1 #include <isl_ctx_private.h>
2 #include <isl/val.h>
3 #include <isl_constraint_private.h>
4 #include <isl/set.h>
5 #include <isl_polynomial_private.h>
6 #include <isl_morph.h>
7 #include <isl_range.h>
8 
9 struct range_data {
10 	struct isl_bound	*bound;
11 	int 		    	*signs;
12 	int			sign;
13 	int			test_monotonicity;
14 	int		    	monotonicity;
15 	int			tight;
16 	isl_qpolynomial	    	*poly;
17 	isl_pw_qpolynomial_fold *pwf;
18 	isl_pw_qpolynomial_fold *pwf_tight;
19 };
20 
21 static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
22 	__isl_take isl_qpolynomial *poly, struct range_data *data);
23 
24 /* Check whether the polynomial "poly" has sign "sign" over "bset",
25  * i.e., if sign == 1, check that the lower bound on the polynomial
26  * is non-negative and if sign == -1, check that the upper bound on
27  * the polynomial is non-positive.
28  */
has_sign(__isl_keep isl_basic_set * bset,__isl_keep isl_qpolynomial * poly,int sign,int * signs)29 static isl_bool has_sign(__isl_keep isl_basic_set *bset,
30 	__isl_keep isl_qpolynomial *poly, int sign, int *signs)
31 {
32 	struct range_data data_m;
33 	isl_size nparam;
34 	isl_space *space;
35 	isl_val *opt;
36 	isl_bool r;
37 	enum isl_fold type;
38 
39 	nparam = isl_basic_set_dim(bset, isl_dim_param);
40 	if (nparam < 0)
41 		return isl_bool_error;
42 
43 	bset = isl_basic_set_copy(bset);
44 	poly = isl_qpolynomial_copy(poly);
45 
46 	bset = isl_basic_set_move_dims(bset, isl_dim_set, 0,
47 					isl_dim_param, 0, nparam);
48 	poly = isl_qpolynomial_move_dims(poly, isl_dim_in, 0,
49 					isl_dim_param, 0, nparam);
50 
51 	space = isl_qpolynomial_get_space(poly);
52 	space = isl_space_params(space);
53 	space = isl_space_from_domain(space);
54 	space = isl_space_add_dims(space, isl_dim_out, 1);
55 
56 	data_m.test_monotonicity = 0;
57 	data_m.signs = signs;
58 	data_m.sign = -sign;
59 	type = data_m.sign < 0 ? isl_fold_min : isl_fold_max;
60 	data_m.pwf = isl_pw_qpolynomial_fold_zero(space, type);
61 	data_m.tight = 0;
62 	data_m.pwf_tight = NULL;
63 
64 	if (propagate_on_domain(bset, poly, &data_m) < 0)
65 		goto error;
66 
67 	if (sign > 0)
68 		opt = isl_pw_qpolynomial_fold_min(data_m.pwf);
69 	else
70 		opt = isl_pw_qpolynomial_fold_max(data_m.pwf);
71 
72 	if (!opt)
73 		r = isl_bool_error;
74 	else if (isl_val_is_nan(opt) ||
75 		 isl_val_is_infty(opt) ||
76 		 isl_val_is_neginfty(opt))
77 		r = isl_bool_false;
78 	else
79 		r = isl_bool_ok(sign * isl_val_sgn(opt) >= 0);
80 
81 	isl_val_free(opt);
82 
83 	return r;
84 error:
85 	isl_pw_qpolynomial_fold_free(data_m.pwf);
86 	return isl_bool_error;
87 }
88 
89 /* Return  1 if poly is monotonically increasing in the last set variable,
90  *        -1 if poly is monotonically decreasing in the last set variable,
91  *	   0 if no conclusion,
92  *	  -2 on error.
93  *
94  * We simply check the sign of p(x+1)-p(x)
95  */
monotonicity(__isl_keep isl_basic_set * bset,__isl_keep isl_qpolynomial * poly,struct range_data * data)96 static int monotonicity(__isl_keep isl_basic_set *bset,
97 	__isl_keep isl_qpolynomial *poly, struct range_data *data)
98 {
99 	isl_ctx *ctx;
100 	isl_space *space;
101 	isl_qpolynomial *sub = NULL;
102 	isl_qpolynomial *diff = NULL;
103 	int result = 0;
104 	isl_bool s;
105 	isl_size nvar;
106 
107 	nvar = isl_basic_set_dim(bset, isl_dim_set);
108 	if (nvar < 0)
109 		return -2;
110 
111 	ctx = isl_qpolynomial_get_ctx(poly);
112 	space = isl_qpolynomial_get_domain_space(poly);
113 
114 	sub = isl_qpolynomial_var_on_domain(isl_space_copy(space),
115 						isl_dim_set, nvar - 1);
116 	sub = isl_qpolynomial_add(sub,
117 		isl_qpolynomial_rat_cst_on_domain(space, ctx->one, ctx->one));
118 
119 	diff = isl_qpolynomial_substitute(isl_qpolynomial_copy(poly),
120 			isl_dim_in, nvar - 1, 1, &sub);
121 	diff = isl_qpolynomial_sub(diff, isl_qpolynomial_copy(poly));
122 
123 	s = has_sign(bset, diff, 1, data->signs);
124 	if (s < 0)
125 		goto error;
126 	if (s)
127 		result = 1;
128 	else {
129 		s = has_sign(bset, diff, -1, data->signs);
130 		if (s < 0)
131 			goto error;
132 		if (s)
133 			result = -1;
134 	}
135 
136 	isl_qpolynomial_free(diff);
137 	isl_qpolynomial_free(sub);
138 
139 	return result;
140 error:
141 	isl_qpolynomial_free(diff);
142 	isl_qpolynomial_free(sub);
143 	return -2;
144 }
145 
146 /* Return a positive ("sign" > 0) or negative ("sign" < 0) infinite polynomial
147  * with domain space "space".
148  */
signed_infty(__isl_take isl_space * space,int sign)149 static __isl_give isl_qpolynomial *signed_infty(__isl_take isl_space *space,
150 	int sign)
151 {
152 	if (sign > 0)
153 		return isl_qpolynomial_infty_on_domain(space);
154 	else
155 		return isl_qpolynomial_neginfty_on_domain(space);
156 }
157 
bound2poly(__isl_take isl_constraint * bound,__isl_take isl_space * space,unsigned pos,int sign)158 static __isl_give isl_qpolynomial *bound2poly(__isl_take isl_constraint *bound,
159 	__isl_take isl_space *space, unsigned pos, int sign)
160 {
161 	if (!bound)
162 		return signed_infty(space, sign);
163 	isl_space_free(space);
164 	return isl_qpolynomial_from_constraint(bound, isl_dim_set, pos);
165 }
166 
bound_is_integer(__isl_keep isl_constraint * bound,unsigned pos)167 static int bound_is_integer(__isl_keep isl_constraint *bound, unsigned pos)
168 {
169 	isl_int c;
170 	int is_int;
171 
172 	if (!bound)
173 		return 1;
174 
175 	isl_int_init(c);
176 	isl_constraint_get_coefficient(bound, isl_dim_set, pos, &c);
177 	is_int = isl_int_is_one(c) || isl_int_is_negone(c);
178 	isl_int_clear(c);
179 
180 	return is_int;
181 }
182 
183 struct isl_fixed_sign_data {
184 	int		*signs;
185 	int		sign;
186 	isl_qpolynomial	*poly;
187 };
188 
189 /* Add term "term" to data->poly if it has sign data->sign.
190  * The sign is determined based on the signs of the parameters
191  * and variables in data->signs.  The integer divisions, if
192  * any, are assumed to be non-negative.
193  */
collect_fixed_sign_terms(__isl_take isl_term * term,void * user)194 static isl_stat collect_fixed_sign_terms(__isl_take isl_term *term, void *user)
195 {
196 	struct isl_fixed_sign_data *data = (struct isl_fixed_sign_data *)user;
197 	isl_int n;
198 	int i;
199 	int sign;
200 	isl_size nparam;
201 	isl_size nvar;
202 	isl_size exp;
203 
204 	nparam = isl_term_dim(term, isl_dim_param);
205 	nvar = isl_term_dim(term, isl_dim_set);
206 	if (nparam < 0 || nvar < 0)
207 		return isl_stat_error;
208 
209 	isl_int_init(n);
210 	isl_term_get_num(term, &n);
211 	sign = isl_int_sgn(n);
212 	isl_int_clear(n);
213 
214 	for (i = 0; i < nparam; ++i) {
215 		if (data->signs[i] > 0)
216 			continue;
217 		exp = isl_term_get_exp(term, isl_dim_param, i);
218 		if (exp < 0)
219 			return isl_stat_error;
220 		if (exp % 2)
221 			sign = -sign;
222 	}
223 	for (i = 0; i < nvar; ++i) {
224 		if (data->signs[nparam + i] > 0)
225 			continue;
226 		exp = isl_term_get_exp(term, isl_dim_set, i);
227 		if (exp < 0)
228 			return isl_stat_error;
229 		if (exp % 2)
230 			sign = -sign;
231 	}
232 
233 	if (sign == data->sign) {
234 		isl_qpolynomial *t = isl_qpolynomial_from_term(term);
235 
236 		data->poly = isl_qpolynomial_add(data->poly, t);
237 	} else
238 		isl_term_free(term);
239 
240 	return isl_stat_ok;
241 }
242 
243 /* Construct and return a polynomial that consists of the terms
244  * in "poly" that have sign "sign".  The integer divisions, if
245  * any, are assumed to be non-negative.
246  */
isl_qpolynomial_terms_of_sign(__isl_keep isl_qpolynomial * poly,int * signs,int sign)247 __isl_give isl_qpolynomial *isl_qpolynomial_terms_of_sign(
248 	__isl_keep isl_qpolynomial *poly, int *signs, int sign)
249 {
250 	isl_space *space;
251 	struct isl_fixed_sign_data data = { signs, sign };
252 
253 	space = isl_qpolynomial_get_domain_space(poly);
254 	data.poly = isl_qpolynomial_zero_on_domain(space);
255 
256 	if (isl_qpolynomial_foreach_term(poly, collect_fixed_sign_terms, &data) < 0)
257 		goto error;
258 
259 	return data.poly;
260 error:
261 	isl_qpolynomial_free(data.poly);
262 	return NULL;
263 }
264 
265 /* Helper function to add a guarded polynomial to either pwf_tight or pwf,
266  * depending on whether the result has been determined to be tight.
267  */
add_guarded_poly(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct range_data * data)268 static isl_stat add_guarded_poly(__isl_take isl_basic_set *bset,
269 	__isl_take isl_qpolynomial *poly, struct range_data *data)
270 {
271 	enum isl_fold type = data->sign < 0 ? isl_fold_min : isl_fold_max;
272 	isl_set *set;
273 	isl_qpolynomial_fold *fold;
274 	isl_pw_qpolynomial_fold *pwf;
275 
276 	bset = isl_basic_set_params(bset);
277 	poly = isl_qpolynomial_project_domain_on_params(poly);
278 
279 	fold = isl_qpolynomial_fold_alloc(type, poly);
280 	set = isl_set_from_basic_set(bset);
281 	pwf = isl_pw_qpolynomial_fold_alloc(type, set, fold);
282 	if (data->tight)
283 		data->pwf_tight = isl_pw_qpolynomial_fold_fold(
284 						data->pwf_tight, pwf);
285 	else
286 		data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
287 
288 	return isl_stat_ok;
289 }
290 
291 /* Plug in "sub" for the variable at position "pos" in "poly".
292  *
293  * If "sub" is an infinite polynomial and if the variable actually
294  * appears in "poly", then calling isl_qpolynomial_substitute
295  * to perform the substitution may result in a NaN result.
296  * In such cases, return positive or negative infinity instead,
297  * depending on whether an upper bound or a lower bound is being computed,
298  * and mark the result as not being tight.
299  */
plug_in_at_pos(__isl_take isl_qpolynomial * poly,int pos,__isl_take isl_qpolynomial * sub,struct range_data * data)300 static __isl_give isl_qpolynomial *plug_in_at_pos(
301 	__isl_take isl_qpolynomial *poly, int pos,
302 	__isl_take isl_qpolynomial *sub, struct range_data *data)
303 {
304 	isl_bool involves, infty;
305 
306 	involves = isl_qpolynomial_involves_dims(poly, isl_dim_in, pos, 1);
307 	if (involves < 0)
308 		goto error;
309 	if (!involves) {
310 		isl_qpolynomial_free(sub);
311 		return poly;
312 	}
313 
314 	infty = isl_qpolynomial_is_infty(sub);
315 	if (infty >= 0 && !infty)
316 		infty = isl_qpolynomial_is_neginfty(sub);
317 	if (infty < 0)
318 		goto error;
319 	if (infty) {
320 		isl_space *space = isl_qpolynomial_get_domain_space(poly);
321 		data->tight = 0;
322 		isl_qpolynomial_free(poly);
323 		isl_qpolynomial_free(sub);
324 		return signed_infty(space, data->sign);
325 	}
326 
327 	poly = isl_qpolynomial_substitute(poly, isl_dim_in, pos, 1, &sub);
328 	isl_qpolynomial_free(sub);
329 
330 	return poly;
331 error:
332 	isl_qpolynomial_free(poly);
333 	isl_qpolynomial_free(sub);
334 	return NULL;
335 }
336 
337 /* Given a lower and upper bound on the final variable and constraints
338  * on the remaining variables where these bounds are active,
339  * eliminate the variable from data->poly based on these bounds.
340  * If the polynomial has been determined to be monotonic
341  * in the variable, then simply plug in the appropriate bound.
342  * If the current polynomial is tight and if this bound is integer,
343  * then the result is still tight.  In all other cases, the results
344  * may not be tight.
345  * Otherwise, plug in the largest bound (in absolute value) in
346  * the positive terms (if an upper bound is wanted) or the negative terms
347  * (if a lower bounded is wanted) and the other bound in the other terms.
348  *
349  * If all variables have been eliminated, then record the result.
350  * Ohterwise, recurse on the next variable.
351  */
propagate_on_bound_pair(__isl_take isl_constraint * lower,__isl_take isl_constraint * upper,__isl_take isl_basic_set * bset,void * user)352 static isl_stat propagate_on_bound_pair(__isl_take isl_constraint *lower,
353 	__isl_take isl_constraint *upper, __isl_take isl_basic_set *bset,
354 	void *user)
355 {
356 	struct range_data *data = (struct range_data *)user;
357 	int save_tight = data->tight;
358 	isl_qpolynomial *poly;
359 	isl_stat r;
360 	isl_size nvar, nparam;
361 
362 	nvar = isl_basic_set_dim(bset, isl_dim_set);
363 	nparam = isl_basic_set_dim(bset, isl_dim_param);
364 	if (nvar < 0 || nparam < 0)
365 		goto error;
366 
367 	if (data->monotonicity) {
368 		isl_qpolynomial *sub;
369 		isl_space *space = isl_qpolynomial_get_domain_space(data->poly);
370 		if (data->monotonicity * data->sign > 0) {
371 			if (data->tight)
372 				data->tight = bound_is_integer(upper, nvar);
373 			sub = bound2poly(upper, space, nvar, 1);
374 			isl_constraint_free(lower);
375 		} else {
376 			if (data->tight)
377 				data->tight = bound_is_integer(lower, nvar);
378 			sub = bound2poly(lower, space, nvar, -1);
379 			isl_constraint_free(upper);
380 		}
381 		poly = isl_qpolynomial_copy(data->poly);
382 		poly = plug_in_at_pos(poly, nvar, sub, data);
383 		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
384 	} else {
385 		isl_qpolynomial *l, *u;
386 		isl_qpolynomial *pos, *neg;
387 		isl_space *space = isl_qpolynomial_get_domain_space(data->poly);
388 		int sign = data->sign * data->signs[nparam + nvar];
389 
390 		data->tight = 0;
391 
392 		u = bound2poly(upper, isl_space_copy(space), nvar, 1);
393 		l = bound2poly(lower, space, nvar, -1);
394 
395 		pos = isl_qpolynomial_terms_of_sign(data->poly, data->signs, sign);
396 		neg = isl_qpolynomial_terms_of_sign(data->poly, data->signs, -sign);
397 
398 		pos = plug_in_at_pos(pos, nvar, u, data);
399 		neg = plug_in_at_pos(neg, nvar, l, data);
400 
401 		poly = isl_qpolynomial_add(pos, neg);
402 		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, nvar, 1);
403 	}
404 
405 	if (nvar == 0)
406 		r = add_guarded_poly(bset, poly, data);
407 	else
408 		r = propagate_on_domain(bset, poly, data);
409 
410 	data->tight = save_tight;
411 
412 	return r;
413 error:
414 	isl_constraint_free(lower);
415 	isl_constraint_free(upper);
416 	isl_basic_set_free(bset);
417 	return isl_stat_error;
418 }
419 
420 /* Recursively perform range propagation on the polynomial "poly"
421  * defined over the basic set "bset" and collect the results in "data".
422  */
propagate_on_domain(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct range_data * data)423 static isl_stat propagate_on_domain(__isl_take isl_basic_set *bset,
424 	__isl_take isl_qpolynomial *poly, struct range_data *data)
425 {
426 	isl_bool is_cst;
427 	isl_ctx *ctx;
428 	isl_qpolynomial *save_poly = data->poly;
429 	int save_monotonicity = data->monotonicity;
430 	isl_size d;
431 
432 	d = isl_basic_set_dim(bset, isl_dim_set);
433 	is_cst = isl_qpolynomial_is_cst(poly, NULL, NULL);
434 	if (d < 0 || is_cst < 0)
435 		goto error;
436 
437 	ctx = isl_basic_set_get_ctx(bset);
438 	isl_assert(ctx, d >= 1, goto error);
439 
440 	if (is_cst) {
441 		bset = isl_basic_set_project_out(bset, isl_dim_set, 0, d);
442 		poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, d);
443 		return add_guarded_poly(bset, poly, data);
444 	}
445 
446 	if (data->test_monotonicity)
447 		data->monotonicity = monotonicity(bset, poly, data);
448 	else
449 		data->monotonicity = 0;
450 	if (data->monotonicity < -1)
451 		goto error;
452 
453 	data->poly = poly;
454 	if (isl_basic_set_foreach_bound_pair(bset, isl_dim_set, d - 1,
455 					    &propagate_on_bound_pair, data) < 0)
456 		goto error;
457 
458 	isl_basic_set_free(bset);
459 	isl_qpolynomial_free(poly);
460 	data->monotonicity = save_monotonicity;
461 	data->poly = save_poly;
462 
463 	return isl_stat_ok;
464 error:
465 	isl_basic_set_free(bset);
466 	isl_qpolynomial_free(poly);
467 	data->monotonicity = save_monotonicity;
468 	data->poly = save_poly;
469 	return isl_stat_error;
470 }
471 
basic_guarded_poly_bound(__isl_take isl_basic_set * bset,void * user)472 static isl_stat basic_guarded_poly_bound(__isl_take isl_basic_set *bset,
473 	void *user)
474 {
475 	struct range_data *data = (struct range_data *)user;
476 	isl_ctx *ctx;
477 	isl_size nparam = isl_basic_set_dim(bset, isl_dim_param);
478 	isl_size dim = isl_basic_set_dim(bset, isl_dim_set);
479 	isl_size total = isl_basic_set_dim(bset, isl_dim_all);
480 	isl_stat r;
481 
482 	data->signs = NULL;
483 
484 	if (nparam < 0 || dim < 0 || total < 0)
485 		goto error;
486 
487 	ctx = isl_basic_set_get_ctx(bset);
488 	data->signs = isl_alloc_array(ctx, int, total);
489 
490 	if (isl_basic_set_dims_get_sign(bset, isl_dim_set, 0, dim,
491 					data->signs + nparam) < 0)
492 		goto error;
493 	if (isl_basic_set_dims_get_sign(bset, isl_dim_param, 0, nparam,
494 					data->signs) < 0)
495 		goto error;
496 
497 	r = propagate_on_domain(bset, isl_qpolynomial_copy(data->poly), data);
498 
499 	free(data->signs);
500 
501 	return r;
502 error:
503 	free(data->signs);
504 	isl_basic_set_free(bset);
505 	return isl_stat_error;
506 }
507 
qpolynomial_bound_on_domain_range(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct range_data * data)508 static isl_stat qpolynomial_bound_on_domain_range(
509 	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
510 	struct range_data *data)
511 {
512 	isl_size nparam = isl_basic_set_dim(bset, isl_dim_param);
513 	isl_size nvar = isl_basic_set_dim(bset, isl_dim_set);
514 	isl_set *set = NULL;
515 
516 	if (nparam < 0 || nvar < 0)
517 		goto error;
518 
519 	if (nvar == 0)
520 		return add_guarded_poly(bset, poly, data);
521 
522 	set = isl_set_from_basic_set(bset);
523 	set = isl_set_split_dims(set, isl_dim_param, 0, nparam);
524 	set = isl_set_split_dims(set, isl_dim_set, 0, nvar);
525 
526 	data->poly = poly;
527 
528 	data->test_monotonicity = 1;
529 	if (isl_set_foreach_basic_set(set, &basic_guarded_poly_bound, data) < 0)
530 		goto error;
531 
532 	isl_set_free(set);
533 	isl_qpolynomial_free(poly);
534 
535 	return isl_stat_ok;
536 error:
537 	isl_set_free(set);
538 	isl_qpolynomial_free(poly);
539 	return isl_stat_error;
540 }
541 
isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct isl_bound * bound)542 isl_stat isl_qpolynomial_bound_on_domain_range(__isl_take isl_basic_set *bset,
543 	__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
544 {
545 	struct range_data data;
546 	isl_stat r;
547 
548 	data.pwf = bound->pwf;
549 	data.pwf_tight = bound->pwf_tight;
550 	data.tight = bound->check_tight;
551 	if (bound->type == isl_fold_min)
552 		data.sign = -1;
553 	else
554 		data.sign = 1;
555 
556 	r = qpolynomial_bound_on_domain_range(bset, poly, &data);
557 
558 	bound->pwf = data.pwf;
559 	bound->pwf_tight = data.pwf_tight;
560 
561 	return r;
562 }
563