1 /*
2  * Copyright 2014 Google Inc. All rights reserved.
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef FLATBUFFERS_GRPC_H_
18 #define FLATBUFFERS_GRPC_H_
19 
20 // Helper functionality to glue FlatBuffers and GRPC.
21 
22 #include "flatbuffers/flatbuffers.h"
23 #include "grpc++/support/byte_buffer.h"
24 #include "grpc/byte_buffer_reader.h"
25 
26 namespace flatbuffers {
27 namespace grpc {
28 
29 // Message is a typed wrapper around a buffer that manages the underlying
30 // `grpc_slice` and also provides flatbuffers-specific helpers such as `Verify`
31 // and `GetRoot`. Since it is backed by a `grpc_slice`, the underlying buffer
32 // is refcounted and ownership is be managed automatically.
33 template<class T> class Message {
34  public:
Message()35   Message() : slice_(grpc_empty_slice()) {}
36 
Message(grpc_slice slice,bool add_ref)37   Message(grpc_slice slice, bool add_ref)
38       : slice_(add_ref ? grpc_slice_ref(slice) : slice) {}
39 
40   Message &operator=(const Message &other) = delete;
41 
Message(Message && other)42   Message(Message &&other) : slice_(other.slice_) {
43     other.slice_ = grpc_empty_slice();
44   }
45 
46   Message(const Message &other) = delete;
47 
48   Message &operator=(Message &&other) {
49     grpc_slice_unref(slice_);
50     slice_ = other.slice_;
51     other.slice_ = grpc_empty_slice();
52     return *this;
53   }
54 
~Message()55   ~Message() { grpc_slice_unref(slice_); }
56 
mutable_data()57   const uint8_t *mutable_data() const { return GRPC_SLICE_START_PTR(slice_); }
58 
data()59   const uint8_t *data() const { return GRPC_SLICE_START_PTR(slice_); }
60 
size()61   size_t size() const { return GRPC_SLICE_LENGTH(slice_); }
62 
Verify()63   bool Verify() const {
64     Verifier verifier(data(), size());
65     return verifier.VerifyBuffer<T>(nullptr);
66   }
67 
GetMutableRoot()68   T *GetMutableRoot() { return flatbuffers::GetMutableRoot<T>(mutable_data()); }
69 
GetRoot()70   const T *GetRoot() const { return flatbuffers::GetRoot<T>(data()); }
71 
72   // This is only intended for serializer use, or if you know what you're doing
BorrowSlice()73   const grpc_slice &BorrowSlice() const { return slice_; }
74 
75  private:
76   grpc_slice slice_;
77 };
78 
79 class MessageBuilder;
80 
81 // SliceAllocator is a gRPC-specific allocator that uses the `grpc_slice`
82 // refcounted slices to manage memory ownership. This makes it easy and
83 // efficient to transfer buffers to gRPC.
84 class SliceAllocator : public Allocator {
85  public:
SliceAllocator()86   SliceAllocator() : slice_(grpc_empty_slice()) {}
87 
88   SliceAllocator(const SliceAllocator &other) = delete;
89   SliceAllocator &operator=(const SliceAllocator &other) = delete;
90 
SliceAllocator(SliceAllocator && other)91   SliceAllocator(SliceAllocator &&other) : slice_(grpc_empty_slice()) {
92     // default-construct and swap idiom
93     swap(other);
94   }
95 
96   SliceAllocator &operator=(SliceAllocator &&other) {
97     // move-construct and swap idiom
98     SliceAllocator temp(std::move(other));
99     swap(temp);
100     return *this;
101   }
102 
swap(SliceAllocator & other)103   void swap(SliceAllocator &other) {
104     using std::swap;
105     swap(slice_, other.slice_);
106   }
107 
~SliceAllocator()108   virtual ~SliceAllocator() { grpc_slice_unref(slice_); }
109 
allocate(size_t size)110   virtual uint8_t *allocate(size_t size) override {
111     FLATBUFFERS_ASSERT(GRPC_SLICE_IS_EMPTY(slice_));
112     slice_ = grpc_slice_malloc(size);
113     return GRPC_SLICE_START_PTR(slice_);
114   }
115 
deallocate(uint8_t * p,size_t size)116   virtual void deallocate(uint8_t *p, size_t size) override {
117     FLATBUFFERS_ASSERT(p == GRPC_SLICE_START_PTR(slice_));
118     FLATBUFFERS_ASSERT(size == GRPC_SLICE_LENGTH(slice_));
119     grpc_slice_unref(slice_);
120     slice_ = grpc_empty_slice();
121   }
122 
reallocate_downward(uint8_t * old_p,size_t old_size,size_t new_size,size_t in_use_back,size_t in_use_front)123   virtual uint8_t *reallocate_downward(uint8_t *old_p, size_t old_size,
124                                        size_t new_size, size_t in_use_back,
125                                        size_t in_use_front) override {
126     FLATBUFFERS_ASSERT(old_p == GRPC_SLICE_START_PTR(slice_));
127     FLATBUFFERS_ASSERT(old_size == GRPC_SLICE_LENGTH(slice_));
128     FLATBUFFERS_ASSERT(new_size > old_size);
129     grpc_slice old_slice = slice_;
130     grpc_slice new_slice = grpc_slice_malloc(new_size);
131     uint8_t *new_p = GRPC_SLICE_START_PTR(new_slice);
132     memcpy_downward(old_p, old_size, new_p, new_size, in_use_back,
133                     in_use_front);
134     slice_ = new_slice;
135     grpc_slice_unref(old_slice);
136     return new_p;
137   }
138 
139  private:
get_slice(uint8_t * p,size_t size)140   grpc_slice &get_slice(uint8_t *p, size_t size) {
141     FLATBUFFERS_ASSERT(p == GRPC_SLICE_START_PTR(slice_));
142     FLATBUFFERS_ASSERT(size == GRPC_SLICE_LENGTH(slice_));
143     return slice_;
144   }
145 
146   grpc_slice slice_;
147 
148   friend class MessageBuilder;
149 };
150 
151 // SliceAllocatorMember is a hack to ensure that the MessageBuilder's
152 // slice_allocator_ member is constructed before the FlatBufferBuilder, since
153 // the allocator is used in the FlatBufferBuilder ctor.
154 namespace detail {
155 struct SliceAllocatorMember {
156   SliceAllocator slice_allocator_;
157 };
158 }  // namespace detail
159 
160 // MessageBuilder is a gRPC-specific FlatBufferBuilder that uses SliceAllocator
161 // to allocate gRPC buffers.
162 class MessageBuilder : private detail::SliceAllocatorMember,
163                        public FlatBufferBuilder {
164  public:
165   explicit MessageBuilder(uoffset_t initial_size = 1024)
166       : FlatBufferBuilder(initial_size, &slice_allocator_, false) {}
167 
168   MessageBuilder(const MessageBuilder &other) = delete;
169   MessageBuilder &operator=(const MessageBuilder &other) = delete;
170 
MessageBuilder(MessageBuilder && other)171   MessageBuilder(MessageBuilder &&other)
172       : FlatBufferBuilder(1024, &slice_allocator_, false) {
173     // Default construct and swap idiom.
174     Swap(other);
175   }
176 
177   /// Create a MessageBuilder from a FlatBufferBuilder.
178   explicit MessageBuilder(FlatBufferBuilder &&src,
179                           void (*dealloc)(void *,
180                                           size_t) = &DefaultAllocator::dealloc)
181       : FlatBufferBuilder(1024, &slice_allocator_, false) {
182     src.Swap(*this);
183     src.SwapBufAllocator(*this);
184     if (buf_.capacity()) {
185       uint8_t *buf = buf_.scratch_data();  // pointer to memory
186       size_t capacity = buf_.capacity();   // size of memory
187       slice_allocator_.slice_ = grpc_slice_new_with_len(buf, capacity, dealloc);
188     } else {
189       slice_allocator_.slice_ = grpc_empty_slice();
190     }
191   }
192 
193   /// Move-assign a FlatBufferBuilder to a MessageBuilder.
194   /// Only FlatBufferBuilder with default allocator (basically, nullptr) is
195   /// supported.
196   MessageBuilder &operator=(FlatBufferBuilder &&src) {
197     // Move construct a temporary and swap
198     MessageBuilder temp(std::move(src));
199     Swap(temp);
200     return *this;
201   }
202 
203   MessageBuilder &operator=(MessageBuilder &&other) {
204     // Move construct a temporary and swap
205     MessageBuilder temp(std::move(other));
206     Swap(temp);
207     return *this;
208   }
209 
Swap(MessageBuilder & other)210   void Swap(MessageBuilder &other) {
211     slice_allocator_.swap(other.slice_allocator_);
212     FlatBufferBuilder::Swap(other);
213     // After swapping the FlatBufferBuilder, we swap back the allocator, which
214     // restores the original allocator back in place. This is necessary because
215     // MessageBuilder's allocator is its own member (SliceAllocatorMember). The
216     // allocator passed to FlatBufferBuilder::vector_downward must point to this
217     // member.
218     buf_.swap_allocator(other.buf_);
219   }
220 
221   // Releases the ownership of the buffer pointer.
222   // Returns the size, offset, and the original grpc_slice that
223   // allocated the buffer. Also see grpc_slice_unref().
ReleaseRaw(size_t & size,size_t & offset,grpc_slice & slice)224   uint8_t *ReleaseRaw(size_t &size, size_t &offset, grpc_slice &slice) {
225     uint8_t *buf = FlatBufferBuilder::ReleaseRaw(size, offset);
226     slice = slice_allocator_.slice_;
227     slice_allocator_.slice_ = grpc_empty_slice();
228     return buf;
229   }
230 
~MessageBuilder()231   ~MessageBuilder() {}
232 
233   // GetMessage extracts the subslice of the buffer corresponding to the
234   // flatbuffers-encoded region and wraps it in a `Message<T>` to handle buffer
235   // ownership.
GetMessage()236   template<class T> Message<T> GetMessage() {
237     auto buf_data = buf_.scratch_data();  // pointer to memory
238     auto buf_size = buf_.capacity();      // size of memory
239     auto msg_data = buf_.data();          // pointer to msg
240     auto msg_size = buf_.size();          // size of msg
241     // Do some sanity checks on data/size
242     FLATBUFFERS_ASSERT(msg_data);
243     FLATBUFFERS_ASSERT(msg_size);
244     FLATBUFFERS_ASSERT(msg_data >= buf_data);
245     FLATBUFFERS_ASSERT(msg_data + msg_size <= buf_data + buf_size);
246     // Calculate offsets from the buffer start
247     auto begin = msg_data - buf_data;
248     auto end = begin + msg_size;
249     // Get the slice we are working with (no refcount change)
250     grpc_slice slice = slice_allocator_.get_slice(buf_data, buf_size);
251     // Extract a subslice of the existing slice (increment refcount)
252     grpc_slice subslice = grpc_slice_sub(slice, begin, end);
253     // Wrap the subslice in a `Message<T>`, but don't increment refcount
254     Message<T> msg(subslice, false);
255     return msg;
256   }
257 
ReleaseMessage()258   template<class T> Message<T> ReleaseMessage() {
259     Message<T> msg = GetMessage<T>();
260     Reset();
261     return msg;
262   }
263 
264  private:
265   // SliceAllocator slice_allocator_;  // part of SliceAllocatorMember
266 };
267 
268 }  // namespace grpc
269 }  // namespace flatbuffers
270 
271 namespace grpc {
272 
273 template<class T> class SerializationTraits<flatbuffers::grpc::Message<T>> {
274  public:
Serialize(const flatbuffers::grpc::Message<T> & msg,grpc_byte_buffer ** buffer,bool * own_buffer)275   static grpc::Status Serialize(const flatbuffers::grpc::Message<T> &msg,
276                                 grpc_byte_buffer **buffer, bool *own_buffer) {
277     // We are passed in a `Message<T>`, which is a wrapper around a
278     // `grpc_slice`. We extract it here using `BorrowSlice()`. The const cast
279     // is necessary because the `grpc_raw_byte_buffer_create` func expects
280     // non-const slices in order to increment their refcounts.
281     grpc_slice *slice = const_cast<grpc_slice *>(&msg.BorrowSlice());
282     // Now use `grpc_raw_byte_buffer_create` to package the single slice into a
283     // `grpc_byte_buffer`, incrementing the refcount in the process.
284     *buffer = grpc_raw_byte_buffer_create(slice, 1);
285     *own_buffer = true;
286     return grpc::Status::OK;
287   }
288 
289   // Deserialize by pulling the
Deserialize(grpc_byte_buffer * buffer,flatbuffers::grpc::Message<T> * msg)290   static grpc::Status Deserialize(grpc_byte_buffer *buffer,
291                                   flatbuffers::grpc::Message<T> *msg) {
292     if (!buffer) {
293       return ::grpc::Status(::grpc::StatusCode::INTERNAL, "No payload");
294     }
295     // Check if this is a single uncompressed slice.
296     if ((buffer->type == GRPC_BB_RAW) &&
297         (buffer->data.raw.compression == GRPC_COMPRESS_NONE) &&
298         (buffer->data.raw.slice_buffer.count == 1)) {
299       // If it is, then we can reference the `grpc_slice` directly.
300       grpc_slice slice = buffer->data.raw.slice_buffer.slices[0];
301       // We wrap a `Message<T>` around the slice, incrementing the refcount.
302       *msg = flatbuffers::grpc::Message<T>(slice, true);
303     } else {
304       // Otherwise, we need to use `grpc_byte_buffer_reader_readall` to read
305       // `buffer` into a single contiguous `grpc_slice`. The gRPC reader gives
306       // us back a new slice with the refcount already incremented.
307       grpc_byte_buffer_reader reader;
308       grpc_byte_buffer_reader_init(&reader, buffer);
309       grpc_slice slice = grpc_byte_buffer_reader_readall(&reader);
310       grpc_byte_buffer_reader_destroy(&reader);
311       // We wrap a `Message<T>` around the slice, but don't increment refcount
312       *msg = flatbuffers::grpc::Message<T>(slice, false);
313     }
314     grpc_byte_buffer_destroy(buffer);
315 #if FLATBUFFERS_GRPC_DISABLE_AUTO_VERIFICATION
316     return ::grpc::Status::OK;
317 #else
318     if (msg->Verify()) {
319       return ::grpc::Status::OK;
320     } else {
321       return ::grpc::Status(::grpc::StatusCode::INTERNAL,
322                             "Message verification failed");
323     }
324 #endif
325   }
326 };
327 
328 }  // namespace grpc
329 
330 #endif  // FLATBUFFERS_GRPC_H_
331