1 /*
2  Copyright (C) Intel Corp.  2006.  All Rights Reserved.
3  Intel funded Tungsten Graphics to
4  develop this 3D driver.
5 
6  Permission is hereby granted, free of charge, to any person obtaining
7  a copy of this software and associated documentation files (the
8  "Software"), to deal in the Software without restriction, including
9  without limitation the rights to use, copy, modify, merge, publish,
10  distribute, sublicense, and/or sell copies of the Software, and to
11  permit persons to whom the Software is furnished to do so, subject to
12  the following conditions:
13 
14  The above copyright notice and this permission notice (including the
15  next paragraph) shall be included in all copies or substantial
16  portions of the Software.
17 
18  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21  IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 
26  **********************************************************************/
27  /*
28   * Authors:
29   *   Keith Whitwell <keithw@vmware.com>
30   */
31 
32 
33 #include "main/macros.h"
34 #include "main/enums.h"
35 
36 #include "program/program.h"
37 #include "intel_batchbuffer.h"
38 
39 #include "brw_defines.h"
40 #include "brw_context.h"
41 #include "brw_ff_gs.h"
42 
43 /**
44  * Allocate registers for GS.
45  *
46  * If sol_program is true, then:
47  *
48  * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
49  *   1 needs to be set aside to hold the streamed vertex buffer indices.
50  *
51  * - The thread will need to use the destination_indices register.
52  */
brw_ff_gs_alloc_regs(struct brw_ff_gs_compile * c,GLuint nr_verts,bool sol_program)53 static void brw_ff_gs_alloc_regs(struct brw_ff_gs_compile *c,
54                                  GLuint nr_verts,
55                                  bool sol_program)
56 {
57    GLuint i = 0,j;
58 
59    /* Register usage is static, precompute here:
60     */
61    c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
62 
63    /* Streamed vertex buffer indices */
64    if (sol_program)
65       c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
66 
67    /* Payload vertices plus space for more generated vertices:
68     */
69    for (j = 0; j < nr_verts; j++) {
70       c->reg.vertex[j] = brw_vec4_grf(i, 0);
71       i += c->nr_regs;
72    }
73 
74    c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
75    c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
76 
77    if (sol_program) {
78       c->reg.destination_indices =
79          retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
80    }
81 
82    c->prog_data.urb_read_length = c->nr_regs;
83    c->prog_data.total_grf = i;
84 }
85 
86 
87 /**
88  * Set up the initial value of c->reg.header register based on c->reg.R0.
89  *
90  * The following information is passed to the GS thread in R0, and needs to be
91  * included in the first URB_WRITE or FF_SYNC message sent by the GS:
92  *
93  * - DWORD 0 [31:0] handle info (Gen4 only)
94  * - DWORD 5 [7:0] FFTID
95  * - DWORD 6 [31:0] Debug info
96  * - DWORD 7 [31:0] Debug info
97  *
98  * This function sets up the above data by copying by copying the contents of
99  * R0 to the header register.
100  */
brw_ff_gs_initialize_header(struct brw_ff_gs_compile * c)101 static void brw_ff_gs_initialize_header(struct brw_ff_gs_compile *c)
102 {
103    struct brw_codegen *p = &c->func;
104    brw_MOV(p, c->reg.header, c->reg.R0);
105 }
106 
107 /**
108  * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
109  *
110  * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
111  * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
112  * need to be able to update on a per-vertex basis.
113  */
brw_ff_gs_overwrite_header_dw2(struct brw_ff_gs_compile * c,unsigned dw2)114 static void brw_ff_gs_overwrite_header_dw2(struct brw_ff_gs_compile *c,
115                                            unsigned dw2)
116 {
117    struct brw_codegen *p = &c->func;
118    brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
119 }
120 
121 /**
122  * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
123  *
124  * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
125  * of DWORD 2.  URB_WRITE messages need the primitive type in bits 6:2 of
126  * DWORD 2.  So this function extracts the primitive type field, bitshifts it
127  * appropriately, and stores it in c->reg.header.
128  */
brw_ff_gs_overwrite_header_dw2_from_r0(struct brw_ff_gs_compile * c)129 static void brw_ff_gs_overwrite_header_dw2_from_r0(struct brw_ff_gs_compile *c)
130 {
131    struct brw_codegen *p = &c->func;
132    brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
133            brw_imm_ud(0x1f));
134    brw_SHL(p, get_element_ud(c->reg.header, 2),
135            get_element_ud(c->reg.header, 2), brw_imm_ud(2));
136 }
137 
138 /**
139  * Apply an additive offset to DWORD 2 of c->reg.header.
140  *
141  * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
142  * for each vertex.
143  */
brw_ff_gs_offset_header_dw2(struct brw_ff_gs_compile * c,int offset)144 static void brw_ff_gs_offset_header_dw2(struct brw_ff_gs_compile *c,
145                                         int offset)
146 {
147    struct brw_codegen *p = &c->func;
148    brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
149            brw_imm_d(offset));
150 }
151 
152 
153 /**
154  * Emit a vertex using the URB_WRITE message.  Use the contents of
155  * c->reg.header for the message header, and the registers starting at \c vert
156  * for the vertex data.
157  *
158  * If \c last is true, then this is the last vertex, so no further URB space
159  * should be allocated, and this message should end the thread.
160  *
161  * If \c last is false, then a new URB entry will be allocated, and its handle
162  * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
163  * message.
164  */
brw_ff_gs_emit_vue(struct brw_ff_gs_compile * c,struct brw_reg vert,bool last)165 static void brw_ff_gs_emit_vue(struct brw_ff_gs_compile *c,
166                                struct brw_reg vert,
167                                bool last)
168 {
169    struct brw_codegen *p = &c->func;
170    int write_offset = 0;
171    bool complete = false;
172 
173    do {
174       /* We can't write more than 14 registers at a time to the URB */
175       int write_len = MIN2(c->nr_regs - write_offset, 14);
176       if (write_len == c->nr_regs - write_offset)
177          complete = true;
178 
179       /* Copy the vertex from vertn into m1..mN+1:
180        */
181       brw_copy8(p, brw_message_reg(1), offset(vert, write_offset), write_len);
182 
183       /* Send the vertex data to the URB.  If this is the last write for this
184        * vertex, then we mark it as complete, and either end the thread or
185        * allocate another vertex URB entry (depending whether this is the last
186        * vertex).
187        */
188       enum brw_urb_write_flags flags;
189       if (!complete)
190          flags = BRW_URB_WRITE_NO_FLAGS;
191       else if (last)
192          flags = BRW_URB_WRITE_EOT_COMPLETE;
193       else
194          flags = BRW_URB_WRITE_ALLOCATE_COMPLETE;
195       brw_urb_WRITE(p,
196                     (flags & BRW_URB_WRITE_ALLOCATE) ? c->reg.temp
197                     : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
198                     0,
199                     c->reg.header,
200                     flags,
201                     write_len + 1, /* msg length */
202                     (flags & BRW_URB_WRITE_ALLOCATE) ? 1
203                     : 0, /* response length */
204                     write_offset,  /* urb offset */
205                     BRW_URB_SWIZZLE_NONE);
206       write_offset += write_len;
207    } while (!complete);
208 
209    if (!last) {
210       brw_MOV(p, get_element_ud(c->reg.header, 0),
211               get_element_ud(c->reg.temp, 0));
212    }
213 }
214 
215 /**
216  * Send an FF_SYNC message to ensure that all previously spawned GS threads
217  * have finished sending primitives down the pipeline, and to allocate a URB
218  * entry for the first output vertex.  Only needed on Ironlake+.
219  *
220  * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
221  * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
222  * the allocated URB entry (which will be needed by the URB_WRITE meesage that
223  * follows).
224  */
brw_ff_gs_ff_sync(struct brw_ff_gs_compile * c,int num_prim)225 static void brw_ff_gs_ff_sync(struct brw_ff_gs_compile *c, int num_prim)
226 {
227    struct brw_codegen *p = &c->func;
228 
229    brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
230    brw_ff_sync(p,
231                c->reg.temp,
232                0,
233                c->reg.header,
234                1, /* allocate */
235                1, /* response length */
236                0 /* eot */);
237    brw_MOV(p, get_element_ud(c->reg.header, 0),
238            get_element_ud(c->reg.temp, 0));
239 }
240 
241 
242 void
brw_ff_gs_quads(struct brw_ff_gs_compile * c,struct brw_ff_gs_prog_key * key)243 brw_ff_gs_quads(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key)
244 {
245    brw_ff_gs_alloc_regs(c, 4, false);
246    brw_ff_gs_initialize_header(c);
247    /* Use polygons for correct edgeflag behaviour. Note that vertex 3
248     * is the PV for quads, but vertex 0 for polygons:
249     */
250    if (c->func.devinfo->gen == 5)
251       brw_ff_gs_ff_sync(c, 1);
252    brw_ff_gs_overwrite_header_dw2(
253       c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
254           | URB_WRITE_PRIM_START));
255    if (key->pv_first) {
256       brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
257       brw_ff_gs_overwrite_header_dw2(
258          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
259       brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
260       brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
261       brw_ff_gs_overwrite_header_dw2(
262          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
263              | URB_WRITE_PRIM_END));
264       brw_ff_gs_emit_vue(c, c->reg.vertex[3], 1);
265    }
266    else {
267       brw_ff_gs_emit_vue(c, c->reg.vertex[3], 0);
268       brw_ff_gs_overwrite_header_dw2(
269          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
270       brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
271       brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
272       brw_ff_gs_overwrite_header_dw2(
273          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
274              | URB_WRITE_PRIM_END));
275       brw_ff_gs_emit_vue(c, c->reg.vertex[2], 1);
276    }
277 }
278 
279 void
brw_ff_gs_quad_strip(struct brw_ff_gs_compile * c,struct brw_ff_gs_prog_key * key)280 brw_ff_gs_quad_strip(struct brw_ff_gs_compile *c,
281                      struct brw_ff_gs_prog_key *key)
282 {
283    brw_ff_gs_alloc_regs(c, 4, false);
284    brw_ff_gs_initialize_header(c);
285 
286    if (c->func.devinfo->gen == 5)
287       brw_ff_gs_ff_sync(c, 1);
288    brw_ff_gs_overwrite_header_dw2(
289       c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
290           | URB_WRITE_PRIM_START));
291    if (key->pv_first) {
292       brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
293       brw_ff_gs_overwrite_header_dw2(
294          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
295       brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
296       brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
297       brw_ff_gs_overwrite_header_dw2(
298          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
299              | URB_WRITE_PRIM_END));
300       brw_ff_gs_emit_vue(c, c->reg.vertex[3], 1);
301    }
302    else {
303       brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
304       brw_ff_gs_overwrite_header_dw2(
305          c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
306       brw_ff_gs_emit_vue(c, c->reg.vertex[3], 0);
307       brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
308       brw_ff_gs_overwrite_header_dw2(
309          c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
310              | URB_WRITE_PRIM_END));
311       brw_ff_gs_emit_vue(c, c->reg.vertex[1], 1);
312    }
313 }
314 
brw_ff_gs_lines(struct brw_ff_gs_compile * c)315 void brw_ff_gs_lines(struct brw_ff_gs_compile *c)
316 {
317    brw_ff_gs_alloc_regs(c, 2, false);
318    brw_ff_gs_initialize_header(c);
319 
320    if (c->func.devinfo->gen == 5)
321       brw_ff_gs_ff_sync(c, 1);
322    brw_ff_gs_overwrite_header_dw2(
323       c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
324           | URB_WRITE_PRIM_START));
325    brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
326    brw_ff_gs_overwrite_header_dw2(
327       c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
328           | URB_WRITE_PRIM_END));
329    brw_ff_gs_emit_vue(c, c->reg.vertex[1], 1);
330 }
331 
332 /**
333  * Generate the geometry shader program used on Gen6 to perform stream output
334  * (transform feedback).
335  */
336 void
gen6_sol_program(struct brw_ff_gs_compile * c,struct brw_ff_gs_prog_key * key,unsigned num_verts,bool check_edge_flags)337 gen6_sol_program(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key,
338 	         unsigned num_verts, bool check_edge_flags)
339 {
340    struct brw_codegen *p = &c->func;
341    brw_inst *inst;
342    c->prog_data.svbi_postincrement_value = num_verts;
343 
344    brw_ff_gs_alloc_regs(c, num_verts, true);
345    brw_ff_gs_initialize_header(c);
346 
347    if (key->num_transform_feedback_bindings > 0) {
348       unsigned vertex, binding;
349       struct brw_reg destination_indices_uw =
350          vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
351 
352       /* Note: since we use the binding table to keep track of buffer offsets
353        * and stride, the GS doesn't need to keep track of a separate pointer
354        * into each buffer; it uses a single pointer which increments by 1 for
355        * each vertex.  So we use SVBI0 for this pointer, regardless of whether
356        * transform feedback is in interleaved or separate attribs mode.
357        *
358        * Make sure that the buffers have enough room for all the vertices.
359        */
360       brw_ADD(p, get_element_ud(c->reg.temp, 0),
361 	         get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
362       brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
363 	         get_element_ud(c->reg.temp, 0),
364 	         get_element_ud(c->reg.SVBI, 4));
365       brw_IF(p, BRW_EXECUTE_1);
366 
367       /* Compute the destination indices to write to.  Usually we use SVBI[0]
368        * + (0, 1, 2).  However, for odd-numbered triangles in tristrips, the
369        * vertices come down the pipeline in reversed winding order, so we need
370        * to flip the order when writing to the transform feedback buffer.  To
371        * ensure that flatshading accuracy is preserved, we need to write them
372        * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
373        * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
374        * the last provoking vertex convention.
375        *
376        * Note: since brw_imm_v can only be used in instructions in
377        * packed-word execution mode, and SVBI is a double-word, we need to
378        * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
379        * or (1, 0, 2)) to the destination_indices register, and then add SVBI
380        * using a separate instruction.  Also, since the immediate constant is
381        * expressed as packed words, and we need to load double-words into
382        * destination_indices, we need to intersperse zeros to fill the upper
383        * halves of each double-word.
384        */
385       brw_MOV(p, destination_indices_uw,
386               brw_imm_v(0x00020100)); /* (0, 1, 2) */
387       if (num_verts == 3) {
388          /* Get primitive type into temp register. */
389          brw_AND(p, get_element_ud(c->reg.temp, 0),
390                  get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
391 
392          /* Test if primitive type is TRISTRIP_REVERSE.  We need to do this as
393           * an 8-wide comparison so that the conditional MOV that follows
394           * moves all 8 words correctly.
395           */
396          brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
397                  get_element_ud(c->reg.temp, 0),
398                  brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
399 
400          /* If so, then overwrite destination_indices_uw with the appropriate
401           * reordering.
402           */
403          inst = brw_MOV(p, destination_indices_uw,
404                         brw_imm_v(key->pv_first ? 0x00010200    /* (0, 2, 1) */
405                                                 : 0x00020001)); /* (1, 0, 2) */
406          brw_inst_set_pred_control(p->devinfo, inst, BRW_PREDICATE_NORMAL);
407       }
408 
409       assert(c->reg.destination_indices.width == BRW_EXECUTE_4);
410       brw_push_insn_state(p);
411       brw_set_default_exec_size(p, BRW_EXECUTE_4);
412       brw_ADD(p, c->reg.destination_indices,
413               c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
414       brw_pop_insn_state(p);
415       /* For each vertex, generate code to output each varying using the
416        * appropriate binding table entry.
417        */
418       for (vertex = 0; vertex < num_verts; ++vertex) {
419          /* Set up the correct destination index for this vertex */
420          brw_MOV(p, get_element_ud(c->reg.header, 5),
421                  get_element_ud(c->reg.destination_indices, vertex));
422 
423          for (binding = 0; binding < key->num_transform_feedback_bindings;
424               ++binding) {
425             unsigned char varying =
426                key->transform_feedback_bindings[binding];
427             unsigned char slot = c->vue_map.varying_to_slot[varying];
428             /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
429              *
430              *   "Prior to End of Thread with a URB_WRITE, the kernel must
431              *   ensure that all writes are complete by sending the final
432              *   write as a committed write."
433              */
434             bool final_write =
435                binding == key->num_transform_feedback_bindings - 1 &&
436                vertex == num_verts - 1;
437             struct brw_reg vertex_slot = c->reg.vertex[vertex];
438             vertex_slot.nr += slot / 2;
439             vertex_slot.subnr = (slot % 2) * 16;
440             /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
441             vertex_slot.swizzle = varying == VARYING_SLOT_PSIZ
442                ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
443             brw_set_default_access_mode(p, BRW_ALIGN_16);
444             brw_push_insn_state(p);
445             brw_set_default_exec_size(p, BRW_EXECUTE_4);
446 
447             brw_MOV(p, stride(c->reg.header, 4, 4, 1),
448                     retype(vertex_slot, BRW_REGISTER_TYPE_UD));
449             brw_pop_insn_state(p);
450 
451             brw_set_default_access_mode(p, BRW_ALIGN_1);
452             brw_svb_write(p,
453                           final_write ? c->reg.temp : brw_null_reg(), /* dest */
454                           1, /* msg_reg_nr */
455                           c->reg.header, /* src0 */
456                           BRW_GEN6_SOL_BINDING_START + binding, /* binding_table_index */
457                           final_write); /* send_commit_msg */
458          }
459       }
460       brw_ENDIF(p);
461 
462       /* Now, reinitialize the header register from R0 to restore the parts of
463        * the register that we overwrote while streaming out transform feedback
464        * data.
465        */
466       brw_ff_gs_initialize_header(c);
467 
468       /* Finally, wait for the write commit to occur so that we can proceed to
469        * other things safely.
470        *
471        * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
472        *
473        *   The write commit does not modify the destination register, but
474        *   merely clears the dependency associated with the destination
475        *   register. Thus, a simple “mov” instruction using the register as a
476        *   source is sufficient to wait for the write commit to occur.
477        */
478       brw_MOV(p, c->reg.temp, c->reg.temp);
479    }
480 
481    brw_ff_gs_ff_sync(c, 1);
482 
483    brw_ff_gs_overwrite_header_dw2_from_r0(c);
484    switch (num_verts) {
485    case 1:
486       brw_ff_gs_offset_header_dw2(c,
487                                   URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
488       brw_ff_gs_emit_vue(c, c->reg.vertex[0], true);
489       break;
490    case 2:
491       brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
492       brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
493       brw_ff_gs_offset_header_dw2(c,
494                                   URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
495       brw_ff_gs_emit_vue(c, c->reg.vertex[1], true);
496       break;
497    case 3:
498       if (check_edge_flags) {
499          /* Only emit vertices 0 and 1 if this is the first triangle of the
500           * polygon.  Otherwise they are redundant.
501           */
502          brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
503                  get_element_ud(c->reg.R0, 2),
504                  brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
505          brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
506          brw_IF(p, BRW_EXECUTE_1);
507       }
508       brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
509       brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
510       brw_ff_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
511       brw_ff_gs_emit_vue(c, c->reg.vertex[1], false);
512       if (check_edge_flags) {
513          brw_ENDIF(p);
514          /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
515           * of the polygon.  Otherwise leave the primitive incomplete because
516           * there are more polygon vertices coming.
517           */
518          brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
519                  get_element_ud(c->reg.R0, 2),
520                  brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
521          brw_inst_set_cond_modifier(p->devinfo, brw_last_inst, BRW_CONDITIONAL_NZ);
522          brw_set_default_predicate_control(p, BRW_PREDICATE_NORMAL);
523       }
524       brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
525       brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
526       brw_ff_gs_emit_vue(c, c->reg.vertex[2], true);
527       break;
528    }
529 }
530