1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 #ifndef BITSCAN_H
30 #define BITSCAN_H
31 
32 #include <assert.h>
33 #include <stdint.h>
34 #include <stdbool.h>
35 #include <string.h>
36 
37 #if defined(_MSC_VER)
38 #include <intrin.h>
39 #endif
40 
41 #if defined(__POPCNT__)
42 #include <popcntintrin.h>
43 #endif
44 
45 #include "c99_compat.h"
46 
47 #ifdef __cplusplus
48 extern "C" {
49 #endif
50 
51 
52 /**
53  * Find first bit set in word.  Least significant bit is 1.
54  * Return 0 if no bits set.
55  */
56 #ifdef HAVE___BUILTIN_FFS
57 #define ffs __builtin_ffs
58 #elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
59 static inline
60 int ffs(int i)
61 {
62    unsigned long index;
63    if (_BitScanForward(&index, i))
64       return index + 1;
65    else
66       return 0;
67 }
68 #else
69 extern
70 int ffs(int i);
71 #endif
72 
73 #ifdef HAVE___BUILTIN_FFSLL
74 #define ffsll __builtin_ffsll
75 #elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
76 static inline int
77 ffsll(long long int i)
78 {
79    unsigned long index;
80    if (_BitScanForward64(&index, i))
81       return index + 1;
82    else
83       return 0;
84 }
85 #else
86 extern int
87 ffsll(long long int val);
88 #endif
89 
90 
91 /* Destructively loop over all of the bits in a mask as in:
92  *
93  * while (mymask) {
94  *   int i = u_bit_scan(&mymask);
95  *   ... process element i
96  * }
97  *
98  */
99 static inline int
u_bit_scan(unsigned * mask)100 u_bit_scan(unsigned *mask)
101 {
102    const int i = ffs(*mask) - 1;
103    *mask ^= (1u << i);
104    return i;
105 }
106 
107 static inline int
u_bit_scan64(uint64_t * mask)108 u_bit_scan64(uint64_t *mask)
109 {
110    const int i = ffsll(*mask) - 1;
111    *mask ^= (((uint64_t)1) << i);
112    return i;
113 }
114 
115 /* Determine if an unsigned value is a power of two.
116  *
117  * \note
118  * Zero is treated as a power of two.
119  */
120 static inline bool
util_is_power_of_two_or_zero(unsigned v)121 util_is_power_of_two_or_zero(unsigned v)
122 {
123    return (v & (v - 1)) == 0;
124 }
125 
126 /* Determine if an uint64_t value is a power of two.
127  *
128  * \note
129  * Zero is treated as a power of two.
130  */
131 static inline bool
util_is_power_of_two_or_zero64(uint64_t v)132 util_is_power_of_two_or_zero64(uint64_t v)
133 {
134    return (v & (v - 1)) == 0;
135 }
136 
137 /* Determine if an unsigned value is a power of two.
138  *
139  * \note
140  * Zero is \b not treated as a power of two.
141  */
142 static inline bool
util_is_power_of_two_nonzero(unsigned v)143 util_is_power_of_two_nonzero(unsigned v)
144 {
145    /* __POPCNT__ is different from HAVE___BUILTIN_POPCOUNT.  The latter
146     * indicates the existence of the __builtin_popcount function.  The former
147     * indicates that _mm_popcnt_u32 exists and is a native instruction.
148     *
149     * The other alternative is to use SSE 4.2 compile-time flags.  This has
150     * two drawbacks.  First, there is currently no build infrastructure for
151     * SSE 4.2 (only 4.1), so that would have to be added.  Second, some AMD
152     * CPUs support POPCNT but not SSE 4.2 (e.g., Barcelona).
153     */
154 #ifdef __POPCNT__
155    return _mm_popcnt_u32(v) == 1;
156 #else
157    return v != 0 && (v & (v - 1)) == 0;
158 #endif
159 }
160 
161 /* For looping over a bitmask when you want to loop over consecutive bits
162  * manually, for example:
163  *
164  * while (mask) {
165  *    int start, count, i;
166  *
167  *    u_bit_scan_consecutive_range(&mask, &start, &count);
168  *
169  *    for (i = 0; i < count; i++)
170  *       ... process element (start+i)
171  * }
172  */
173 static inline void
u_bit_scan_consecutive_range(unsigned * mask,int * start,int * count)174 u_bit_scan_consecutive_range(unsigned *mask, int *start, int *count)
175 {
176    if (*mask == 0xffffffff) {
177       *start = 0;
178       *count = 32;
179       *mask = 0;
180       return;
181    }
182    *start = ffs(*mask) - 1;
183    *count = ffs(~(*mask >> *start)) - 1;
184    *mask &= ~(((1u << *count) - 1) << *start);
185 }
186 
187 static inline void
u_bit_scan_consecutive_range64(uint64_t * mask,int * start,int * count)188 u_bit_scan_consecutive_range64(uint64_t *mask, int *start, int *count)
189 {
190    if (*mask == ~0ull) {
191       *start = 0;
192       *count = 64;
193       *mask = 0;
194       return;
195    }
196    *start = ffsll(*mask) - 1;
197    *count = ffsll(~(*mask >> *start)) - 1;
198    *mask &= ~(((((uint64_t)1) << *count) - 1) << *start);
199 }
200 
201 
202 /**
203  * Find last bit set in a word.  The least significant bit is 1.
204  * Return 0 if no bits are set.
205  * Essentially ffs() in the reverse direction.
206  */
207 static inline unsigned
util_last_bit(unsigned u)208 util_last_bit(unsigned u)
209 {
210 #if defined(HAVE___BUILTIN_CLZ)
211    return u == 0 ? 0 : 32 - __builtin_clz(u);
212 #elif defined(_MSC_VER) && (_M_IX86 || _M_ARM || _M_AMD64 || _M_IA64)
213    unsigned long index;
214    if (_BitScanReverse(&index, u))
215       return index + 1;
216    else
217       return 0;
218 #else
219    unsigned r = 0;
220    while (u) {
221       r++;
222       u >>= 1;
223    }
224    return r;
225 #endif
226 }
227 
228 /**
229  * Find last bit set in a word.  The least significant bit is 1.
230  * Return 0 if no bits are set.
231  * Essentially ffsll() in the reverse direction.
232  */
233 static inline unsigned
util_last_bit64(uint64_t u)234 util_last_bit64(uint64_t u)
235 {
236 #if defined(HAVE___BUILTIN_CLZLL)
237    return u == 0 ? 0 : 64 - __builtin_clzll(u);
238 #elif defined(_MSC_VER) && (_M_AMD64 || _M_ARM64 || _M_IA64)
239    unsigned long index;
240    if (_BitScanReverse64(&index, u))
241       return index + 1;
242    else
243       return 0;
244 #else
245    unsigned r = 0;
246    while (u) {
247       r++;
248       u >>= 1;
249    }
250    return r;
251 #endif
252 }
253 
254 /**
255  * Find last bit in a word that does not match the sign bit. The least
256  * significant bit is 1.
257  * Return 0 if no bits are set.
258  */
259 static inline unsigned
util_last_bit_signed(int i)260 util_last_bit_signed(int i)
261 {
262    if (i >= 0)
263       return util_last_bit(i);
264    else
265       return util_last_bit(~(unsigned)i);
266 }
267 
268 /* Returns a bitfield in which the first count bits starting at start are
269  * set.
270  */
271 static inline unsigned
u_bit_consecutive(unsigned start,unsigned count)272 u_bit_consecutive(unsigned start, unsigned count)
273 {
274    assert(start + count <= 32);
275    if (count == 32)
276       return ~0;
277    return ((1u << count) - 1) << start;
278 }
279 
280 static inline uint64_t
u_bit_consecutive64(unsigned start,unsigned count)281 u_bit_consecutive64(unsigned start, unsigned count)
282 {
283    assert(start + count <= 64);
284    if (count == 64)
285       return ~(uint64_t)0;
286    return (((uint64_t)1 << count) - 1) << start;
287 }
288 
289 /**
290  * Return number of bits set in n.
291  */
292 static inline unsigned
util_bitcount(unsigned n)293 util_bitcount(unsigned n)
294 {
295 #if defined(HAVE___BUILTIN_POPCOUNT)
296    return __builtin_popcount(n);
297 #else
298    /* K&R classic bitcount.
299     *
300     * For each iteration, clear the LSB from the bitfield.
301     * Requires only one iteration per set bit, instead of
302     * one iteration per bit less than highest set bit.
303     */
304    unsigned bits;
305    for (bits = 0; n; bits++) {
306       n &= n - 1;
307    }
308    return bits;
309 #endif
310 }
311 
312 static inline unsigned
util_bitcount64(uint64_t n)313 util_bitcount64(uint64_t n)
314 {
315 #ifdef HAVE___BUILTIN_POPCOUNTLL
316    return __builtin_popcountll(n);
317 #else
318    return util_bitcount(n) + util_bitcount(n >> 32);
319 #endif
320 }
321 
322 #ifdef __cplusplus
323 }
324 #endif
325 
326 #endif /* BITSCAN_H */
327