1 #ifndef _LINUX_LIST_H
2 #define _LINUX_LIST_H
3 
4 #undef offsetof
5 #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
6 
7 /**
8  * container_of - cast a member of a structure out to the containing structure
9  *
10  * @ptr:	the pointer to the member.
11  * @type:	the type of the container struct this is embedded in.
12  * @member:	the name of the member within the struct.
13  *
14  */
15 #define container_of(ptr, type, member) ({			\
16         const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
17         (type *)( (char *)__mptr - offsetof(type,member) );})
18 
19 /*
20  * Check at compile time that something is of a particular type.
21  * Always evaluates to 1 so you may use it easily in comparisons.
22  */
23 #define typecheck(type,x) \
24 ({	type __dummy; \
25 	typeof(x) __dummy2; \
26 	(void)(&__dummy == &__dummy2); \
27 	1; \
28 })
29 
30 #define prefetch(x)		((void)0)
31 
32 /* empty define to make this work in userspace -HW */
33 #define smp_wmb()
34 
35 /*
36  * These are non-NULL pointers that will result in page faults
37  * under normal circumstances, used to verify that nobody uses
38  * non-initialized list entries.
39  */
40 #define LIST_POISON1  ((void *) 0x00100100)
41 #define LIST_POISON2  ((void *) 0x00200200)
42 
43 /*
44  * Simple doubly linked list implementation.
45  *
46  * Some of the internal functions ("__xxx") are useful when
47  * manipulating whole lists rather than single entries, as
48  * sometimes we already know the next/prev entries and we can
49  * generate better code by using them directly rather than
50  * using the generic single-entry routines.
51  */
52 
53 struct list_head {
54 	struct list_head *next, *prev;
55 };
56 
57 #define LIST_HEAD_INIT(name) { &(name), &(name) }
58 
59 #define LIST_HEAD(name) \
60 	struct list_head name = LIST_HEAD_INIT(name)
61 
62 #define INIT_LIST_HEAD(ptr) do { \
63 	(ptr)->next = (ptr); (ptr)->prev = (ptr); \
64 } while (0)
65 
66 /*
67  * Insert a new entry between two known consecutive entries.
68  *
69  * This is only for internal list manipulation where we know
70  * the prev/next entries already!
71  */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)72 static inline void __list_add(struct list_head *new,
73 			      struct list_head *prev,
74 			      struct list_head *next)
75 {
76 	next->prev = new;
77 	new->next = next;
78 	new->prev = prev;
79 	prev->next = new;
80 }
81 
82 /**
83  * list_add - add a new entry
84  * @new: new entry to be added
85  * @head: list head to add it after
86  *
87  * Insert a new entry after the specified head.
88  * This is good for implementing stacks.
89  */
list_add(struct list_head * new,struct list_head * head)90 static inline void list_add(struct list_head *new, struct list_head *head)
91 {
92 	__list_add(new, head, head->next);
93 }
94 
95 /**
96  * list_add_tail - add a new entry
97  * @new: new entry to be added
98  * @head: list head to add it before
99  *
100  * Insert a new entry before the specified head.
101  * This is useful for implementing queues.
102  */
list_add_tail(struct list_head * new,struct list_head * head)103 static inline void list_add_tail(struct list_head *new, struct list_head *head)
104 {
105 	__list_add(new, head->prev, head);
106 }
107 
108 /*
109  * Insert a new entry between two known consecutive entries.
110  *
111  * This is only for internal list manipulation where we know
112  * the prev/next entries already!
113  */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)114 static inline void __list_add_rcu(struct list_head * new,
115 		struct list_head * prev, struct list_head * next)
116 {
117 	new->next = next;
118 	new->prev = prev;
119 	smp_wmb();
120 	next->prev = new;
121 	prev->next = new;
122 }
123 
124 /**
125  * list_add_rcu - add a new entry to rcu-protected list
126  * @new: new entry to be added
127  * @head: list head to add it after
128  *
129  * Insert a new entry after the specified head.
130  * This is good for implementing stacks.
131  *
132  * The caller must take whatever precautions are necessary
133  * (such as holding appropriate locks) to avoid racing
134  * with another list-mutation primitive, such as list_add_rcu()
135  * or list_del_rcu(), running on this same list.
136  * However, it is perfectly legal to run concurrently with
137  * the _rcu list-traversal primitives, such as
138  * list_for_each_entry_rcu().
139  */
list_add_rcu(struct list_head * new,struct list_head * head)140 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
141 {
142 	__list_add_rcu(new, head, head->next);
143 }
144 
145 /**
146  * list_add_tail_rcu - add a new entry to rcu-protected list
147  * @new: new entry to be added
148  * @head: list head to add it before
149  *
150  * Insert a new entry before the specified head.
151  * This is useful for implementing queues.
152  *
153  * The caller must take whatever precautions are necessary
154  * (such as holding appropriate locks) to avoid racing
155  * with another list-mutation primitive, such as list_add_tail_rcu()
156  * or list_del_rcu(), running on this same list.
157  * However, it is perfectly legal to run concurrently with
158  * the _rcu list-traversal primitives, such as
159  * list_for_each_entry_rcu().
160  */
list_add_tail_rcu(struct list_head * new,struct list_head * head)161 static inline void list_add_tail_rcu(struct list_head *new,
162 					struct list_head *head)
163 {
164 	__list_add_rcu(new, head->prev, head);
165 }
166 
167 /*
168  * Delete a list entry by making the prev/next entries
169  * point to each other.
170  *
171  * This is only for internal list manipulation where we know
172  * the prev/next entries already!
173  */
__list_del(struct list_head * prev,struct list_head * next)174 static inline void __list_del(struct list_head * prev, struct list_head * next)
175 {
176 	next->prev = prev;
177 	prev->next = next;
178 }
179 
180 /**
181  * list_del - deletes entry from list.
182  * @entry: the element to delete from the list.
183  * Note: list_empty on entry does not return true after this, the entry is
184  * in an undefined state.
185  */
list_del(struct list_head * entry)186 static inline void list_del(struct list_head *entry)
187 {
188 	__list_del(entry->prev, entry->next);
189 	entry->next = LIST_POISON1;
190 	entry->prev = LIST_POISON2;
191 }
192 
193 /**
194  * list_del_rcu - deletes entry from list without re-initialization
195  * @entry: the element to delete from the list.
196  *
197  * Note: list_empty on entry does not return true after this,
198  * the entry is in an undefined state. It is useful for RCU based
199  * lockfree traversal.
200  *
201  * In particular, it means that we can not poison the forward
202  * pointers that may still be used for walking the list.
203  *
204  * The caller must take whatever precautions are necessary
205  * (such as holding appropriate locks) to avoid racing
206  * with another list-mutation primitive, such as list_del_rcu()
207  * or list_add_rcu(), running on this same list.
208  * However, it is perfectly legal to run concurrently with
209  * the _rcu list-traversal primitives, such as
210  * list_for_each_entry_rcu().
211  *
212  * Note that the caller is not permitted to immediately free
213  * the newly deleted entry.  Instead, either synchronize_kernel()
214  * or call_rcu() must be used to defer freeing until an RCU
215  * grace period has elapsed.
216  */
list_del_rcu(struct list_head * entry)217 static inline void list_del_rcu(struct list_head *entry)
218 {
219 	__list_del(entry->prev, entry->next);
220 	entry->prev = LIST_POISON2;
221 }
222 
223 /**
224  * list_del_init - deletes entry from list and reinitialize it.
225  * @entry: the element to delete from the list.
226  */
list_del_init(struct list_head * entry)227 static inline void list_del_init(struct list_head *entry)
228 {
229 	__list_del(entry->prev, entry->next);
230 	INIT_LIST_HEAD(entry);
231 }
232 
233 /**
234  * list_move - delete from one list and add as another's head
235  * @list: the entry to move
236  * @head: the head that will precede our entry
237  */
list_move(struct list_head * list,struct list_head * head)238 static inline void list_move(struct list_head *list, struct list_head *head)
239 {
240         __list_del(list->prev, list->next);
241         list_add(list, head);
242 }
243 
244 /**
245  * list_move_tail - delete from one list and add as another's tail
246  * @list: the entry to move
247  * @head: the head that will follow our entry
248  */
list_move_tail(struct list_head * list,struct list_head * head)249 static inline void list_move_tail(struct list_head *list,
250 				  struct list_head *head)
251 {
252         __list_del(list->prev, list->next);
253         list_add_tail(list, head);
254 }
255 
256 /**
257  * list_empty - tests whether a list is empty
258  * @head: the list to test.
259  */
list_empty(const struct list_head * head)260 static inline int list_empty(const struct list_head *head)
261 {
262 	return head->next == head;
263 }
264 
265 /**
266  * list_empty_careful - tests whether a list is
267  * empty _and_ checks that no other CPU might be
268  * in the process of still modifying either member
269  *
270  * NOTE: using list_empty_careful() without synchronization
271  * can only be safe if the only activity that can happen
272  * to the list entry is list_del_init(). Eg. it cannot be used
273  * if another CPU could re-list_add() it.
274  *
275  * @head: the list to test.
276  */
list_empty_careful(const struct list_head * head)277 static inline int list_empty_careful(const struct list_head *head)
278 {
279 	struct list_head *next = head->next;
280 	return (next == head) && (next == head->prev);
281 }
282 
__list_splice(struct list_head * list,struct list_head * head)283 static inline void __list_splice(struct list_head *list,
284 				 struct list_head *head)
285 {
286 	struct list_head *first = list->next;
287 	struct list_head *last = list->prev;
288 	struct list_head *at = head->next;
289 
290 	first->prev = head;
291 	head->next = first;
292 
293 	last->next = at;
294 	at->prev = last;
295 }
296 
297 /**
298  * list_splice - join two lists
299  * @list: the new list to add.
300  * @head: the place to add it in the first list.
301  */
list_splice(struct list_head * list,struct list_head * head)302 static inline void list_splice(struct list_head *list, struct list_head *head)
303 {
304 	if (!list_empty(list))
305 		__list_splice(list, head);
306 }
307 
308 /**
309  * list_splice_init - join two lists and reinitialise the emptied list.
310  * @list: the new list to add.
311  * @head: the place to add it in the first list.
312  *
313  * The list at @list is reinitialised
314  */
list_splice_init(struct list_head * list,struct list_head * head)315 static inline void list_splice_init(struct list_head *list,
316 				    struct list_head *head)
317 {
318 	if (!list_empty(list)) {
319 		__list_splice(list, head);
320 		INIT_LIST_HEAD(list);
321 	}
322 }
323 
324 /**
325  * list_entry - get the struct for this entry
326  * @ptr:	the &struct list_head pointer.
327  * @type:	the type of the struct this is embedded in.
328  * @member:	the name of the list_struct within the struct.
329  */
330 #define list_entry(ptr, type, member) \
331 	container_of(ptr, type, member)
332 
333 /**
334  * list_for_each	-	iterate over a list
335  * @pos:	the &struct list_head to use as a loop counter.
336  * @head:	the head for your list.
337  */
338 #define list_for_each(pos, head) \
339 	for (pos = (head)->next, prefetch(pos->next); pos != (head); \
340         	pos = pos->next, prefetch(pos->next))
341 
342 /**
343  * __list_for_each	-	iterate over a list
344  * @pos:	the &struct list_head to use as a loop counter.
345  * @head:	the head for your list.
346  *
347  * This variant differs from list_for_each() in that it's the
348  * simplest possible list iteration code, no prefetching is done.
349  * Use this for code that knows the list to be very short (empty
350  * or 1 entry) most of the time.
351  */
352 #define __list_for_each(pos, head) \
353 	for (pos = (head)->next; pos != (head); pos = pos->next)
354 
355 /**
356  * list_for_each_prev	-	iterate over a list backwards
357  * @pos:	the &struct list_head to use as a loop counter.
358  * @head:	the head for your list.
359  */
360 #define list_for_each_prev(pos, head) \
361 	for (pos = (head)->prev, prefetch(pos->prev); pos != (head); \
362         	pos = pos->prev, prefetch(pos->prev))
363 
364 /**
365  * list_for_each_safe	-	iterate over a list safe against removal of list entry
366  * @pos:	the &struct list_head to use as a loop counter.
367  * @n:		another &struct list_head to use as temporary storage
368  * @head:	the head for your list.
369  */
370 #define list_for_each_safe(pos, n, head) \
371 	for (pos = (head)->next, n = pos->next; pos != (head); \
372 		pos = n, n = pos->next)
373 
374 /**
375  * list_for_each_entry	-	iterate over list of given type
376  * @pos:	the type * to use as a loop counter.
377  * @head:	the head for your list.
378  * @member:	the name of the list_struct within the struct.
379  */
380 #define list_for_each_entry(pos, head, member)				\
381 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
382 		     prefetch(pos->member.next);			\
383 	     &pos->member != (head); 					\
384 	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
385 		     prefetch(pos->member.next))
386 
387 /**
388  * list_for_each_entry_reverse - iterate backwards over list of given type.
389  * @pos:	the type * to use as a loop counter.
390  * @head:	the head for your list.
391  * @member:	the name of the list_struct within the struct.
392  */
393 #define list_for_each_entry_reverse(pos, head, member)			\
394 	for (pos = list_entry((head)->prev, typeof(*pos), member),	\
395 		     prefetch(pos->member.prev);			\
396 	     &pos->member != (head); 					\
397 	     pos = list_entry(pos->member.prev, typeof(*pos), member),	\
398 		     prefetch(pos->member.prev))
399 
400 /**
401  * list_prepare_entry - prepare a pos entry for use as a start point in
402  *			list_for_each_entry_continue
403  * @pos:	the type * to use as a start point
404  * @head:	the head of the list
405  * @member:	the name of the list_struct within the struct.
406  */
407 #define list_prepare_entry(pos, head, member) \
408 	((pos) ? : list_entry(head, typeof(*pos), member))
409 
410 /**
411  * list_for_each_entry_continue -	iterate over list of given type
412  *			continuing after existing point
413  * @pos:	the type * to use as a loop counter.
414  * @head:	the head for your list.
415  * @member:	the name of the list_struct within the struct.
416  */
417 #define list_for_each_entry_continue(pos, head, member) 		\
418 	for (pos = list_entry(pos->member.next, typeof(*pos), member),	\
419 		     prefetch(pos->member.next);			\
420 	     &pos->member != (head);					\
421 	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
422 		     prefetch(pos->member.next))
423 
424 /**
425  * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
426  * @pos:	the type * to use as a loop counter.
427  * @n:		another type * to use as temporary storage
428  * @head:	the head for your list.
429  * @member:	the name of the list_struct within the struct.
430  */
431 #define list_for_each_entry_safe(pos, n, head, member)			\
432 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
433 		n = list_entry(pos->member.next, typeof(*pos), member);	\
434 	     &pos->member != (head); 					\
435 	     pos = n, n = list_entry(n->member.next, typeof(*n), member))
436 
437 /**
438  * list_for_each_rcu	-	iterate over an rcu-protected list
439  * @pos:	the &struct list_head to use as a loop counter.
440  * @head:	the head for your list.
441  *
442  * This list-traversal primitive may safely run concurrently with
443  * the _rcu list-mutation primitives such as list_add_rcu()
444  * as long as the traversal is guarded by rcu_read_lock().
445  */
446 #define list_for_each_rcu(pos, head) \
447 	for (pos = (head)->next, prefetch(pos->next); pos != (head); \
448         	pos = pos->next, ({ smp_read_barrier_depends(); 0;}), prefetch(pos->next))
449 
450 #define __list_for_each_rcu(pos, head) \
451 	for (pos = (head)->next; pos != (head); \
452         	pos = pos->next, ({ smp_read_barrier_depends(); 0;}))
453 
454 /**
455  * list_for_each_safe_rcu	-	iterate over an rcu-protected list safe
456  *					against removal of list entry
457  * @pos:	the &struct list_head to use as a loop counter.
458  * @n:		another &struct list_head to use as temporary storage
459  * @head:	the head for your list.
460  *
461  * This list-traversal primitive may safely run concurrently with
462  * the _rcu list-mutation primitives such as list_add_rcu()
463  * as long as the traversal is guarded by rcu_read_lock().
464  */
465 #define list_for_each_safe_rcu(pos, n, head) \
466 	for (pos = (head)->next, n = pos->next; pos != (head); \
467 		pos = n, ({ smp_read_barrier_depends(); 0;}), n = pos->next)
468 
469 /**
470  * list_for_each_entry_rcu	-	iterate over rcu list of given type
471  * @pos:	the type * to use as a loop counter.
472  * @head:	the head for your list.
473  * @member:	the name of the list_struct within the struct.
474  *
475  * This list-traversal primitive may safely run concurrently with
476  * the _rcu list-mutation primitives such as list_add_rcu()
477  * as long as the traversal is guarded by rcu_read_lock().
478  */
479 #define list_for_each_entry_rcu(pos, head, member)			\
480 	for (pos = list_entry((head)->next, typeof(*pos), member),	\
481 		     prefetch(pos->member.next);			\
482 	     &pos->member != (head); 					\
483 	     pos = list_entry(pos->member.next, typeof(*pos), member),	\
484 		     ({ smp_read_barrier_depends(); 0;}),		\
485 		     prefetch(pos->member.next))
486 
487 
488 /**
489  * list_for_each_continue_rcu	-	iterate over an rcu-protected list
490  *			continuing after existing point.
491  * @pos:	the &struct list_head to use as a loop counter.
492  * @head:	the head for your list.
493  *
494  * This list-traversal primitive may safely run concurrently with
495  * the _rcu list-mutation primitives such as list_add_rcu()
496  * as long as the traversal is guarded by rcu_read_lock().
497  */
498 #define list_for_each_continue_rcu(pos, head) \
499 	for ((pos) = (pos)->next, prefetch((pos)->next); (pos) != (head); \
500         	(pos) = (pos)->next, ({ smp_read_barrier_depends(); 0;}), prefetch((pos)->next))
501 
502 /*
503  * Double linked lists with a single pointer list head.
504  * Mostly useful for hash tables where the two pointer list head is
505  * too wasteful.
506  * You lose the ability to access the tail in O(1).
507  */
508 
509 struct hlist_head {
510 	struct hlist_node *first;
511 };
512 
513 struct hlist_node {
514 	struct hlist_node *next, **pprev;
515 };
516 
517 #define HLIST_HEAD_INIT { .first = NULL }
518 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
519 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
520 #define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL)
521 
hlist_unhashed(const struct hlist_node * h)522 static inline int hlist_unhashed(const struct hlist_node *h)
523 {
524 	return !h->pprev;
525 }
526 
hlist_empty(const struct hlist_head * h)527 static inline int hlist_empty(const struct hlist_head *h)
528 {
529 	return !h->first;
530 }
531 
__hlist_del(struct hlist_node * n)532 static inline void __hlist_del(struct hlist_node *n)
533 {
534 	struct hlist_node *next = n->next;
535 	struct hlist_node **pprev = n->pprev;
536 	*pprev = next;
537 	if (next)
538 		next->pprev = pprev;
539 }
540 
hlist_del(struct hlist_node * n)541 static inline void hlist_del(struct hlist_node *n)
542 {
543 	__hlist_del(n);
544 	n->next = LIST_POISON1;
545 	n->pprev = LIST_POISON2;
546 }
547 
548 /**
549  * hlist_del_rcu - deletes entry from hash list without re-initialization
550  * @n: the element to delete from the hash list.
551  *
552  * Note: list_unhashed() on entry does not return true after this,
553  * the entry is in an undefined state. It is useful for RCU based
554  * lockfree traversal.
555  *
556  * In particular, it means that we can not poison the forward
557  * pointers that may still be used for walking the hash list.
558  *
559  * The caller must take whatever precautions are necessary
560  * (such as holding appropriate locks) to avoid racing
561  * with another list-mutation primitive, such as hlist_add_head_rcu()
562  * or hlist_del_rcu(), running on this same list.
563  * However, it is perfectly legal to run concurrently with
564  * the _rcu list-traversal primitives, such as
565  * hlist_for_each_entry().
566  */
hlist_del_rcu(struct hlist_node * n)567 static inline void hlist_del_rcu(struct hlist_node *n)
568 {
569 	__hlist_del(n);
570 	n->pprev = LIST_POISON2;
571 }
572 
hlist_del_init(struct hlist_node * n)573 static inline void hlist_del_init(struct hlist_node *n)
574 {
575 	if (n->pprev)  {
576 		__hlist_del(n);
577 		INIT_HLIST_NODE(n);
578 	}
579 }
580 
581 #define hlist_del_rcu_init hlist_del_init
582 
hlist_add_head(struct hlist_node * n,struct hlist_head * h)583 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
584 {
585 	struct hlist_node *first = h->first;
586 	n->next = first;
587 	if (first)
588 		first->pprev = &n->next;
589 	h->first = n;
590 	n->pprev = &h->first;
591 }
592 
593 
594 /**
595  * hlist_add_head_rcu - adds the specified element to the specified hlist,
596  * while permitting racing traversals.
597  * @n: the element to add to the hash list.
598  * @h: the list to add to.
599  *
600  * The caller must take whatever precautions are necessary
601  * (such as holding appropriate locks) to avoid racing
602  * with another list-mutation primitive, such as hlist_add_head_rcu()
603  * or hlist_del_rcu(), running on this same list.
604  * However, it is perfectly legal to run concurrently with
605  * the _rcu list-traversal primitives, such as
606  * hlist_for_each_entry(), but only if smp_read_barrier_depends()
607  * is used to prevent memory-consistency problems on Alpha CPUs.
608  * Regardless of the type of CPU, the list-traversal primitive
609  * must be guarded by rcu_read_lock().
610  *
611  * OK, so why don't we have an hlist_for_each_entry_rcu()???
612  */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)613 static inline void hlist_add_head_rcu(struct hlist_node *n,
614 					struct hlist_head *h)
615 {
616 	struct hlist_node *first = h->first;
617 	n->next = first;
618 	n->pprev = &h->first;
619 	smp_wmb();
620 	if (first)
621 		first->pprev = &n->next;
622 	h->first = n;
623 }
624 
625 /* next must be != NULL */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)626 static inline void hlist_add_before(struct hlist_node *n,
627 					struct hlist_node *next)
628 {
629 	n->pprev = next->pprev;
630 	n->next = next;
631 	next->pprev = &n->next;
632 	*(n->pprev) = n;
633 }
634 
hlist_add_after(struct hlist_node * n,struct hlist_node * next)635 static inline void hlist_add_after(struct hlist_node *n,
636 					struct hlist_node *next)
637 {
638 	next->next = n->next;
639 	n->next = next;
640 	next->pprev = &n->next;
641 
642 	if(next->next)
643 		next->next->pprev  = &next->next;
644 }
645 
646 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
647 
648 #define hlist_for_each(pos, head) \
649 	for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
650 	     pos = pos->next)
651 
652 #define hlist_for_each_safe(pos, n, head) \
653 	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
654 	     pos = n)
655 
656 /**
657  * hlist_for_each_entry	- iterate over list of given type
658  * @tpos:	the type * to use as a loop counter.
659  * @pos:	the &struct hlist_node to use as a loop counter.
660  * @head:	the head for your list.
661  * @member:	the name of the hlist_node within the struct.
662  */
663 #define hlist_for_each_entry(tpos, pos, head, member)			 \
664 	for (pos = (head)->first;					 \
665 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
666 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
667 	     pos = pos->next)
668 
669 /**
670  * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point
671  * @tpos:	the type * to use as a loop counter.
672  * @pos:	the &struct hlist_node to use as a loop counter.
673  * @member:	the name of the hlist_node within the struct.
674  */
675 #define hlist_for_each_entry_continue(tpos, pos, member)		 \
676 	for (pos = (pos)->next;						 \
677 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
678 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
679 	     pos = pos->next)
680 
681 /**
682  * hlist_for_each_entry_from - iterate over a hlist continuing from existing point
683  * @tpos:	the type * to use as a loop counter.
684  * @pos:	the &struct hlist_node to use as a loop counter.
685  * @member:	the name of the hlist_node within the struct.
686  */
687 #define hlist_for_each_entry_from(tpos, pos, member)			 \
688 	for (; pos && ({ prefetch(pos->next); 1;}) &&			 \
689 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
690 	     pos = pos->next)
691 
692 /**
693  * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
694  * @tpos:	the type * to use as a loop counter.
695  * @pos:	the &struct hlist_node to use as a loop counter.
696  * @n:		another &struct hlist_node to use as temporary storage
697  * @head:	the head for your list.
698  * @member:	the name of the hlist_node within the struct.
699  */
700 #define hlist_for_each_entry_safe(tpos, pos, n, head, member) 		 \
701 	for (pos = (head)->first;					 \
702 	     pos && ({ n = pos->next; 1; }) && 				 \
703 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
704 	     pos = n)
705 
706 /**
707  * hlist_for_each_entry_rcu - iterate over rcu list of given type
708  * @pos:	the type * to use as a loop counter.
709  * @pos:	the &struct hlist_node to use as a loop counter.
710  * @head:	the head for your list.
711  * @member:	the name of the hlist_node within the struct.
712  *
713  * This list-traversal primitive may safely run concurrently with
714  * the _rcu list-mutation primitives such as hlist_add_rcu()
715  * as long as the traversal is guarded by rcu_read_lock().
716  */
717 #define hlist_for_each_entry_rcu(tpos, pos, head, member)		 \
718 	for (pos = (head)->first;					 \
719 	     pos && ({ prefetch(pos->next); 1;}) &&			 \
720 		({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
721 	     pos = pos->next, ({ smp_read_barrier_depends(); 0; }) )
722 
723 #endif
724