1;
1827       if (fixupReg(insn, &Op))
1828         return -1;
1829       break;
1830     case ENCODING_WRITEMASK:
1831       if (readMaskRegister(insn))
1832         return -1;
1833       break;
1834     case ENCODING_DUP:
1835       break;
1836     default:
1837       dbgprintf(insn, "Encountered an operand with an unknown encoding.");
1838       return -1;
1839     }
1840   }
1841 
1842   /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */
1843   if (needVVVV) return -1;
1844 
1845   return 0;
1846 }
1847 
1848 /*
1849  * decodeInstruction - Reads and interprets a full instruction provided by the
1850  *   user.
1851  *
1852  * @param insn      - A pointer to the instruction to be populated.  Must be
1853  *                    pre-allocated.
1854  * @param reader    - The function to be used to read the instruction's bytes.
1855  * @param readerArg - A generic argument to be passed to the reader to store
1856  *                    any internal state.
1857  * @param logger    - If non-NULL, the function to be used to write log messages
1858  *                    and warnings.
1859  * @param loggerArg - A generic argument to be passed to the logger to store
1860  *                    any internal state.
1861  * @param startLoc  - The address (in the reader's address space) of the first
1862  *                    byte in the instruction.
1863  * @param mode      - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to
1864  *                    decode the instruction in.
1865  * @return          - 0 if the instruction's memory could be read; nonzero if
1866  *                    not.
1867  */
decodeInstruction(struct InternalInstruction * insn,byteReader_t reader,const void * readerArg,dlog_t logger,void * loggerArg,const void * miiArg,uint64_t startLoc,DisassemblerMode mode)1868 int llvm::X86Disassembler::decodeInstruction(
1869     struct InternalInstruction *insn, byteReader_t reader,
1870     const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg,
1871     uint64_t startLoc, DisassemblerMode mode) {
1872   memset(insn, 0, sizeof(struct InternalInstruction));
1873 
1874   insn->reader = reader;
1875   insn->readerArg = readerArg;
1876   insn->dlog = logger;
1877   insn->dlogArg = loggerArg;
1878   insn->startLocation = startLoc;
1879   insn->readerCursor = startLoc;
1880   insn->mode = mode;
1881   insn->numImmediatesConsumed = 0;
1882 
1883   if (readPrefixes(insn)       ||
1884       readOpcode(insn)         ||
1885       getID(insn, miiArg)      ||
1886       insn->instructionID == 0 ||
1887       readOperands(insn))
1888     return -1;
1889 
1890   insn->operands = x86OperandSets[insn->spec->operands];
1891 
1892   insn->length = insn->readerCursor - insn->startLocation;
1893 
1894   dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu",
1895             startLoc, insn->readerCursor, insn->length);
1896 
1897   if (insn->length > 15)
1898     dbgprintf(insn, "Instruction exceeds 15-byte limit");
1899 
1900   return 0;
1901 }
1902