1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""AudioMicrofrontend Op creates filterbanks from audio data."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.lite.experimental.microfrontend.ops import gen_audio_microfrontend_op
22from tensorflow.python.framework import dtypes
23from tensorflow.python.framework import load_library
24from tensorflow.python.framework import ops
25from tensorflow.python.ops import array_ops
26from tensorflow.python.platform import resource_loader
27from tensorflow.python.util.tf_export import tf_export
28
29_audio_microfrontend_op = load_library.load_op_library(
30    resource_loader.get_path_to_datafile("_audio_microfrontend_op.so"))
31
32
33@tf_export("lite.experimental.microfrontend.python.ops.audio_microfrontend")
34def audio_microfrontend(audio,
35                        sample_rate=16000,
36                        window_size=25,
37                        window_step=10,
38                        num_channels=32,
39                        upper_band_limit=7500.0,
40                        lower_band_limit=125.0,
41                        smoothing_bits=10,
42                        even_smoothing=0.025,
43                        odd_smoothing=0.06,
44                        min_signal_remaining=0.05,
45                        enable_pcan=True,
46                        pcan_strength=0.95,
47                        pcan_offset=80.0,
48                        gain_bits=21,
49                        enable_log=True,
50                        scale_shift=6,
51                        left_context=0,
52                        right_context=0,
53                        frame_stride=1,
54                        zero_padding=False,
55                        out_scale=1,
56                        out_type=dtypes.uint16):
57  """Audio Microfrontend Op.
58
59  This Op converts a sequence of audio data into one or more
60  feature vectors containing filterbanks of the input. The
61  conversion process uses a lightweight library to perform:
62
63  1. A slicing window function
64  2. Short-time FFTs
65  3. Filterbank calculations
66  4. Noise reduction
67  5. PCAN Auto Gain Control
68  6. Logarithmic scaling
69
70  Args:
71    audio: 1D Tensor, int16 audio data in temporal ordering.
72    sample_rate: Integer, the sample rate of the audio in Hz.
73    window_size: Integer, length of desired time frames in ms.
74    window_step: Integer, length of step size for the next frame in ms.
75    num_channels: Integer, the number of filterbank channels to use.
76    upper_band_limit: Float, the highest frequency included in the filterbanks.
77    lower_band_limit: Float, the lowest frequency included in the filterbanks.
78    smoothing_bits: Int, scale up signal by 2^(smoothing_bits) before reduction.
79    even_smoothing: Float, smoothing coefficient for even-numbered channels.
80    odd_smoothing: Float, smoothing coefficient for odd-numbered channels.
81    min_signal_remaining: Float, fraction of signal to preserve in smoothing.
82    enable_pcan: Bool, enable PCAN auto gain control.
83    pcan_strength: Float, gain normalization exponent.
84    pcan_offset: Float, positive value added in the normalization denominator.
85    gain_bits: Int, number of fractional bits in the gain.
86    enable_log: Bool, enable logarithmic scaling of filterbanks.
87    scale_shift: Integer, scale filterbanks by 2^(scale_shift).
88    left_context: Integer, number of preceding frames to attach to each frame.
89    right_context: Integer, number of preceding frames to attach to each frame.
90    frame_stride: Integer, M frames to skip over, where output[n] = frame[n*M].
91    zero_padding: Bool, if left/right context is out-of-bounds, attach frame of
92      zeroes. Otherwise, frame[0] or frame[size-1] will be copied.
93    out_scale: Integer, divide all filterbanks by this number.
94    out_type: DType, type of the output Tensor, defaults to UINT16.
95
96  Returns:
97    filterbanks: 2D Tensor, each row is a time frame, each column is a channel.
98
99  Raises:
100    ValueError: If the audio tensor is not explicitly a vector.
101  """
102  audio_shape = audio.shape
103  if audio_shape.ndims is None:
104    raise ValueError("Input to `AudioMicrofrontend` should have known rank.")
105  if len(audio_shape) > 1:
106    audio = array_ops.reshape(audio, [-1])
107
108  return gen_audio_microfrontend_op.audio_microfrontend(
109      audio, sample_rate, window_size, window_step, num_channels,
110      upper_band_limit, lower_band_limit, smoothing_bits, even_smoothing,
111      odd_smoothing, min_signal_remaining, enable_pcan, pcan_strength,
112      pcan_offset, gain_bits, enable_log, scale_shift, left_context,
113      right_context, frame_stride, zero_padding, out_scale, out_type)
114
115
116ops.NotDifferentiable("AudioMicrofrontend")
117