1# Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""A utility function for importing TensorFlow graphs.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import contextlib 21 22from tensorflow.core.framework import graph_pb2 23from tensorflow.python import tf2 24from tensorflow.python.client import pywrap_tf_session as c_api 25from tensorflow.python.framework import c_api_util 26from tensorflow.python.framework import device as pydev 27from tensorflow.python.framework import errors 28from tensorflow.python.framework import function 29from tensorflow.python.framework import op_def_registry 30from tensorflow.python.framework import ops 31from tensorflow.python.ops import control_flow_util 32from tensorflow.python.util import compat 33from tensorflow.python.util.deprecation import deprecated_args 34from tensorflow.python.util.tf_export import tf_export 35 36 37def _IsControlInput(input_name): 38 # Expected format: '^operation_name' (control input). 39 return input_name.startswith('^') 40 41 42def _ParseTensorName(tensor_name): 43 """Parses a tensor name into an operation name and output index. 44 45 This function will canonicalize tensor names as follows: 46 47 * "foo:0" -> ("foo", 0) 48 * "foo:7" -> ("foo", 7) 49 * "foo" -> ("foo", 0) 50 * "foo:bar:baz" -> ValueError 51 52 Args: 53 tensor_name: The name of a tensor. 54 55 Returns: 56 A tuple containing the operation name, and the output index. 57 58 Raises: 59 ValueError: If `tensor_name' cannot be interpreted as the name of a tensor. 60 """ 61 components = tensor_name.split(':') 62 if len(components) == 2: 63 # Expected format: 'operation_name:output_index'. 64 try: 65 output_index = int(components[1]) 66 except ValueError: 67 raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,)) 68 return components[0], output_index 69 elif len(components) == 1: 70 # Expected format: 'operation_name' (implicit 0th output). 71 return components[0], 0 72 else: 73 raise ValueError('Cannot convert %r to a tensor name.' % (tensor_name,)) 74 75 76@contextlib.contextmanager 77def _MaybeDevice(device): 78 """Applies the given device only if device is not None or empty.""" 79 if device: 80 with ops.device(device): 81 yield 82 else: 83 yield 84 85 86def _ProcessGraphDefParam(graph_def): 87 """Type-checks and possibly canonicalizes `graph_def`.""" 88 if not isinstance(graph_def, graph_pb2.GraphDef): 89 # `graph_def` could be a dynamically-created message, so try a duck-typed 90 # approach 91 try: 92 old_graph_def = graph_def 93 graph_def = graph_pb2.GraphDef() 94 graph_def.MergeFrom(old_graph_def) 95 except TypeError: 96 raise TypeError('graph_def must be a GraphDef proto.') 97 else: 98 # If we're using the graph_def provided by the caller, modify graph_def 99 # in-place to add attr defaults to the NodeDefs (this is visible to the 100 # caller). 101 # NOTE(skyewm): this is undocumented behavior that at least meta_graph.py 102 # depends on. It might make sense to move this to meta_graph.py and have 103 # import_graph_def not modify the graph_def argument (we'd have to make sure 104 # this doesn't break anything else.) 105 for node in graph_def.node: 106 op_def = op_def_registry.get(node.op) 107 if op_def is None: 108 # Assume unrecognized ops are functions for now. TF_ImportGraphDef will 109 # report an error if the op is actually missing. 110 continue 111 _SetDefaultAttrValues(node, op_def) 112 113 return graph_def 114 115 116def _ProcessInputMapParam(input_map): 117 """Type-checks and possibly canonicalizes `input_map`.""" 118 if input_map is None: 119 input_map = {} 120 else: 121 if not (isinstance(input_map, dict) and all( 122 isinstance(k, compat.bytes_or_text_types) for k in input_map.keys())): 123 raise TypeError('input_map must be a dictionary mapping strings to ' 124 'Tensor objects.') 125 return input_map 126 127 128def _ProcessReturnElementsParam(return_elements): 129 """Type-checks and possibly canonicalizes `return_elements`.""" 130 if return_elements is None: 131 return None 132 if not all( 133 isinstance(x, compat.bytes_or_text_types) for x in return_elements): 134 raise TypeError('return_elements must be a list of strings.') 135 return tuple(compat.as_str(x) for x in return_elements) 136 137 138def _FindAttrInOpDef(attr_name, op_def): 139 for attr_def in op_def.attr: 140 if attr_name == attr_def.name: 141 return attr_def 142 return None 143 144 145def _RemoveDefaultAttrs(producer_op_list, graph_def): 146 """Removes unknown default attrs according to `producer_op_list`. 147 148 Removes any unknown attrs in `graph_def` (i.e. attrs that do not appear in 149 registered OpDefs) that have a default value in `producer_op_list`. 150 151 Args: 152 producer_op_list: OpList proto. 153 graph_def: GraphDef proto 154 """ 155 producer_op_dict = {op.name: op for op in producer_op_list.op} 156 for node in graph_def.node: 157 # Remove any default attr values that aren't in op_def. 158 if node.op in producer_op_dict: 159 op_def = op_def_registry.get(node.op) 160 if op_def is None: 161 # Some custom op registrations won't show up here. That's OK, attribute 162 # stripping just won't be available. 163 continue 164 producer_op_def = producer_op_dict[node.op] 165 # We make a copy of node.attr to iterate through since we may modify 166 # node.attr inside the loop. 167 for key in list(node.attr): 168 if _FindAttrInOpDef(key, op_def) is None: 169 # No attr_def in consumer, look in producer. 170 attr_def = _FindAttrInOpDef(key, producer_op_def) 171 if (attr_def and attr_def.HasField('default_value') and 172 node.attr[key] == attr_def.default_value): 173 # Unknown attr had default value in producer, delete it so it can be 174 # understood by consumer. 175 del node.attr[key] 176 177 178def _ConvertInputMapValues(name, input_map): 179 """Ensures all input map values are tensors. 180 181 This should be called from inside the import name scope. 182 183 Args: 184 name: the `name` argument passed to import_graph_def 185 input_map: the `input_map` argument passed to import_graph_def. 186 187 Returns: 188 An possibly-updated version of `input_map`. 189 190 Raises: 191 ValueError: if input map values cannot be converted due to empty name scope. 192 """ 193 if not all(isinstance(v, ops.Tensor) for v in input_map.values()): 194 if name == '': # pylint: disable=g-explicit-bool-comparison 195 raise ValueError( 196 'tf.import_graph_def() requires a non-empty `name` if `input_map` ' 197 'contains non-Tensor values. Try calling tf.convert_to_tensor() on ' 198 '`input_map` values before calling tf.import_graph_def().') 199 with ops.name_scope('_inputs'): 200 input_map = {k: ops.convert_to_tensor(v) for k, v in input_map.items()} 201 return input_map 202 203 204def _PopulateTFImportGraphDefOptions(options, prefix, input_map, 205 return_elements, 206 validate_colocation_constraints): 207 """Populates the TF_ImportGraphDefOptions `options`.""" 208 c_api.TF_ImportGraphDefOptionsSetPrefix(options, prefix) 209 c_api.TF_ImportGraphDefOptionsSetUniquifyNames(options, True) 210 211 for input_src, input_dst in input_map.items(): 212 input_src = compat.as_str(input_src) 213 if input_src.startswith('^'): 214 src_name = compat.as_str(input_src[1:]) 215 dst_op = input_dst._as_tf_output().oper # pylint: disable=protected-access 216 c_api.TF_ImportGraphDefOptionsRemapControlDependency( 217 options, src_name, dst_op) 218 else: 219 src_name, src_idx = _ParseTensorName(input_src) 220 src_name = compat.as_str(src_name) 221 dst_output = input_dst._as_tf_output() # pylint: disable=protected-access 222 c_api.TF_ImportGraphDefOptionsAddInputMapping(options, src_name, src_idx, 223 dst_output) 224 for name in return_elements or []: 225 if ':' in name: 226 op_name, index = _ParseTensorName(name) 227 op_name = compat.as_str(op_name) 228 c_api.TF_ImportGraphDefOptionsAddReturnOutput(options, op_name, index) 229 else: 230 c_api.TF_ImportGraphDefOptionsAddReturnOperation(options, 231 compat.as_str(name)) 232 233 c_api.TF_ImportGraphDefOptionsSetValidateColocationConstraints( 234 options, validate_colocation_constraints) 235 236 237def _ProcessNewOps(graph): 238 """Processes the newly-added TF_Operations in `graph`.""" 239 # Maps from a node to the names of the ops it's colocated with, if colocation 240 # is specified in the attributes. 241 colocation_pairs = {} 242 243 for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access 244 original_device = new_op.device 245 new_op._set_device('') # pylint: disable=protected-access 246 colocation_names = _GetColocationNames(new_op) 247 if colocation_names: 248 colocation_pairs[new_op] = colocation_names 249 # Don't set a device for this op, since colocation constraints override 250 # device functions and the original device. Note that this op's device may 251 # still be set by the loop below. 252 # TODO(skyewm): why does it override the original device? 253 else: 254 with _MaybeDevice(original_device): 255 graph._apply_device_functions(new_op) # pylint: disable=protected-access 256 257 # The following loop populates the device field of ops that are colocated 258 # with another op. This is implied by the colocation attribute, but we 259 # propagate the device field for completeness. 260 for op, coloc_op_list in colocation_pairs.items(): 261 coloc_device = None 262 # Find any device in the list of colocated ops that have a device, if it 263 # exists. We assume that if multiple ops have devices, they refer to the 264 # same device. Otherwise, a runtime error will occur since the colocation 265 # property cannot be guaranteed. Note in TF2 colocations have been removed 266 # from the public API and will be considered a hint, so there is no runtime 267 # error. 268 # 269 # One possible improvement is to try to check for compatibility of all 270 # devices in this list at import time here, which would require 271 # implementing a compatibility function for device specs in python. 272 for coloc_op_name in coloc_op_list: 273 try: 274 coloc_op = graph._get_operation_by_name_unsafe(coloc_op_name) # pylint: disable=protected-access 275 except KeyError: 276 # Do not error in TF2 if the colocation cannot be guaranteed 277 if tf2.enabled() or control_flow_util.EnableControlFlowV2(graph): 278 continue 279 280 raise ValueError('Specified colocation to an op that ' 281 'does not exist during import: %s in %s' % 282 (coloc_op_name, op.name)) 283 if coloc_op.device: 284 coloc_device = pydev.DeviceSpec.from_string(coloc_op.device) 285 break 286 if coloc_device: 287 op._set_device(coloc_device) # pylint: disable=protected-access 288 289 290def _GetColocationNames(op): 291 """Returns names of the ops that `op` should be colocated with.""" 292 colocation_names = [] 293 try: 294 class_values = op.get_attr('_class') 295 except ValueError: 296 # No _class attr 297 return 298 for val in class_values: 299 val = compat.as_str(val) 300 if val.startswith('loc:@'): 301 colocation_node_name = val[len('loc:@'):] 302 if colocation_node_name != op.name: 303 colocation_names.append(colocation_node_name) 304 return colocation_names 305 306 307def _GatherReturnElements(requested_return_elements, graph, results): 308 """Returns the requested return elements from results. 309 310 Args: 311 requested_return_elements: list of strings of operation and tensor names 312 graph: Graph 313 results: wrapped TF_ImportGraphDefResults 314 315 Returns: 316 list of `Operation` and/or `Tensor` objects 317 """ 318 return_outputs = c_api.TF_ImportGraphDefResultsReturnOutputs(results) 319 return_opers = c_api.TF_ImportGraphDefResultsReturnOperations(results) 320 321 combined_return_elements = [] 322 outputs_idx = 0 323 opers_idx = 0 324 for name in requested_return_elements: 325 if ':' in name: 326 combined_return_elements.append( 327 graph._get_tensor_by_tf_output(return_outputs[outputs_idx])) # pylint: disable=protected-access 328 outputs_idx += 1 329 else: 330 combined_return_elements.append( 331 graph._get_operation_by_tf_operation(return_opers[opers_idx])) # pylint: disable=protected-access 332 opers_idx += 1 333 return combined_return_elements 334 335 336def _SetDefaultAttrValues(node_def, op_def): 337 """Set any default attr values in `node_def` that aren't present.""" 338 assert node_def.op == op_def.name 339 for attr_def in op_def.attr: 340 key = attr_def.name 341 if attr_def.HasField('default_value'): 342 value = node_def.attr[key] 343 if value is None or value.WhichOneof('value') is None: 344 node_def.attr[key].CopyFrom(attr_def.default_value) 345 346 347@tf_export('graph_util.import_graph_def', 'import_graph_def') 348@deprecated_args(None, 'Please file an issue at ' 349 'https://github.com/tensorflow/tensorflow/issues if you depend' 350 ' on this feature.', 'op_dict') 351def import_graph_def(graph_def, 352 input_map=None, 353 return_elements=None, 354 name=None, 355 op_dict=None, 356 producer_op_list=None): 357 """Imports the graph from `graph_def` into the current default `Graph`. 358 359 This function provides a way to import a serialized TensorFlow 360 [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) 361 protocol buffer, and extract individual objects in the `GraphDef` as 362 `tf.Tensor` and `tf.Operation` objects. Once extracted, 363 these objects are placed into the current default `Graph`. See 364 `tf.Graph.as_graph_def` for a way to create a `GraphDef` 365 proto. 366 367 Args: 368 graph_def: A `GraphDef` proto containing operations to be imported into 369 the default graph. 370 input_map: A dictionary mapping input names (as strings) in `graph_def` 371 to `Tensor` objects. The values of the named input tensors in the 372 imported graph will be re-mapped to the respective `Tensor` values. 373 return_elements: A list of strings containing operation names in 374 `graph_def` that will be returned as `Operation` objects; and/or 375 tensor names in `graph_def` that will be returned as `Tensor` objects. 376 name: (Optional.) A prefix that will be prepended to the names in 377 `graph_def`. Note that this does not apply to imported function names. 378 Defaults to `"import"`. 379 op_dict: (Optional.) Deprecated, do not use. 380 producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped) 381 list of `OpDef`s used by the producer of the graph. If provided, 382 unrecognized attrs for ops in `graph_def` that have their default value 383 according to `producer_op_list` will be removed. This will allow some more 384 `GraphDef`s produced by later binaries to be accepted by earlier binaries. 385 386 Returns: 387 A list of `Operation` and/or `Tensor` objects from the imported graph, 388 corresponding to the names in `return_elements`, 389 and None if `returns_elements` is None. 390 391 Raises: 392 TypeError: If `graph_def` is not a `GraphDef` proto, 393 `input_map` is not a dictionary mapping strings to `Tensor` objects, 394 or `return_elements` is not a list of strings. 395 ValueError: If `input_map`, or `return_elements` contains names that 396 do not appear in `graph_def`, or `graph_def` is not well-formed (e.g. 397 it refers to an unknown tensor). 398 """ 399 del op_dict 400 return _import_graph_def_internal( 401 graph_def, 402 input_map=input_map, 403 return_elements=return_elements, 404 name=name, 405 producer_op_list=producer_op_list) 406 407 408def import_graph_def_for_function( # pylint: disable=invalid-name 409 graph_def, name=None): 410 """Like import_graph_def but does not validate colocation constraints.""" 411 return _import_graph_def_internal( 412 graph_def, validate_colocation_constraints=False, name=name) 413 414 415def _import_graph_def_internal( # pylint: disable=invalid-name 416 graph_def, 417 input_map=None, 418 return_elements=None, 419 validate_colocation_constraints=True, 420 name=None, 421 producer_op_list=None): 422 """Imports the graph from `graph_def` into the current default `Graph`. 423 424 This function provides a way to import a serialized TensorFlow 425 [`GraphDef`](https://www.tensorflow.org/code/tensorflow/core/framework/graph.proto) 426 protocol buffer, and extract individual objects in the `GraphDef` as 427 `tf.Tensor` and `tf.Operation` objects. Once extracted, 428 these objects are placed into the current default `Graph`. See 429 `tf.Graph.as_graph_def` for a way to create a `GraphDef` 430 proto. 431 432 Args: 433 graph_def: A `GraphDef` proto containing operations to be imported into the 434 default graph. 435 input_map: A dictionary mapping input names (as strings) in `graph_def` to 436 `Tensor` objects. The values of the named input tensors in the imported 437 graph will be re-mapped to the respective `Tensor` values. 438 return_elements: A list of strings containing operation names in `graph_def` 439 that will be returned as `Operation` objects; and/or tensor names in 440 `graph_def` that will be returned as `Tensor` objects. 441 validate_colocation_constraints: Whether to validate colocation constraints. 442 name: (Optional.) A prefix that will be prepended to the names in 443 `graph_def`. Note that this does not apply to imported function names. 444 Defaults to `"import"`. 445 producer_op_list: (Optional.) An `OpList` proto with the (possibly stripped) 446 list of `OpDef`s used by the producer of the graph. If provided, 447 unrecognized attrs for ops in `graph_def` that have their default value 448 according to `producer_op_list` will be removed. This will allow some more 449 `GraphDef`s produced by later binaries to be accepted by earlier binaries. 450 451 Returns: 452 A list of `Operation` and/or `Tensor` objects from the imported graph, 453 corresponding to the names in `return_elements`, 454 and None if `returns_elements` is None. 455 456 Raises: 457 TypeError: If `graph_def` is not a `GraphDef` proto, 458 `input_map` is not a dictionary mapping strings to `Tensor` objects, 459 or `return_elements` is not a list of strings. 460 ValueError: If `input_map`, or `return_elements` contains names that 461 do not appear in `graph_def`, or `graph_def` is not well-formed (e.g. 462 it refers to an unknown tensor). 463 """ 464 graph_def = _ProcessGraphDefParam(graph_def) 465 input_map = _ProcessInputMapParam(input_map) 466 return_elements = _ProcessReturnElementsParam(return_elements) 467 468 if producer_op_list is not None: 469 # TODO(skyewm): make a copy of graph_def so we're not mutating the argument? 470 _RemoveDefaultAttrs(producer_op_list, graph_def) 471 472 graph = ops.get_default_graph() 473 with ops.name_scope(name, 'import', input_map.values()) as scope: 474 # Save unique prefix generated by name_scope 475 if scope: 476 assert scope.endswith('/') 477 prefix = scope[:-1] 478 else: 479 prefix = '' 480 481 # Generate any input map tensors inside name scope 482 input_map = _ConvertInputMapValues(name, input_map) 483 484 scoped_options = c_api_util.ScopedTFImportGraphDefOptions() 485 options = scoped_options.options 486 _PopulateTFImportGraphDefOptions(options, prefix, input_map, return_elements, 487 validate_colocation_constraints) 488 489 # _ProcessNewOps mutates the new operations. _mutation_lock ensures a 490 # Session.run call cannot occur between creating the TF_Operations in the 491 # TF_GraphImportGraphDefWithResults call and mutating the them in 492 # _ProcessNewOps. 493 with graph._mutation_lock(): # pylint: disable=protected-access 494 with c_api_util.tf_buffer(graph_def.SerializeToString()) as serialized: 495 try: 496 results = c_api.TF_GraphImportGraphDefWithResults( 497 graph._c_graph, serialized, options) # pylint: disable=protected-access 498 results = c_api_util.ScopedTFImportGraphDefResults(results) 499 except errors.InvalidArgumentError as e: 500 # Convert to ValueError for backwards compatibility. 501 raise ValueError(str(e)) 502 503 # Create _DefinedFunctions for any imported functions. 504 # 505 # We do this by creating _DefinedFunctions directly from `graph_def`, and 506 # adding them to `graph`. Adding an existing function to a TF_Graph is a 507 # no-op, so this only has the effect of updating the Python state (usually 508 # _DefinedFunction.add_to_graph also adds the function to the TF_Graph). 509 # 510 # TODO(skyewm): fetch the TF_Functions directly from the TF_Graph 511 # TODO(skyewm): avoid sending serialized FunctionDefs back to the TF_Graph 512 513 _ProcessNewOps(graph) 514 515 if graph_def.library and graph_def.library.function: 516 functions = function.from_library(graph_def.library) 517 for f in functions: 518 f.add_to_graph(graph) 519 520 # Treat input mappings that don't appear in the graph as an error, because 521 # they are likely to be due to a typo. 522 missing_unused_input_keys = ( 523 c_api.TF_ImportGraphDefResultsMissingUnusedInputMappings_wrapper( 524 results.results)) 525 if missing_unused_input_keys: 526 missing_unused_input_keys = [ 527 compat.as_str(s) for s in missing_unused_input_keys 528 ] 529 raise ValueError( 530 'Attempted to map inputs that were not found in graph_def: [%s]' % 531 ', '.join(missing_unused_input_keys)) 532 533 if return_elements is None: 534 return None 535 else: 536 return _GatherReturnElements(return_elements, graph, results.results) 537