1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #include <algorithm>
38 #include <cstring>
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 
42 #include "double-conversion-bignum.h"
43 #include "double-conversion-utils.h"
44 
45 // ICU PATCH: Wrap in ICU namespace
46 U_NAMESPACE_BEGIN
47 
48 namespace double_conversion {
49 
RawBigit(const int index)50 Bignum::Chunk& Bignum::RawBigit(const int index) {
51   DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
52   return bigits_buffer_[index];
53 }
54 
55 
RawBigit(const int index) const56 const Bignum::Chunk& Bignum::RawBigit(const int index) const {
57   DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
58   return bigits_buffer_[index];
59 }
60 
61 
62 template<typename S>
BitSize(const S value)63 static int BitSize(const S value) {
64   (void) value;  // Mark variable as used.
65   return 8 * sizeof(value);
66 }
67 
68 // Guaranteed to lie in one Bigit.
AssignUInt16(const uint16_t value)69 void Bignum::AssignUInt16(const uint16_t value) {
70   DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
71   Zero();
72   if (value > 0) {
73     RawBigit(0) = value;
74     used_bigits_ = 1;
75   }
76 }
77 
78 
AssignUInt64(uint64_t value)79 void Bignum::AssignUInt64(uint64_t value) {
80   Zero();
81   for(int i = 0; value > 0; ++i) {
82     RawBigit(i) = value & kBigitMask;
83     value >>= kBigitSize;
84     ++used_bigits_;
85   }
86 }
87 
88 
AssignBignum(const Bignum & other)89 void Bignum::AssignBignum(const Bignum& other) {
90   exponent_ = other.exponent_;
91   for (int i = 0; i < other.used_bigits_; ++i) {
92     RawBigit(i) = other.RawBigit(i);
93   }
94   used_bigits_ = other.used_bigits_;
95 }
96 
97 
ReadUInt64(const Vector<const char> buffer,const int from,const int digits_to_read)98 static uint64_t ReadUInt64(const Vector<const char> buffer,
99                            const int from,
100                            const int digits_to_read) {
101   uint64_t result = 0;
102   for (int i = from; i < from + digits_to_read; ++i) {
103     const int digit = buffer[i] - '0';
104     DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
105     result = result * 10 + digit;
106   }
107   return result;
108 }
109 
110 
AssignDecimalString(const Vector<const char> value)111 void Bignum::AssignDecimalString(const Vector<const char> value) {
112   // 2^64 = 18446744073709551616 > 10^19
113   static const int kMaxUint64DecimalDigits = 19;
114   Zero();
115   int length = value.length();
116   unsigned pos = 0;
117   // Let's just say that each digit needs 4 bits.
118   while (length >= kMaxUint64DecimalDigits) {
119     const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
120     pos += kMaxUint64DecimalDigits;
121     length -= kMaxUint64DecimalDigits;
122     MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
123     AddUInt64(digits);
124   }
125   const uint64_t digits = ReadUInt64(value, pos, length);
126   MultiplyByPowerOfTen(length);
127   AddUInt64(digits);
128   Clamp();
129 }
130 
131 
HexCharValue(const int c)132 static uint64_t HexCharValue(const int c) {
133   if ('0' <= c && c <= '9') {
134     return c - '0';
135   }
136   if ('a' <= c && c <= 'f') {
137     return 10 + c - 'a';
138   }
139   DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
140   return 10 + c - 'A';
141 }
142 
143 
144 // Unlike AssignDecimalString(), this function is "only" used
145 // for unit-tests and therefore not performance critical.
AssignHexString(Vector<const char> value)146 void Bignum::AssignHexString(Vector<const char> value) {
147   Zero();
148   // Required capacity could be reduced by ignoring leading zeros.
149   EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
150   DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4);  // TODO: static_assert
151   // Accumulates converted hex digits until at least kBigitSize bits.
152   // Works with non-factor-of-four kBigitSizes.
153   uint64_t tmp = 0;  // Accumulates converted hex digits until at least
154   for (int cnt = 0; !value.is_empty(); value.pop_back()) {
155     tmp |= (HexCharValue(value.last()) << cnt);
156     if ((cnt += 4) >= kBigitSize) {
157       RawBigit(used_bigits_++) = (tmp & kBigitMask);
158       cnt -= kBigitSize;
159       tmp >>= kBigitSize;
160     }
161   }
162   if (tmp > 0) {
163     RawBigit(used_bigits_++) = tmp;
164   }
165   Clamp();
166 }
167 
168 
AddUInt64(const uint64_t operand)169 void Bignum::AddUInt64(const uint64_t operand) {
170   if (operand == 0) {
171     return;
172   }
173   Bignum other;
174   other.AssignUInt64(operand);
175   AddBignum(other);
176 }
177 
178 
AddBignum(const Bignum & other)179 void Bignum::AddBignum(const Bignum& other) {
180   DOUBLE_CONVERSION_ASSERT(IsClamped());
181   DOUBLE_CONVERSION_ASSERT(other.IsClamped());
182 
183   // If this has a greater exponent than other append zero-bigits to this.
184   // After this call exponent_ <= other.exponent_.
185   Align(other);
186 
187   // There are two possibilities:
188   //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
189   //     bbbbb 00000000
190   //   ----------------
191   //   ccccccccccc 0000
192   // or
193   //    aaaaaaaaaa 0000
194   //  bbbbbbbbb 0000000
195   //  -----------------
196   //  cccccccccccc 0000
197   // In both cases we might need a carry bigit.
198 
199   EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
200   Chunk carry = 0;
201   int bigit_pos = other.exponent_ - exponent_;
202   DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
203   for (int i = used_bigits_; i < bigit_pos; ++i) {
204     RawBigit(i) = 0;
205   }
206   for (int i = 0; i < other.used_bigits_; ++i) {
207     const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
208     const Chunk sum = my + other.RawBigit(i) + carry;
209     RawBigit(bigit_pos) = sum & kBigitMask;
210     carry = sum >> kBigitSize;
211     ++bigit_pos;
212   }
213   while (carry != 0) {
214     const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
215     const Chunk sum = my + carry;
216     RawBigit(bigit_pos) = sum & kBigitMask;
217     carry = sum >> kBigitSize;
218     ++bigit_pos;
219   }
220   used_bigits_ = (std::max)(bigit_pos, static_cast<int>(used_bigits_));
221   DOUBLE_CONVERSION_ASSERT(IsClamped());
222 }
223 
224 
SubtractBignum(const Bignum & other)225 void Bignum::SubtractBignum(const Bignum& other) {
226   DOUBLE_CONVERSION_ASSERT(IsClamped());
227   DOUBLE_CONVERSION_ASSERT(other.IsClamped());
228   // We require this to be bigger than other.
229   DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
230 
231   Align(other);
232 
233   const int offset = other.exponent_ - exponent_;
234   Chunk borrow = 0;
235   int i;
236   for (i = 0; i < other.used_bigits_; ++i) {
237     DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
238     const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
239     RawBigit(i + offset) = difference & kBigitMask;
240     borrow = difference >> (kChunkSize - 1);
241   }
242   while (borrow != 0) {
243     const Chunk difference = RawBigit(i + offset) - borrow;
244     RawBigit(i + offset) = difference & kBigitMask;
245     borrow = difference >> (kChunkSize - 1);
246     ++i;
247   }
248   Clamp();
249 }
250 
251 
ShiftLeft(const int shift_amount)252 void Bignum::ShiftLeft(const int shift_amount) {
253   if (used_bigits_ == 0) {
254     return;
255   }
256   exponent_ += (shift_amount / kBigitSize);
257   const int local_shift = shift_amount % kBigitSize;
258   EnsureCapacity(used_bigits_ + 1);
259   BigitsShiftLeft(local_shift);
260 }
261 
262 
MultiplyByUInt32(const uint32_t factor)263 void Bignum::MultiplyByUInt32(const uint32_t factor) {
264   if (factor == 1) {
265     return;
266   }
267   if (factor == 0) {
268     Zero();
269     return;
270   }
271   if (used_bigits_ == 0) {
272     return;
273   }
274   // The product of a bigit with the factor is of size kBigitSize + 32.
275   // Assert that this number + 1 (for the carry) fits into double chunk.
276   DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
277   DoubleChunk carry = 0;
278   for (int i = 0; i < used_bigits_; ++i) {
279     const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
280     RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
281     carry = (product >> kBigitSize);
282   }
283   while (carry != 0) {
284     EnsureCapacity(used_bigits_ + 1);
285     RawBigit(used_bigits_) = carry & kBigitMask;
286     used_bigits_++;
287     carry >>= kBigitSize;
288   }
289 }
290 
291 
MultiplyByUInt64(const uint64_t factor)292 void Bignum::MultiplyByUInt64(const uint64_t factor) {
293   if (factor == 1) {
294     return;
295   }
296   if (factor == 0) {
297     Zero();
298     return;
299   }
300   if (used_bigits_ == 0) {
301     return;
302   }
303   DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
304   uint64_t carry = 0;
305   const uint64_t low = factor & 0xFFFFFFFF;
306   const uint64_t high = factor >> 32;
307   for (int i = 0; i < used_bigits_; ++i) {
308     const uint64_t product_low = low * RawBigit(i);
309     const uint64_t product_high = high * RawBigit(i);
310     const uint64_t tmp = (carry & kBigitMask) + product_low;
311     RawBigit(i) = tmp & kBigitMask;
312     carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
313         (product_high << (32 - kBigitSize));
314   }
315   while (carry != 0) {
316     EnsureCapacity(used_bigits_ + 1);
317     RawBigit(used_bigits_) = carry & kBigitMask;
318     used_bigits_++;
319     carry >>= kBigitSize;
320   }
321 }
322 
323 
MultiplyByPowerOfTen(const int exponent)324 void Bignum::MultiplyByPowerOfTen(const int exponent) {
325   static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
326   static const uint16_t kFive1 = 5;
327   static const uint16_t kFive2 = kFive1 * 5;
328   static const uint16_t kFive3 = kFive2 * 5;
329   static const uint16_t kFive4 = kFive3 * 5;
330   static const uint16_t kFive5 = kFive4 * 5;
331   static const uint16_t kFive6 = kFive5 * 5;
332   static const uint32_t kFive7 = kFive6 * 5;
333   static const uint32_t kFive8 = kFive7 * 5;
334   static const uint32_t kFive9 = kFive8 * 5;
335   static const uint32_t kFive10 = kFive9 * 5;
336   static const uint32_t kFive11 = kFive10 * 5;
337   static const uint32_t kFive12 = kFive11 * 5;
338   static const uint32_t kFive13 = kFive12 * 5;
339   static const uint32_t kFive1_to_12[] =
340       { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
341         kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
342 
343   DOUBLE_CONVERSION_ASSERT(exponent >= 0);
344 
345   if (exponent == 0) {
346     return;
347   }
348   if (used_bigits_ == 0) {
349     return;
350   }
351   // We shift by exponent at the end just before returning.
352   int remaining_exponent = exponent;
353   while (remaining_exponent >= 27) {
354     MultiplyByUInt64(kFive27);
355     remaining_exponent -= 27;
356   }
357   while (remaining_exponent >= 13) {
358     MultiplyByUInt32(kFive13);
359     remaining_exponent -= 13;
360   }
361   if (remaining_exponent > 0) {
362     MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
363   }
364   ShiftLeft(exponent);
365 }
366 
367 
Square()368 void Bignum::Square() {
369   DOUBLE_CONVERSION_ASSERT(IsClamped());
370   const int product_length = 2 * used_bigits_;
371   EnsureCapacity(product_length);
372 
373   // Comba multiplication: compute each column separately.
374   // Example: r = a2a1a0 * b2b1b0.
375   //    r =  1    * a0b0 +
376   //        10    * (a1b0 + a0b1) +
377   //        100   * (a2b0 + a1b1 + a0b2) +
378   //        1000  * (a2b1 + a1b2) +
379   //        10000 * a2b2
380   //
381   // In the worst case we have to accumulate nb-digits products of digit*digit.
382   //
383   // Assert that the additional number of bits in a DoubleChunk are enough to
384   // sum up used_digits of Bigit*Bigit.
385   if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
386     DOUBLE_CONVERSION_UNIMPLEMENTED();
387   }
388   DoubleChunk accumulator = 0;
389   // First shift the digits so we don't overwrite them.
390   const int copy_offset = used_bigits_;
391   for (int i = 0; i < used_bigits_; ++i) {
392     RawBigit(copy_offset + i) = RawBigit(i);
393   }
394   // We have two loops to avoid some 'if's in the loop.
395   for (int i = 0; i < used_bigits_; ++i) {
396     // Process temporary digit i with power i.
397     // The sum of the two indices must be equal to i.
398     int bigit_index1 = i;
399     int bigit_index2 = 0;
400     // Sum all of the sub-products.
401     while (bigit_index1 >= 0) {
402       const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
403       const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
404       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
405       bigit_index1--;
406       bigit_index2++;
407     }
408     RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
409     accumulator >>= kBigitSize;
410   }
411   for (int i = used_bigits_; i < product_length; ++i) {
412     int bigit_index1 = used_bigits_ - 1;
413     int bigit_index2 = i - bigit_index1;
414     // Invariant: sum of both indices is again equal to i.
415     // Inner loop runs 0 times on last iteration, emptying accumulator.
416     while (bigit_index2 < used_bigits_) {
417       const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
418       const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
419       accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
420       bigit_index1--;
421       bigit_index2++;
422     }
423     // The overwritten RawBigit(i) will never be read in further loop iterations,
424     // because bigit_index1 and bigit_index2 are always greater
425     // than i - used_bigits_.
426     RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
427     accumulator >>= kBigitSize;
428   }
429   // Since the result was guaranteed to lie inside the number the
430   // accumulator must be 0 now.
431   DOUBLE_CONVERSION_ASSERT(accumulator == 0);
432 
433   // Don't forget to update the used_digits and the exponent.
434   used_bigits_ = product_length;
435   exponent_ *= 2;
436   Clamp();
437 }
438 
439 
AssignPowerUInt16(uint16_t base,const int power_exponent)440 void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
441   DOUBLE_CONVERSION_ASSERT(base != 0);
442   DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
443   if (power_exponent == 0) {
444     AssignUInt16(1);
445     return;
446   }
447   Zero();
448   int shifts = 0;
449   // We expect base to be in range 2-32, and most often to be 10.
450   // It does not make much sense to implement different algorithms for counting
451   // the bits.
452   while ((base & 1) == 0) {
453     base >>= 1;
454     shifts++;
455   }
456   int bit_size = 0;
457   int tmp_base = base;
458   while (tmp_base != 0) {
459     tmp_base >>= 1;
460     bit_size++;
461   }
462   const int final_size = bit_size * power_exponent;
463   // 1 extra bigit for the shifting, and one for rounded final_size.
464   EnsureCapacity(final_size / kBigitSize + 2);
465 
466   // Left to Right exponentiation.
467   int mask = 1;
468   while (power_exponent >= mask) mask <<= 1;
469 
470   // The mask is now pointing to the bit above the most significant 1-bit of
471   // power_exponent.
472   // Get rid of first 1-bit;
473   mask >>= 2;
474   uint64_t this_value = base;
475 
476   bool delayed_multiplication = false;
477   const uint64_t max_32bits = 0xFFFFFFFF;
478   while (mask != 0 && this_value <= max_32bits) {
479     this_value = this_value * this_value;
480     // Verify that there is enough space in this_value to perform the
481     // multiplication.  The first bit_size bits must be 0.
482     if ((power_exponent & mask) != 0) {
483       DOUBLE_CONVERSION_ASSERT(bit_size > 0);
484       const uint64_t base_bits_mask =
485         ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
486       const bool high_bits_zero = (this_value & base_bits_mask) == 0;
487       if (high_bits_zero) {
488         this_value *= base;
489       } else {
490         delayed_multiplication = true;
491       }
492     }
493     mask >>= 1;
494   }
495   AssignUInt64(this_value);
496   if (delayed_multiplication) {
497     MultiplyByUInt32(base);
498   }
499 
500   // Now do the same thing as a bignum.
501   while (mask != 0) {
502     Square();
503     if ((power_exponent & mask) != 0) {
504       MultiplyByUInt32(base);
505     }
506     mask >>= 1;
507   }
508 
509   // And finally add the saved shifts.
510   ShiftLeft(shifts * power_exponent);
511 }
512 
513 
514 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)515 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
516   DOUBLE_CONVERSION_ASSERT(IsClamped());
517   DOUBLE_CONVERSION_ASSERT(other.IsClamped());
518   DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
519 
520   // Easy case: if we have less digits than the divisor than the result is 0.
521   // Note: this handles the case where this == 0, too.
522   if (BigitLength() < other.BigitLength()) {
523     return 0;
524   }
525 
526   Align(other);
527 
528   uint16_t result = 0;
529 
530   // Start by removing multiples of 'other' until both numbers have the same
531   // number of digits.
532   while (BigitLength() > other.BigitLength()) {
533     // This naive approach is extremely inefficient if `this` divided by other
534     // is big. This function is implemented for doubleToString where
535     // the result should be small (less than 10).
536     DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
537     DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
538     // Remove the multiples of the first digit.
539     // Example this = 23 and other equals 9. -> Remove 2 multiples.
540     result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
541     SubtractTimes(other, RawBigit(used_bigits_ - 1));
542   }
543 
544   DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
545 
546   // Both bignums are at the same length now.
547   // Since other has more than 0 digits we know that the access to
548   // RawBigit(used_bigits_ - 1) is safe.
549   const Chunk this_bigit = RawBigit(used_bigits_ - 1);
550   const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
551 
552   if (other.used_bigits_ == 1) {
553     // Shortcut for easy (and common) case.
554     int quotient = this_bigit / other_bigit;
555     RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
556     DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
557     result += static_cast<uint16_t>(quotient);
558     Clamp();
559     return result;
560   }
561 
562   const int division_estimate = this_bigit / (other_bigit + 1);
563   DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
564   result += static_cast<uint16_t>(division_estimate);
565   SubtractTimes(other, division_estimate);
566 
567   if (other_bigit * (division_estimate + 1) > this_bigit) {
568     // No need to even try to subtract. Even if other's remaining digits were 0
569     // another subtraction would be too much.
570     return result;
571   }
572 
573   while (LessEqual(other, *this)) {
574     SubtractBignum(other);
575     result++;
576   }
577   return result;
578 }
579 
580 
581 template<typename S>
SizeInHexChars(S number)582 static int SizeInHexChars(S number) {
583   DOUBLE_CONVERSION_ASSERT(number > 0);
584   int result = 0;
585   while (number != 0) {
586     number >>= 4;
587     result++;
588   }
589   return result;
590 }
591 
592 
HexCharOfValue(const int value)593 static char HexCharOfValue(const int value) {
594   DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
595   if (value < 10) {
596     return static_cast<char>(value + '0');
597   }
598   return static_cast<char>(value - 10 + 'A');
599 }
600 
601 
ToHexString(char * buffer,const int buffer_size) const602 bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
603   DOUBLE_CONVERSION_ASSERT(IsClamped());
604   // Each bigit must be printable as separate hex-character.
605   DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
606   static const int kHexCharsPerBigit = kBigitSize / 4;
607 
608   if (used_bigits_ == 0) {
609     if (buffer_size < 2) {
610       return false;
611     }
612     buffer[0] = '0';
613     buffer[1] = '\0';
614     return true;
615   }
616   // We add 1 for the terminating '\0' character.
617   const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
618     SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
619   if (needed_chars > buffer_size) {
620     return false;
621   }
622   int string_index = needed_chars - 1;
623   buffer[string_index--] = '\0';
624   for (int i = 0; i < exponent_; ++i) {
625     for (int j = 0; j < kHexCharsPerBigit; ++j) {
626       buffer[string_index--] = '0';
627     }
628   }
629   for (int i = 0; i < used_bigits_ - 1; ++i) {
630     Chunk current_bigit = RawBigit(i);
631     for (int j = 0; j < kHexCharsPerBigit; ++j) {
632       buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
633       current_bigit >>= 4;
634     }
635   }
636   // And finally the last bigit.
637   Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
638   while (most_significant_bigit != 0) {
639     buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
640     most_significant_bigit >>= 4;
641   }
642   return true;
643 }
644 
645 
BigitOrZero(const int index) const646 Bignum::Chunk Bignum::BigitOrZero(const int index) const {
647   if (index >= BigitLength()) {
648     return 0;
649   }
650   if (index < exponent_) {
651     return 0;
652   }
653   return RawBigit(index - exponent_);
654 }
655 
656 
Compare(const Bignum & a,const Bignum & b)657 int Bignum::Compare(const Bignum& a, const Bignum& b) {
658   DOUBLE_CONVERSION_ASSERT(a.IsClamped());
659   DOUBLE_CONVERSION_ASSERT(b.IsClamped());
660   const int bigit_length_a = a.BigitLength();
661   const int bigit_length_b = b.BigitLength();
662   if (bigit_length_a < bigit_length_b) {
663     return -1;
664   }
665   if (bigit_length_a > bigit_length_b) {
666     return +1;
667   }
668   for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
669     const Chunk bigit_a = a.BigitOrZero(i);
670     const Chunk bigit_b = b.BigitOrZero(i);
671     if (bigit_a < bigit_b) {
672       return -1;
673     }
674     if (bigit_a > bigit_b) {
675       return +1;
676     }
677     // Otherwise they are equal up to this digit. Try the next digit.
678   }
679   return 0;
680 }
681 
682 
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)683 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
684   DOUBLE_CONVERSION_ASSERT(a.IsClamped());
685   DOUBLE_CONVERSION_ASSERT(b.IsClamped());
686   DOUBLE_CONVERSION_ASSERT(c.IsClamped());
687   if (a.BigitLength() < b.BigitLength()) {
688     return PlusCompare(b, a, c);
689   }
690   if (a.BigitLength() + 1 < c.BigitLength()) {
691     return -1;
692   }
693   if (a.BigitLength() > c.BigitLength()) {
694     return +1;
695   }
696   // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
697   // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
698   // of 'a'.
699   if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
700     return -1;
701   }
702 
703   Chunk borrow = 0;
704   // Starting at min_exponent all digits are == 0. So no need to compare them.
705   const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
706   for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
707     const Chunk chunk_a = a.BigitOrZero(i);
708     const Chunk chunk_b = b.BigitOrZero(i);
709     const Chunk chunk_c = c.BigitOrZero(i);
710     const Chunk sum = chunk_a + chunk_b;
711     if (sum > chunk_c + borrow) {
712       return +1;
713     } else {
714       borrow = chunk_c + borrow - sum;
715       if (borrow > 1) {
716         return -1;
717       }
718       borrow <<= kBigitSize;
719     }
720   }
721   if (borrow == 0) {
722     return 0;
723   }
724   return -1;
725 }
726 
727 
Clamp()728 void Bignum::Clamp() {
729   while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
730     used_bigits_--;
731   }
732   if (used_bigits_ == 0) {
733     // Zero.
734     exponent_ = 0;
735   }
736 }
737 
738 
Align(const Bignum & other)739 void Bignum::Align(const Bignum& other) {
740   if (exponent_ > other.exponent_) {
741     // If "X" represents a "hidden" bigit (by the exponent) then we are in the
742     // following case (a == this, b == other):
743     // a:  aaaaaaXXXX   or a:   aaaaaXXX
744     // b:     bbbbbbX      b: bbbbbbbbXX
745     // We replace some of the hidden digits (X) of a with 0 digits.
746     // a:  aaaaaa000X   or a:   aaaaa0XX
747     const int zero_bigits = exponent_ - other.exponent_;
748     EnsureCapacity(used_bigits_ + zero_bigits);
749     for (int i = used_bigits_ - 1; i >= 0; --i) {
750       RawBigit(i + zero_bigits) = RawBigit(i);
751     }
752     for (int i = 0; i < zero_bigits; ++i) {
753       RawBigit(i) = 0;
754     }
755     used_bigits_ += zero_bigits;
756     exponent_ -= zero_bigits;
757 
758     DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
759     DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
760   }
761 }
762 
763 
BigitsShiftLeft(const int shift_amount)764 void Bignum::BigitsShiftLeft(const int shift_amount) {
765   DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
766   DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
767   Chunk carry = 0;
768   for (int i = 0; i < used_bigits_; ++i) {
769     const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
770     RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
771     carry = new_carry;
772   }
773   if (carry != 0) {
774     RawBigit(used_bigits_) = carry;
775     used_bigits_++;
776   }
777 }
778 
779 
SubtractTimes(const Bignum & other,const int factor)780 void Bignum::SubtractTimes(const Bignum& other, const int factor) {
781   DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
782   if (factor < 3) {
783     for (int i = 0; i < factor; ++i) {
784       SubtractBignum(other);
785     }
786     return;
787   }
788   Chunk borrow = 0;
789   const int exponent_diff = other.exponent_ - exponent_;
790   for (int i = 0; i < other.used_bigits_; ++i) {
791     const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
792     const DoubleChunk remove = borrow + product;
793     const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
794     RawBigit(i + exponent_diff) = difference & kBigitMask;
795     borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
796                                 (remove >> kBigitSize));
797   }
798   for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
799     if (borrow == 0) {
800       return;
801     }
802     const Chunk difference = RawBigit(i) - borrow;
803     RawBigit(i) = difference & kBigitMask;
804     borrow = difference >> (kChunkSize - 1);
805   }
806   Clamp();
807 }
808 
809 
810 }  // namespace double_conversion
811 
812 // ICU PATCH: Close ICU namespace
813 U_NAMESPACE_END
814 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
815