1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Functions to convert SavedModel to frozen GraphDefs."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.lite.python import util
22from tensorflow.core.framework import types_pb2
23from tensorflow.python.client import session
24from tensorflow.python.framework import ops
25from tensorflow.python.platform import tf_logging as logging
26from tensorflow.python.saved_model import constants
27from tensorflow.python.saved_model import loader
28
29
30def _log_tensor_details(tensor_info):
31  """Log tensor details: name, shape, and type."""
32  for key in tensor_info:
33    val = tensor_info[key]
34    dtype = types_pb2.DataType.Name(val.dtype)
35    if val.tensor_shape.unknown_rank:
36      shape = "unknown_rank"
37    else:
38      dims = [str(dim.size) for dim in val.tensor_shape.dim]
39      shape = "({})".format(", ".join(dims))
40
41    logging.info("Tensor's key in saved_model's tensor_map: %s", key)
42    logging.info(" tensor name: %s, shape: %s, type: %s", val.name, shape,
43                 dtype)
44
45
46def get_meta_graph_def(saved_model_dir, tag_set):
47  """Validate saved_model and extract MetaGraphDef.
48
49  Args:
50    saved_model_dir: saved_model path to convert.
51    tag_set: Set of tag(s) of the MetaGraphDef to load.
52
53  Returns:
54    The meta_graph_def used for tflite conversion.
55
56  Raises:
57    ValueError: No valid MetaGraphDef for given tag_set.
58  """
59  with session.Session(graph=ops.Graph()) as sess:
60    return loader.load(sess, tag_set, saved_model_dir)
61
62
63def get_signature_def(meta_graph, signature_key):
64  """Get the signature def from meta_graph with given signature_key.
65
66  Args:
67    meta_graph: meta_graph_def.
68    signature_key: signature_def in the meta_graph_def.
69
70  Returns:
71    The signature_def used for tflite conversion.
72
73  Raises:
74    ValueError: Given signature_key is not valid for this meta_graph.
75  """
76  signature_def_map = meta_graph.signature_def
77  signature_def_keys = set(signature_def_map.keys())
78  logging.info(
79      "The given SavedModel MetaGraphDef contains SignatureDefs with the "
80      "following keys: %s", signature_def_keys)
81  if signature_key not in signature_def_keys:
82    raise ValueError("No '{}' in the SavedModel\'s SignatureDefs. Possible "
83                     "values are '{}'.".format(signature_key,
84                                               ",".join(signature_def_keys)))
85  return signature_def_map[signature_key]
86
87
88def get_inputs_outputs(signature_def):
89  """Get inputs and outputs from SignatureDef.
90
91  Args:
92    signature_def: SignatureDef in the meta_graph_def for conversion.
93
94  Returns:
95    The inputs and outputs in the graph for conversion.
96  """
97  inputs_tensor_info = signature_def.inputs
98  outputs_tensor_info = signature_def.outputs
99  logging.info("input tensors info: ")
100  _log_tensor_details(inputs_tensor_info)
101  logging.info("output tensors info: ")
102  _log_tensor_details(outputs_tensor_info)
103
104  def gather_names(tensor_info):
105    return [tensor_info[key].name for key in tensor_info]
106
107  inputs = gather_names(inputs_tensor_info)
108  outputs = gather_names(outputs_tensor_info)
109  return inputs, outputs
110
111
112def _get_tensors(graph, signature_def_tensor_names=None,
113                 user_tensor_names=None):
114  """Gets the tensors associated with the tensor names.
115
116  Either signature_def_tensor_names or user_tensor_names should be provided. If
117  the user provides tensors, the tensors associated with the user provided
118  tensor names are provided. Otherwise, the tensors associated with the names in
119  the SignatureDef are provided.
120
121  Args:
122    graph: GraphDef representing graph.
123    signature_def_tensor_names: Tensor names stored in either the inputs or
124      outputs of a SignatureDef. (default None)
125    user_tensor_names: Tensor names provided by the user. (default None)
126
127  Returns:
128    List of tensors.
129
130  Raises:
131    ValueError:
132      signature_def_tensors and user_tensor_names are undefined or empty.
133      user_tensor_names are not valid.
134  """
135  tensors = []
136  if user_tensor_names:
137    # Sort the tensor names.
138    user_tensor_names = sorted(user_tensor_names)
139
140    tensors = util.get_tensors_from_tensor_names(graph, user_tensor_names)
141  elif signature_def_tensor_names:
142    tensors = [
143        graph.get_tensor_by_name(name)
144        for name in sorted(signature_def_tensor_names)
145    ]
146  else:
147    # Throw ValueError if signature_def_tensors and user_tensor_names are both
148    # either undefined or empty.
149    raise ValueError(
150        "Specify either signature_def_tensor_names or user_tensor_names")
151
152  return tensors
153
154
155def freeze_saved_model(saved_model_dir, input_arrays, input_shapes,
156                       output_arrays, tag_set, signature_key):
157  """Converts a SavedModel to a frozen graph.
158
159  Args:
160    saved_model_dir: SavedModel directory to convert.
161    input_arrays: List of input tensors to freeze graph with. Uses input arrays
162      from SignatureDef when none are provided.
163    input_shapes: Dict of strings representing input tensor names to list of
164      integers representing input shapes (e.g., {"foo": : [1, 16, 16, 3]}).
165      Automatically determined when input shapes is None (e.g., {"foo" : None}).
166    output_arrays: List of output tensors to freeze graph with. Uses output
167      arrays from SignatureDef when none are provided.
168    tag_set: Set of tags identifying the MetaGraphDef within the SavedModel to
169      analyze. All tags in the tag set must be present.
170    signature_key: Key identifying SignatureDef containing inputs and outputs.
171
172  Returns:
173    frozen_graph_def: Frozen GraphDef.
174    in_tensors: List of input tensors for the graph.
175    out_tensors: List of output tensors for the graph.
176    graph: `Graph` object.
177
178  Raises:
179    ValueError:
180      SavedModel doesn't contain a MetaGraphDef identified by tag_set.
181      signature_key is not in the MetaGraphDef.
182      assets/ directory is in the MetaGraphDef.
183      input_shapes does not match the length of input_arrays.
184      input_arrays or output_arrays are not valid.
185  """
186  # Read SignatureDef.
187  meta_graph = get_meta_graph_def(saved_model_dir, tag_set)
188  signature_def = get_signature_def(meta_graph, signature_key)
189  inputs, outputs = get_inputs_outputs(signature_def)
190
191  # Check SavedModel for assets directory.
192  collection_def = meta_graph.collection_def
193  if constants.ASSETS_KEY in collection_def:
194    raise ValueError("SavedModels with assets/ directory are not supported.")
195
196  graph = ops.Graph()
197  with session.Session(graph=graph) as sess:
198    loader.load(sess, meta_graph.meta_info_def.tags, saved_model_dir)
199
200    # Gets input and output tensors.
201    # TODO(zhixianyan): Use TFLite supported Op list to filter outputs.
202    in_tensors = _get_tensors(graph, inputs, input_arrays)
203    out_tensors = _get_tensors(graph, outputs, output_arrays)
204    util.set_tensor_shapes(in_tensors, input_shapes)
205
206    frozen_graph_def = util.freeze_graph(sess, in_tensors, out_tensors)
207    return frozen_graph_def, in_tensors, out_tensors, sess.graph
208