1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 //     * Redistributions of source code must retain the above copyright
12 //       notice, this list of conditions and the following disclaimer.
13 //     * Redistributions in binary form must reproduce the above
14 //       copyright notice, this list of conditions and the following
15 //       disclaimer in the documentation and/or other materials provided
16 //       with the distribution.
17 //     * Neither the name of Google Inc. nor the names of its
18 //       contributors may be used to endorse or promote products derived
19 //       from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36 
37 #include <climits>
38 #include <cstdarg>
39 
40 // ICU PATCH: Customize header file paths for ICU.
41 
42 #include "double-conversion-bignum.h"
43 #include "double-conversion-cached-powers.h"
44 #include "double-conversion-ieee.h"
45 #include "double-conversion-strtod.h"
46 
47 // ICU PATCH: Wrap in ICU namespace
48 U_NAMESPACE_BEGIN
49 
50 namespace double_conversion {
51 
52 #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
53 // 2^53 = 9007199254740992.
54 // Any integer with at most 15 decimal digits will hence fit into a double
55 // (which has a 53bit significand) without loss of precision.
56 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
57 #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
58 // 2^64 = 18446744073709551616 > 10^19
59 static const int kMaxUint64DecimalDigits = 19;
60 
61 // Max double: 1.7976931348623157 x 10^308
62 // Min non-zero double: 4.9406564584124654 x 10^-324
63 // Any x >= 10^309 is interpreted as +infinity.
64 // Any x <= 10^-324 is interpreted as 0.
65 // Note that 2.5e-324 (despite being smaller than the min double) will be read
66 // as non-zero (equal to the min non-zero double).
67 static const int kMaxDecimalPower = 309;
68 static const int kMinDecimalPower = -324;
69 
70 // 2^64 = 18446744073709551616
71 static const uint64_t kMaxUint64 = DOUBLE_CONVERSION_UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
72 
73 
74 #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
75 static const double exact_powers_of_ten[] = {
76   1.0,  // 10^0
77   10.0,
78   100.0,
79   1000.0,
80   10000.0,
81   100000.0,
82   1000000.0,
83   10000000.0,
84   100000000.0,
85   1000000000.0,
86   10000000000.0,  // 10^10
87   100000000000.0,
88   1000000000000.0,
89   10000000000000.0,
90   100000000000000.0,
91   1000000000000000.0,
92   10000000000000000.0,
93   100000000000000000.0,
94   1000000000000000000.0,
95   10000000000000000000.0,
96   100000000000000000000.0,  // 10^20
97   1000000000000000000000.0,
98   // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
99   10000000000000000000000.0
100 };
101 static const int kExactPowersOfTenSize = DOUBLE_CONVERSION_ARRAY_SIZE(exact_powers_of_ten);
102 #endif // #if defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
103 
104 // Maximum number of significant digits in the decimal representation.
105 // In fact the value is 772 (see conversions.cc), but to give us some margin
106 // we round up to 780.
107 static const int kMaxSignificantDecimalDigits = 780;
108 
TrimLeadingZeros(Vector<const char> buffer)109 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
110   for (int i = 0; i < buffer.length(); i++) {
111     if (buffer[i] != '0') {
112       return buffer.SubVector(i, buffer.length());
113     }
114   }
115   return Vector<const char>(buffer.start(), 0);
116 }
117 
118 
TrimTrailingZeros(Vector<const char> buffer)119 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
120   for (int i = buffer.length() - 1; i >= 0; --i) {
121     if (buffer[i] != '0') {
122       return buffer.SubVector(0, i + 1);
123     }
124   }
125   return Vector<const char>(buffer.start(), 0);
126 }
127 
128 
CutToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)129 static void CutToMaxSignificantDigits(Vector<const char> buffer,
130                                        int exponent,
131                                        char* significant_buffer,
132                                        int* significant_exponent) {
133   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
134     significant_buffer[i] = buffer[i];
135   }
136   // The input buffer has been trimmed. Therefore the last digit must be
137   // different from '0'.
138   DOUBLE_CONVERSION_ASSERT(buffer[buffer.length() - 1] != '0');
139   // Set the last digit to be non-zero. This is sufficient to guarantee
140   // correct rounding.
141   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
142   *significant_exponent =
143       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
144 }
145 
146 
147 // Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits.
148 // If possible the input-buffer is reused, but if the buffer needs to be
149 // modified (due to cutting), then the input needs to be copied into the
150 // buffer_copy_space.
TrimAndCut(Vector<const char> buffer,int exponent,char * buffer_copy_space,int space_size,Vector<const char> * trimmed,int * updated_exponent)151 static void TrimAndCut(Vector<const char> buffer, int exponent,
152                        char* buffer_copy_space, int space_size,
153                        Vector<const char>* trimmed, int* updated_exponent) {
154   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
155   Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed);
156   exponent += left_trimmed.length() - right_trimmed.length();
157   if (right_trimmed.length() > kMaxSignificantDecimalDigits) {
158     (void) space_size;  // Mark variable as used.
159     DOUBLE_CONVERSION_ASSERT(space_size >= kMaxSignificantDecimalDigits);
160     CutToMaxSignificantDigits(right_trimmed, exponent,
161                               buffer_copy_space, updated_exponent);
162     *trimmed = Vector<const char>(buffer_copy_space,
163                                  kMaxSignificantDecimalDigits);
164   } else {
165     *trimmed = right_trimmed;
166     *updated_exponent = exponent;
167   }
168 }
169 
170 
171 // Reads digits from the buffer and converts them to a uint64.
172 // Reads in as many digits as fit into a uint64.
173 // When the string starts with "1844674407370955161" no further digit is read.
174 // Since 2^64 = 18446744073709551616 it would still be possible read another
175 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)176 static uint64_t ReadUint64(Vector<const char> buffer,
177                            int* number_of_read_digits) {
178   uint64_t result = 0;
179   int i = 0;
180   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
181     int digit = buffer[i++] - '0';
182     DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
183     result = 10 * result + digit;
184   }
185   *number_of_read_digits = i;
186   return result;
187 }
188 
189 
190 // Reads a DiyFp from the buffer.
191 // The returned DiyFp is not necessarily normalized.
192 // If remaining_decimals is zero then the returned DiyFp is accurate.
193 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)194 static void ReadDiyFp(Vector<const char> buffer,
195                       DiyFp* result,
196                       int* remaining_decimals) {
197   int read_digits;
198   uint64_t significand = ReadUint64(buffer, &read_digits);
199   if (buffer.length() == read_digits) {
200     *result = DiyFp(significand, 0);
201     *remaining_decimals = 0;
202   } else {
203     // Round the significand.
204     if (buffer[read_digits] >= '5') {
205       significand++;
206     }
207     // Compute the binary exponent.
208     int exponent = 0;
209     *result = DiyFp(significand, exponent);
210     *remaining_decimals = buffer.length() - read_digits;
211   }
212 }
213 
214 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)215 static bool DoubleStrtod(Vector<const char> trimmed,
216                          int exponent,
217                          double* result) {
218 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
219   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
220   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
221   // result is not accurate.
222   // We know that Windows32 uses 64 bits and is therefore accurate.
223   // Note that the ARM simulator is compiled for 32bits. It therefore exhibits
224   // the same problem.
225   return false;
226 #else
227   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
228     int read_digits;
229     // The trimmed input fits into a double.
230     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
231     // can compute the result-double simply by multiplying (resp. dividing) the
232     // two numbers.
233     // This is possible because IEEE guarantees that floating-point operations
234     // return the best possible approximation.
235     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
236       // 10^-exponent fits into a double.
237       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
238       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
239       *result /= exact_powers_of_ten[-exponent];
240       return true;
241     }
242     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
243       // 10^exponent fits into a double.
244       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
245       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
246       *result *= exact_powers_of_ten[exponent];
247       return true;
248     }
249     int remaining_digits =
250         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
251     if ((0 <= exponent) &&
252         (exponent - remaining_digits < kExactPowersOfTenSize)) {
253       // The trimmed string was short and we can multiply it with
254       // 10^remaining_digits. As a result the remaining exponent now fits
255       // into a double too.
256       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
257       DOUBLE_CONVERSION_ASSERT(read_digits == trimmed.length());
258       *result *= exact_powers_of_ten[remaining_digits];
259       *result *= exact_powers_of_ten[exponent - remaining_digits];
260       return true;
261     }
262   }
263   return false;
264 #endif
265 }
266 
267 
268 // Returns 10^exponent as an exact DiyFp.
269 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)270 static DiyFp AdjustmentPowerOfTen(int exponent) {
271   DOUBLE_CONVERSION_ASSERT(0 < exponent);
272   DOUBLE_CONVERSION_ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
273   // Simply hardcode the remaining powers for the given decimal exponent
274   // distance.
275   DOUBLE_CONVERSION_ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
276   switch (exponent) {
277     case 1: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xa0000000, 00000000), -60);
278     case 2: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc8000000, 00000000), -57);
279     case 3: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xfa000000, 00000000), -54);
280     case 4: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x9c400000, 00000000), -50);
281     case 5: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xc3500000, 00000000), -47);
282     case 6: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0xf4240000, 00000000), -44);
283     case 7: return DiyFp(DOUBLE_CONVERSION_UINT64_2PART_C(0x98968000, 00000000), -40);
284     default:
285       DOUBLE_CONVERSION_UNREACHABLE();
286   }
287 }
288 
289 
290 // If the function returns true then the result is the correct double.
291 // Otherwise it is either the correct double or the double that is just below
292 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)293 static bool DiyFpStrtod(Vector<const char> buffer,
294                         int exponent,
295                         double* result) {
296   DiyFp input;
297   int remaining_decimals;
298   ReadDiyFp(buffer, &input, &remaining_decimals);
299   // Since we may have dropped some digits the input is not accurate.
300   // If remaining_decimals is different than 0 than the error is at most
301   // .5 ulp (unit in the last place).
302   // We don't want to deal with fractions and therefore keep a common
303   // denominator.
304   const int kDenominatorLog = 3;
305   const int kDenominator = 1 << kDenominatorLog;
306   // Move the remaining decimals into the exponent.
307   exponent += remaining_decimals;
308   uint64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
309 
310   int old_e = input.e();
311   input.Normalize();
312   error <<= old_e - input.e();
313 
314   DOUBLE_CONVERSION_ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
315   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
316     *result = 0.0;
317     return true;
318   }
319   DiyFp cached_power;
320   int cached_decimal_exponent;
321   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
322                                                      &cached_power,
323                                                      &cached_decimal_exponent);
324 
325   if (cached_decimal_exponent != exponent) {
326     int adjustment_exponent = exponent - cached_decimal_exponent;
327     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
328     input.Multiply(adjustment_power);
329     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
330       // The product of input with the adjustment power fits into a 64 bit
331       // integer.
332       DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
333     } else {
334       // The adjustment power is exact. There is hence only an error of 0.5.
335       error += kDenominator / 2;
336     }
337   }
338 
339   input.Multiply(cached_power);
340   // The error introduced by a multiplication of a*b equals
341   //   error_a + error_b + error_a*error_b/2^64 + 0.5
342   // Substituting a with 'input' and b with 'cached_power' we have
343   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
344   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
345   int error_b = kDenominator / 2;
346   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
347   int fixed_error = kDenominator / 2;
348   error += error_b + error_ab + fixed_error;
349 
350   old_e = input.e();
351   input.Normalize();
352   error <<= old_e - input.e();
353 
354   // See if the double's significand changes if we add/subtract the error.
355   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
356   int effective_significand_size =
357       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
358   int precision_digits_count =
359       DiyFp::kSignificandSize - effective_significand_size;
360   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
361     // This can only happen for very small denormals. In this case the
362     // half-way multiplied by the denominator exceeds the range of an uint64.
363     // Simply shift everything to the right.
364     int shift_amount = (precision_digits_count + kDenominatorLog) -
365         DiyFp::kSignificandSize + 1;
366     input.set_f(input.f() >> shift_amount);
367     input.set_e(input.e() + shift_amount);
368     // We add 1 for the lost precision of error, and kDenominator for
369     // the lost precision of input.f().
370     error = (error >> shift_amount) + 1 + kDenominator;
371     precision_digits_count -= shift_amount;
372   }
373   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
374   DOUBLE_CONVERSION_ASSERT(DiyFp::kSignificandSize == 64);
375   DOUBLE_CONVERSION_ASSERT(precision_digits_count < 64);
376   uint64_t one64 = 1;
377   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
378   uint64_t precision_bits = input.f() & precision_bits_mask;
379   uint64_t half_way = one64 << (precision_digits_count - 1);
380   precision_bits *= kDenominator;
381   half_way *= kDenominator;
382   DiyFp rounded_input(input.f() >> precision_digits_count,
383                       input.e() + precision_digits_count);
384   if (precision_bits >= half_way + error) {
385     rounded_input.set_f(rounded_input.f() + 1);
386   }
387   // If the last_bits are too close to the half-way case than we are too
388   // inaccurate and round down. In this case we return false so that we can
389   // fall back to a more precise algorithm.
390 
391   *result = Double(rounded_input).value();
392   if (half_way - error < precision_bits && precision_bits < half_way + error) {
393     // Too imprecise. The caller will have to fall back to a slower version.
394     // However the returned number is guaranteed to be either the correct
395     // double, or the next-lower double.
396     return false;
397   } else {
398     return true;
399   }
400 }
401 
402 
403 // Returns
404 //   - -1 if buffer*10^exponent < diy_fp.
405 //   -  0 if buffer*10^exponent == diy_fp.
406 //   - +1 if buffer*10^exponent > diy_fp.
407 // Preconditions:
408 //   buffer.length() + exponent <= kMaxDecimalPower + 1
409 //   buffer.length() + exponent > kMinDecimalPower
410 //   buffer.length() <= kMaxDecimalSignificantDigits
CompareBufferWithDiyFp(Vector<const char> buffer,int exponent,DiyFp diy_fp)411 static int CompareBufferWithDiyFp(Vector<const char> buffer,
412                                   int exponent,
413                                   DiyFp diy_fp) {
414   DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
415   DOUBLE_CONVERSION_ASSERT(buffer.length() + exponent > kMinDecimalPower);
416   DOUBLE_CONVERSION_ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
417   // Make sure that the Bignum will be able to hold all our numbers.
418   // Our Bignum implementation has a separate field for exponents. Shifts will
419   // consume at most one bigit (< 64 bits).
420   // ln(10) == 3.3219...
421   DOUBLE_CONVERSION_ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
422   Bignum buffer_bignum;
423   Bignum diy_fp_bignum;
424   buffer_bignum.AssignDecimalString(buffer);
425   diy_fp_bignum.AssignUInt64(diy_fp.f());
426   if (exponent >= 0) {
427     buffer_bignum.MultiplyByPowerOfTen(exponent);
428   } else {
429     diy_fp_bignum.MultiplyByPowerOfTen(-exponent);
430   }
431   if (diy_fp.e() > 0) {
432     diy_fp_bignum.ShiftLeft(diy_fp.e());
433   } else {
434     buffer_bignum.ShiftLeft(-diy_fp.e());
435   }
436   return Bignum::Compare(buffer_bignum, diy_fp_bignum);
437 }
438 
439 
440 // Returns true if the guess is the correct double.
441 // Returns false, when guess is either correct or the next-lower double.
ComputeGuess(Vector<const char> trimmed,int exponent,double * guess)442 static bool ComputeGuess(Vector<const char> trimmed, int exponent,
443                          double* guess) {
444   if (trimmed.length() == 0) {
445     *guess = 0.0;
446     return true;
447   }
448   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
449     *guess = Double::Infinity();
450     return true;
451   }
452   if (exponent + trimmed.length() <= kMinDecimalPower) {
453     *guess = 0.0;
454     return true;
455   }
456 
457   if (DoubleStrtod(trimmed, exponent, guess) ||
458       DiyFpStrtod(trimmed, exponent, guess)) {
459     return true;
460   }
461   if (*guess == Double::Infinity()) {
462     return true;
463   }
464   return false;
465 }
466 
467 #if U_DEBUG // needed for ICU only in debug mode
IsDigit(const char d)468 static bool IsDigit(const char d) {
469   return ('0' <= d) && (d <= '9');
470 }
471 
IsNonZeroDigit(const char d)472 static bool IsNonZeroDigit(const char d) {
473   return ('1' <= d) && (d <= '9');
474 }
475 
AssertTrimmedDigits(const Vector<const char> & buffer)476 static bool AssertTrimmedDigits(const Vector<const char>& buffer) {
477   for(int i = 0; i < buffer.length(); ++i) {
478     if(!IsDigit(buffer[i])) {
479       return false;
480     }
481   }
482   return (buffer.length() == 0) || (IsNonZeroDigit(buffer[0]) && IsNonZeroDigit(buffer[buffer.length()-1]));
483 }
484 #endif // needed for ICU only in debug mode
485 
StrtodTrimmed(Vector<const char> trimmed,int exponent)486 double StrtodTrimmed(Vector<const char> trimmed, int exponent) {
487   DOUBLE_CONVERSION_ASSERT(trimmed.length() <= kMaxSignificantDecimalDigits);
488   DOUBLE_CONVERSION_ASSERT(AssertTrimmedDigits(trimmed));
489   double guess;
490   const bool is_correct = ComputeGuess(trimmed, exponent, &guess);
491   if (is_correct) {
492     return guess;
493   }
494   DiyFp upper_boundary = Double(guess).UpperBoundary();
495   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
496   if (comparison < 0) {
497     return guess;
498   } else if (comparison > 0) {
499     return Double(guess).NextDouble();
500   } else if ((Double(guess).Significand() & 1) == 0) {
501     // Round towards even.
502     return guess;
503   } else {
504     return Double(guess).NextDouble();
505   }
506 }
507 
Strtod(Vector<const char> buffer,int exponent)508 double Strtod(Vector<const char> buffer, int exponent) {
509   char copy_buffer[kMaxSignificantDecimalDigits];
510   Vector<const char> trimmed;
511   int updated_exponent;
512   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
513              &trimmed, &updated_exponent);
514   return StrtodTrimmed(trimmed, updated_exponent);
515 }
516 
SanitizedDoubletof(double d)517 static float SanitizedDoubletof(double d) {
518   DOUBLE_CONVERSION_ASSERT(d >= 0.0);
519   // ASAN has a sanitize check that disallows casting doubles to floats if
520   // they are too big.
521   // https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#available-checks
522   // The behavior should be covered by IEEE 754, but some projects use this
523   // flag, so work around it.
524   float max_finite = 3.4028234663852885981170418348451692544e+38;
525   // The half-way point between the max-finite and infinity value.
526   // Since infinity has an even significand everything equal or greater than
527   // this value should become infinity.
528   double half_max_finite_infinity =
529       3.40282356779733661637539395458142568448e+38;
530   if (d >= max_finite) {
531     if (d >= half_max_finite_infinity) {
532       return Single::Infinity();
533     } else {
534       return max_finite;
535     }
536   } else {
537     return static_cast<float>(d);
538   }
539 }
540 
Strtof(Vector<const char> buffer,int exponent)541 float Strtof(Vector<const char> buffer, int exponent) {
542   char copy_buffer[kMaxSignificantDecimalDigits];
543   Vector<const char> trimmed;
544   int updated_exponent;
545   TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits,
546              &trimmed, &updated_exponent);
547   exponent = updated_exponent;
548 
549   double double_guess;
550   bool is_correct = ComputeGuess(trimmed, exponent, &double_guess);
551 
552   float float_guess = SanitizedDoubletof(double_guess);
553   if (float_guess == double_guess) {
554     // This shortcut triggers for integer values.
555     return float_guess;
556   }
557 
558   // We must catch double-rounding. Say the double has been rounded up, and is
559   // now a boundary of a float, and rounds up again. This is why we have to
560   // look at previous too.
561   // Example (in decimal numbers):
562   //    input: 12349
563   //    high-precision (4 digits): 1235
564   //    low-precision (3 digits):
565   //       when read from input: 123
566   //       when rounded from high precision: 124.
567   // To do this we simply look at the neigbors of the correct result and see
568   // if they would round to the same float. If the guess is not correct we have
569   // to look at four values (since two different doubles could be the correct
570   // double).
571 
572   double double_next = Double(double_guess).NextDouble();
573   double double_previous = Double(double_guess).PreviousDouble();
574 
575   float f1 = SanitizedDoubletof(double_previous);
576   float f2 = float_guess;
577   float f3 = SanitizedDoubletof(double_next);
578   float f4;
579   if (is_correct) {
580     f4 = f3;
581   } else {
582     double double_next2 = Double(double_next).NextDouble();
583     f4 = SanitizedDoubletof(double_next2);
584   }
585   (void) f2;  // Mark variable as used.
586   DOUBLE_CONVERSION_ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4);
587 
588   // If the guess doesn't lie near a single-precision boundary we can simply
589   // return its float-value.
590   if (f1 == f4) {
591     return float_guess;
592   }
593 
594   DOUBLE_CONVERSION_ASSERT((f1 != f2 && f2 == f3 && f3 == f4) ||
595          (f1 == f2 && f2 != f3 && f3 == f4) ||
596          (f1 == f2 && f2 == f3 && f3 != f4));
597 
598   // guess and next are the two possible candidates (in the same way that
599   // double_guess was the lower candidate for a double-precision guess).
600   float guess = f1;
601   float next = f4;
602   DiyFp upper_boundary;
603   if (guess == 0.0f) {
604     float min_float = 1e-45f;
605     upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp();
606   } else {
607     upper_boundary = Single(guess).UpperBoundary();
608   }
609   int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary);
610   if (comparison < 0) {
611     return guess;
612   } else if (comparison > 0) {
613     return next;
614   } else if ((Single(guess).Significand() & 1) == 0) {
615     // Round towards even.
616     return guess;
617   } else {
618     return next;
619   }
620 }
621 
622 }  // namespace double_conversion
623 
624 // ICU PATCH: Close ICU namespace
625 U_NAMESPACE_END
626 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
627