1===================================== 2Coroutines in LLVM 3===================================== 4 5.. contents:: 6 :local: 7 :depth: 3 8 9.. warning:: 10 This is a work in progress. Compatibility across LLVM releases is not 11 guaranteed. 12 13Introduction 14============ 15 16.. _coroutine handle: 17 18LLVM coroutines are functions that have one or more `suspend points`_. 19When a suspend point is reached, the execution of a coroutine is suspended and 20control is returned back to its caller. A suspended coroutine can be resumed 21to continue execution from the last suspend point or it can be destroyed. 22 23In the following example, we call function `f` (which may or may not be a 24coroutine itself) that returns a handle to a suspended coroutine 25(**coroutine handle**) that is used by `main` to resume the coroutine twice and 26then destroy it: 27 28.. code-block:: llvm 29 30 define i32 @main() { 31 entry: 32 %hdl = call i8* @f(i32 4) 33 call void @llvm.coro.resume(i8* %hdl) 34 call void @llvm.coro.resume(i8* %hdl) 35 call void @llvm.coro.destroy(i8* %hdl) 36 ret i32 0 37 } 38 39.. _coroutine frame: 40 41In addition to the function stack frame which exists when a coroutine is 42executing, there is an additional region of storage that contains objects that 43keep the coroutine state when a coroutine is suspended. This region of storage 44is called the **coroutine frame**. It is created when a coroutine is called 45and destroyed when a coroutine either runs to completion or is destroyed 46while suspended. 47 48LLVM currently supports two styles of coroutine lowering. These styles 49support substantially different sets of features, have substantially 50different ABIs, and expect substantially different patterns of frontend 51code generation. However, the styles also have a great deal in common. 52 53In all cases, an LLVM coroutine is initially represented as an ordinary LLVM 54function that has calls to `coroutine intrinsics`_ defining the structure of 55the coroutine. The coroutine function is then, in the most general case, 56rewritten by the coroutine lowering passes to become the "ramp function", 57the initial entrypoint of the coroutine, which executes until a suspend point 58is first reached. The remainder of the original coroutine function is split 59out into some number of "resume functions". Any state which must persist 60across suspensions is stored in the coroutine frame. The resume functions 61must somehow be able to handle either a "normal" resumption, which continues 62the normal execution of the coroutine, or an "abnormal" resumption, which 63must unwind the coroutine without attempting to suspend it. 64 65Switched-Resume Lowering 66------------------------ 67 68In LLVM's standard switched-resume lowering, signaled by the use of 69`llvm.coro.id`, the coroutine frame is stored as part of a "coroutine 70object" which represents a handle to a particular invocation of the 71coroutine. All coroutine objects support a common ABI allowing certain 72features to be used without knowing anything about the coroutine's 73implementation: 74 75- A coroutine object can be queried to see if it has reached completion 76 with `llvm.coro.done`. 77 78- A coroutine object can be resumed normally if it has not already reached 79 completion with `llvm.coro.resume`. 80 81- A coroutine object can be destroyed, invalidating the coroutine object, 82 with `llvm.coro.destroy`. This must be done separately even if the 83 coroutine has reached completion normally. 84 85- "Promise" storage, which is known to have a certain size and alignment, 86 can be projected out of the coroutine object with `llvm.coro.promise`. 87 The coroutine implementation must have been compiled to define a promise 88 of the same size and alignment. 89 90In general, interacting with a coroutine object in any of these ways while 91it is running has undefined behavior. 92 93The coroutine function is split into three functions, representing three 94different ways that control can enter the coroutine: 95 961. the ramp function that is initially invoked, which takes arbitrary 97 arguments and returns a pointer to the coroutine object; 98 992. a coroutine resume function that is invoked when the coroutine is resumed, 100 which takes a pointer to the coroutine object and returns `void`; 101 1023. a coroutine destroy function that is invoked when the coroutine is 103 destroyed, which takes a pointer to the coroutine object and returns 104 `void`. 105 106Because the resume and destroy functions are shared across all suspend 107points, suspend points must store the index of the active suspend in 108the coroutine object, and the resume/destroy functions must switch over 109that index to get back to the correct point. Hence the name of this 110lowering. 111 112Pointers to the resume and destroy functions are stored in the coroutine 113object at known offsets which are fixed for all coroutines. A completed 114coroutine is represented with a null resume function. 115 116There is a somewhat complex protocol of intrinsics for allocating and 117deallocating the coroutine object. It is complex in order to allow the 118allocation to be elided due to inlining. This protocol is discussed 119in further detail below. 120 121The frontend may generate code to call the coroutine function directly; 122this will become a call to the ramp function and will return a pointer 123to the coroutine object. The frontend should always resume or destroy 124the coroutine using the corresponding intrinsics. 125 126Returned-Continuation Lowering 127------------------------------ 128 129In returned-continuation lowering, signaled by the use of 130`llvm.coro.id.retcon` or `llvm.coro.id.retcon.once`, some aspects of 131the ABI must be handled more explicitly by the frontend. 132 133In this lowering, every suspend point takes a list of "yielded values" 134which are returned back to the caller along with a function pointer, 135called the continuation function. The coroutine is resumed by simply 136calling this continuation function pointer. The original coroutine 137is divided into the ramp function and then an arbitrary number of 138these continuation functions, one for each suspend point. 139 140LLVM actually supports two closely-related returned-continuation 141lowerings: 142 143- In normal returned-continuation lowering, the coroutine may suspend 144 itself multiple times. This means that a continuation function 145 itself returns another continuation pointer, as well as a list of 146 yielded values. 147 148 The coroutine indicates that it has run to completion by returning 149 a null continuation pointer. Any yielded values will be `undef` 150 should be ignored. 151 152- In yield-once returned-continuation lowering, the coroutine must 153 suspend itself exactly once (or throw an exception). The ramp 154 function returns a continuation function pointer and yielded 155 values, but the continuation function simply returns `void` 156 when the coroutine has run to completion. 157 158The coroutine frame is maintained in a fixed-size buffer that is 159passed to the `coro.id` intrinsic, which guarantees a certain size 160and alignment statically. The same buffer must be passed to the 161continuation function(s). The coroutine will allocate memory if the 162buffer is insufficient, in which case it will need to store at 163least that pointer in the buffer; therefore the buffer must always 164be at least pointer-sized. How the coroutine uses the buffer may 165vary between suspend points. 166 167In addition to the buffer pointer, continuation functions take an 168argument indicating whether the coroutine is being resumed normally 169(zero) or abnormally (non-zero). 170 171LLVM is currently ineffective at statically eliminating allocations 172after fully inlining returned-continuation coroutines into a caller. 173This may be acceptable if LLVM's coroutine support is primarily being 174used for low-level lowering and inlining is expected to be applied 175earlier in the pipeline. 176 177Async Lowering 178-------------- 179 180In async-continuation lowering, signaled by the use of `llvm.coro.id.async`, 181handling of control-flow must be handled explicitly by the frontend. 182 183In this lowering, a coroutine is assumed to take the current `async context` as 184one of its arguments (the argument position is determined by 185`llvm.coro.id.async`). It is used to marshal arguments and return values of the 186coroutine. Therefore an async coroutine returns `void`. 187 188.. code-block:: llvm 189 190 define swiftcc void @async_coroutine(i8* %async.ctxt, i8*, i8*) { 191 } 192 193Values live accross a suspend point need to be stored in the coroutine frame to 194be available in the continuation function. This frame is stored as a tail to the 195`async context`. 196 197Every suspend point takes an `context projection function` argument which 198describes how-to obtain the continuations `async context` and every suspend 199point has an associated `resume function` denoted by the 200`llvm.coro.async.resume` intrinsic. The coroutine is resumed by calling this 201`resume function` passing the `async context` as the one of its arguments 202argument. The `resume function` can restore its (the caller's) `async context` 203by applying a `context projection function` that is provided by the frontend as 204a parameter to the `llvm.coro.suspend.async` intrinsic. 205 206.. code-block:: c 207 208 // For example: 209 struct async_context { 210 struct async_context *caller_context; 211 ... 212 } 213 214 char *context_projection_function(struct async_context *callee_ctxt) { 215 return callee_ctxt->caller_context; 216 } 217 218.. code-block:: llvm 219 220 %resume_func_ptr = call i8* @llvm.coro.async.resume() 221 call {i8*, i8*, i8*} (i8*, i8*, ...) @llvm.coro.suspend.async( 222 i8* %resume_func_ptr, 223 i8* %context_projection_function 224 225The frontend should provide a `async function pointer` struct associated with 226each async coroutine by `llvm.coro.id.async`'s argument. The initial size and 227alignment of the `async context` must be provided as arguments to the 228`llvm.coro.id.async` intrinsic. Lowering will update the size entry with the 229coroutine frame requirements. The frontend is responsible for allocating the 230memory for the `async context` but can use the `async function pointer` struct 231to obtain the required size. 232 233.. code-block:: c 234 235 struct async_function_pointer { 236 uint32_t relative_function_pointer_to_async_impl; 237 uint32_t context_size; 238 } 239 240Lowering will split an async coroutine into a ramp function and one resume 241function per suspend point. 242 243How control-flow is passed between caller, suspension point, and back to 244resume function is left up to the frontend. 245 246The suspend point takes a function and its arguments. The function is intended 247to model the transfer to the callee function. It will be tail called by 248lowering and therefore must have the same signature and calling convention as 249the async coroutine. 250 251.. code-block:: llvm 252 253 call {i8*, i8*, i8*} (i8*, i8*, ...) @llvm.coro.suspend.async( 254 i8* %resume_func_ptr, 255 i8* %context_projection_function, 256 i8* (bitcast void (i8*, i8*, i8*)* to i8*) %suspend_function, 257 i8* %arg1, i8* %arg2, i8 %arg3) 258 259Coroutines by Example 260===================== 261 262The examples below are all of switched-resume coroutines. 263 264Coroutine Representation 265------------------------ 266 267Let's look at an example of an LLVM coroutine with the behavior sketched 268by the following pseudo-code. 269 270.. code-block:: c++ 271 272 void *f(int n) { 273 for(;;) { 274 print(n++); 275 <suspend> // returns a coroutine handle on first suspend 276 } 277 } 278 279This coroutine calls some function `print` with value `n` as an argument and 280suspends execution. Every time this coroutine resumes, it calls `print` again with an argument one bigger than the last time. This coroutine never completes by itself and must be destroyed explicitly. If we use this coroutine with 281a `main` shown in the previous section. It will call `print` with values 4, 5 282and 6 after which the coroutine will be destroyed. 283 284The LLVM IR for this coroutine looks like this: 285 286.. code-block:: llvm 287 288 define i8* @f(i32 %n) { 289 entry: 290 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null) 291 %size = call i32 @llvm.coro.size.i32() 292 %alloc = call i8* @malloc(i32 %size) 293 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc) 294 br label %loop 295 loop: 296 %n.val = phi i32 [ %n, %entry ], [ %inc, %loop ] 297 %inc = add nsw i32 %n.val, 1 298 call void @print(i32 %n.val) 299 %0 = call i8 @llvm.coro.suspend(token none, i1 false) 300 switch i8 %0, label %suspend [i8 0, label %loop 301 i8 1, label %cleanup] 302 cleanup: 303 %mem = call i8* @llvm.coro.free(token %id, i8* %hdl) 304 call void @free(i8* %mem) 305 br label %suspend 306 suspend: 307 %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false) 308 ret i8* %hdl 309 } 310 311The `entry` block establishes the coroutine frame. The `coro.size`_ intrinsic is 312lowered to a constant representing the size required for the coroutine frame. 313The `coro.begin`_ intrinsic initializes the coroutine frame and returns the 314coroutine handle. The second parameter of `coro.begin` is given a block of memory 315to be used if the coroutine frame needs to be allocated dynamically. 316The `coro.id`_ intrinsic serves as coroutine identity useful in cases when the 317`coro.begin`_ intrinsic get duplicated by optimization passes such as 318jump-threading. 319 320The `cleanup` block destroys the coroutine frame. The `coro.free`_ intrinsic, 321given the coroutine handle, returns a pointer of the memory block to be freed or 322`null` if the coroutine frame was not allocated dynamically. The `cleanup` 323block is entered when coroutine runs to completion by itself or destroyed via 324call to the `coro.destroy`_ intrinsic. 325 326The `suspend` block contains code to be executed when coroutine runs to 327completion or suspended. The `coro.end`_ intrinsic marks the point where 328a coroutine needs to return control back to the caller if it is not an initial 329invocation of the coroutine. 330 331The `loop` blocks represents the body of the coroutine. The `coro.suspend`_ 332intrinsic in combination with the following switch indicates what happens to 333control flow when a coroutine is suspended (default case), resumed (case 0) or 334destroyed (case 1). 335 336Coroutine Transformation 337------------------------ 338 339One of the steps of coroutine lowering is building the coroutine frame. The 340def-use chains are analyzed to determine which objects need be kept alive across 341suspend points. In the coroutine shown in the previous section, use of virtual register 342`%inc` is separated from the definition by a suspend point, therefore, it 343cannot reside on the stack frame since the latter goes away once the coroutine 344is suspended and control is returned back to the caller. An i32 slot is 345allocated in the coroutine frame and `%inc` is spilled and reloaded from that 346slot as needed. 347 348We also store addresses of the resume and destroy functions so that the 349`coro.resume` and `coro.destroy` intrinsics can resume and destroy the coroutine 350when its identity cannot be determined statically at compile time. For our 351example, the coroutine frame will be: 352 353.. code-block:: llvm 354 355 %f.frame = type { void (%f.frame*)*, void (%f.frame*)*, i32 } 356 357After resume and destroy parts are outlined, function `f` will contain only the 358code responsible for creation and initialization of the coroutine frame and 359execution of the coroutine until a suspend point is reached: 360 361.. code-block:: llvm 362 363 define i8* @f(i32 %n) { 364 entry: 365 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null) 366 %alloc = call noalias i8* @malloc(i32 24) 367 %0 = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc) 368 %frame = bitcast i8* %0 to %f.frame* 369 %1 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 0 370 store void (%f.frame*)* @f.resume, void (%f.frame*)** %1 371 %2 = getelementptr %f.frame, %f.frame* %frame, i32 0, i32 1 372 store void (%f.frame*)* @f.destroy, void (%f.frame*)** %2 373 374 %inc = add nsw i32 %n, 1 375 %inc.spill.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0, i32 2 376 store i32 %inc, i32* %inc.spill.addr 377 call void @print(i32 %n) 378 379 ret i8* %frame 380 } 381 382Outlined resume part of the coroutine will reside in function `f.resume`: 383 384.. code-block:: llvm 385 386 define internal fastcc void @f.resume(%f.frame* %frame.ptr.resume) { 387 entry: 388 %inc.spill.addr = getelementptr %f.frame, %f.frame* %frame.ptr.resume, i64 0, i32 2 389 %inc.spill = load i32, i32* %inc.spill.addr, align 4 390 %inc = add i32 %n.val, 1 391 store i32 %inc, i32* %inc.spill.addr, align 4 392 tail call void @print(i32 %inc) 393 ret void 394 } 395 396Whereas function `f.destroy` will contain the cleanup code for the coroutine: 397 398.. code-block:: llvm 399 400 define internal fastcc void @f.destroy(%f.frame* %frame.ptr.destroy) { 401 entry: 402 %0 = bitcast %f.frame* %frame.ptr.destroy to i8* 403 tail call void @free(i8* %0) 404 ret void 405 } 406 407Avoiding Heap Allocations 408------------------------- 409 410A particular coroutine usage pattern, which is illustrated by the `main` 411function in the overview section, where a coroutine is created, manipulated and 412destroyed by the same calling function, is common for coroutines implementing 413RAII idiom and is suitable for allocation elision optimization which avoid 414dynamic allocation by storing the coroutine frame as a static `alloca` in its 415caller. 416 417In the entry block, we will call `coro.alloc`_ intrinsic that will return `true` 418when dynamic allocation is required, and `false` if dynamic allocation is 419elided. 420 421.. code-block:: llvm 422 423 entry: 424 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null) 425 %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id) 426 br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin 427 dyn.alloc: 428 %size = call i32 @llvm.coro.size.i32() 429 %alloc = call i8* @CustomAlloc(i32 %size) 430 br label %coro.begin 431 coro.begin: 432 %phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ] 433 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi) 434 435In the cleanup block, we will make freeing the coroutine frame conditional on 436`coro.free`_ intrinsic. If allocation is elided, `coro.free`_ returns `null` 437thus skipping the deallocation code: 438 439.. code-block:: llvm 440 441 cleanup: 442 %mem = call i8* @llvm.coro.free(token %id, i8* %hdl) 443 %need.dyn.free = icmp ne i8* %mem, null 444 br i1 %need.dyn.free, label %dyn.free, label %if.end 445 dyn.free: 446 call void @CustomFree(i8* %mem) 447 br label %if.end 448 if.end: 449 ... 450 451With allocations and deallocations represented as described as above, after 452coroutine heap allocation elision optimization, the resulting main will be: 453 454.. code-block:: llvm 455 456 define i32 @main() { 457 entry: 458 call void @print(i32 4) 459 call void @print(i32 5) 460 call void @print(i32 6) 461 ret i32 0 462 } 463 464Multiple Suspend Points 465----------------------- 466 467Let's consider the coroutine that has more than one suspend point: 468 469.. code-block:: c++ 470 471 void *f(int n) { 472 for(;;) { 473 print(n++); 474 <suspend> 475 print(-n); 476 <suspend> 477 } 478 } 479 480Matching LLVM code would look like (with the rest of the code remaining the same 481as the code in the previous section): 482 483.. code-block:: llvm 484 485 loop: 486 %n.addr = phi i32 [ %n, %entry ], [ %inc, %loop.resume ] 487 call void @print(i32 %n.addr) #4 488 %2 = call i8 @llvm.coro.suspend(token none, i1 false) 489 switch i8 %2, label %suspend [i8 0, label %loop.resume 490 i8 1, label %cleanup] 491 loop.resume: 492 %inc = add nsw i32 %n.addr, 1 493 %sub = xor i32 %n.addr, -1 494 call void @print(i32 %sub) 495 %3 = call i8 @llvm.coro.suspend(token none, i1 false) 496 switch i8 %3, label %suspend [i8 0, label %loop 497 i8 1, label %cleanup] 498 499In this case, the coroutine frame would include a suspend index that will 500indicate at which suspend point the coroutine needs to resume. The resume 501function will use an index to jump to an appropriate basic block and will look 502as follows: 503 504.. code-block:: llvm 505 506 define internal fastcc void @f.Resume(%f.Frame* %FramePtr) { 507 entry.Resume: 508 %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 2 509 %index = load i8, i8* %index.addr, align 1 510 %switch = icmp eq i8 %index, 0 511 %n.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i64 0, i32 3 512 %n = load i32, i32* %n.addr, align 4 513 br i1 %switch, label %loop.resume, label %loop 514 515 loop.resume: 516 %sub = xor i32 %n, -1 517 call void @print(i32 %sub) 518 br label %suspend 519 loop: 520 %inc = add nsw i32 %n, 1 521 store i32 %inc, i32* %n.addr, align 4 522 tail call void @print(i32 %inc) 523 br label %suspend 524 525 suspend: 526 %storemerge = phi i8 [ 0, %loop ], [ 1, %loop.resume ] 527 store i8 %storemerge, i8* %index.addr, align 1 528 ret void 529 } 530 531If different cleanup code needs to get executed for different suspend points, 532a similar switch will be in the `f.destroy` function. 533 534.. note :: 535 536 Using suspend index in a coroutine state and having a switch in `f.resume` and 537 `f.destroy` is one of the possible implementation strategies. We explored 538 another option where a distinct `f.resume1`, `f.resume2`, etc. are created for 539 every suspend point, and instead of storing an index, the resume and destroy 540 function pointers are updated at every suspend. Early testing showed that the 541 current approach is easier on the optimizer than the latter so it is a 542 lowering strategy implemented at the moment. 543 544Distinct Save and Suspend 545------------------------- 546 547In the previous example, setting a resume index (or some other state change that 548needs to happen to prepare a coroutine for resumption) happens at the same time as 549a suspension of a coroutine. However, in certain cases, it is necessary to control 550when coroutine is prepared for resumption and when it is suspended. 551 552In the following example, a coroutine represents some activity that is driven 553by completions of asynchronous operations `async_op1` and `async_op2` which get 554a coroutine handle as a parameter and resume the coroutine once async 555operation is finished. 556 557.. code-block:: text 558 559 void g() { 560 for (;;) 561 if (cond()) { 562 async_op1(<coroutine-handle>); // will resume once async_op1 completes 563 <suspend> 564 do_one(); 565 } 566 else { 567 async_op2(<coroutine-handle>); // will resume once async_op2 completes 568 <suspend> 569 do_two(); 570 } 571 } 572 } 573 574In this case, coroutine should be ready for resumption prior to a call to 575`async_op1` and `async_op2`. The `coro.save`_ intrinsic is used to indicate a 576point when coroutine should be ready for resumption (namely, when a resume index 577should be stored in the coroutine frame, so that it can be resumed at the 578correct resume point): 579 580.. code-block:: llvm 581 582 if.true: 583 %save1 = call token @llvm.coro.save(i8* %hdl) 584 call void @async_op1(i8* %hdl) 585 %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false) 586 switch i8 %suspend1, label %suspend [i8 0, label %resume1 587 i8 1, label %cleanup] 588 if.false: 589 %save2 = call token @llvm.coro.save(i8* %hdl) 590 call void @async_op2(i8* %hdl) 591 %suspend2 = call i1 @llvm.coro.suspend(token %save2, i1 false) 592 switch i8 %suspend1, label %suspend [i8 0, label %resume2 593 i8 1, label %cleanup] 594 595.. _coroutine promise: 596 597Coroutine Promise 598----------------- 599 600A coroutine author or a frontend may designate a distinguished `alloca` that can 601be used to communicate with the coroutine. This distinguished alloca is called 602**coroutine promise** and is provided as the second parameter to the 603`coro.id`_ intrinsic. 604 605The following coroutine designates a 32 bit integer `promise` and uses it to 606store the current value produced by a coroutine. 607 608.. code-block:: llvm 609 610 define i8* @f(i32 %n) { 611 entry: 612 %promise = alloca i32 613 %pv = bitcast i32* %promise to i8* 614 %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null) 615 %need.dyn.alloc = call i1 @llvm.coro.alloc(token %id) 616 br i1 %need.dyn.alloc, label %dyn.alloc, label %coro.begin 617 dyn.alloc: 618 %size = call i32 @llvm.coro.size.i32() 619 %alloc = call i8* @malloc(i32 %size) 620 br label %coro.begin 621 coro.begin: 622 %phi = phi i8* [ null, %entry ], [ %alloc, %dyn.alloc ] 623 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %phi) 624 br label %loop 625 loop: 626 %n.val = phi i32 [ %n, %coro.begin ], [ %inc, %loop ] 627 %inc = add nsw i32 %n.val, 1 628 store i32 %n.val, i32* %promise 629 %0 = call i8 @llvm.coro.suspend(token none, i1 false) 630 switch i8 %0, label %suspend [i8 0, label %loop 631 i8 1, label %cleanup] 632 cleanup: 633 %mem = call i8* @llvm.coro.free(token %id, i8* %hdl) 634 call void @free(i8* %mem) 635 br label %suspend 636 suspend: 637 %unused = call i1 @llvm.coro.end(i8* %hdl, i1 false) 638 ret i8* %hdl 639 } 640 641A coroutine consumer can rely on the `coro.promise`_ intrinsic to access the 642coroutine promise. 643 644.. code-block:: llvm 645 646 define i32 @main() { 647 entry: 648 %hdl = call i8* @f(i32 4) 649 %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false) 650 %promise.addr = bitcast i8* %promise.addr.raw to i32* 651 %val0 = load i32, i32* %promise.addr 652 call void @print(i32 %val0) 653 call void @llvm.coro.resume(i8* %hdl) 654 %val1 = load i32, i32* %promise.addr 655 call void @print(i32 %val1) 656 call void @llvm.coro.resume(i8* %hdl) 657 %val2 = load i32, i32* %promise.addr 658 call void @print(i32 %val2) 659 call void @llvm.coro.destroy(i8* %hdl) 660 ret i32 0 661 } 662 663After example in this section is compiled, result of the compilation will be: 664 665.. code-block:: llvm 666 667 define i32 @main() { 668 entry: 669 tail call void @print(i32 4) 670 tail call void @print(i32 5) 671 tail call void @print(i32 6) 672 ret i32 0 673 } 674 675.. _final: 676.. _final suspend: 677 678Final Suspend 679------------- 680 681A coroutine author or a frontend may designate a particular suspend to be final, 682by setting the second argument of the `coro.suspend`_ intrinsic to `true`. 683Such a suspend point has two properties: 684 685* it is possible to check whether a suspended coroutine is at the final suspend 686 point via `coro.done`_ intrinsic; 687 688* a resumption of a coroutine stopped at the final suspend point leads to 689 undefined behavior. The only possible action for a coroutine at a final 690 suspend point is destroying it via `coro.destroy`_ intrinsic. 691 692From the user perspective, the final suspend point represents an idea of a 693coroutine reaching the end. From the compiler perspective, it is an optimization 694opportunity for reducing number of resume points (and therefore switch cases) in 695the resume function. 696 697The following is an example of a function that keeps resuming the coroutine 698until the final suspend point is reached after which point the coroutine is 699destroyed: 700 701.. code-block:: llvm 702 703 define i32 @main() { 704 entry: 705 %hdl = call i8* @f(i32 4) 706 br label %while 707 while: 708 call void @llvm.coro.resume(i8* %hdl) 709 %done = call i1 @llvm.coro.done(i8* %hdl) 710 br i1 %done, label %end, label %while 711 end: 712 call void @llvm.coro.destroy(i8* %hdl) 713 ret i32 0 714 } 715 716Usually, final suspend point is a frontend injected suspend point that does not 717correspond to any explicitly authored suspend point of the high level language. 718For example, for a Python generator that has only one suspend point: 719 720.. code-block:: python 721 722 def coroutine(n): 723 for i in range(n): 724 yield i 725 726Python frontend would inject two more suspend points, so that the actual code 727looks like this: 728 729.. code-block:: c 730 731 void* coroutine(int n) { 732 int current_value; 733 <designate current_value to be coroutine promise> 734 <SUSPEND> // injected suspend point, so that the coroutine starts suspended 735 for (int i = 0; i < n; ++i) { 736 current_value = i; <SUSPEND>; // corresponds to "yield i" 737 } 738 <SUSPEND final=true> // injected final suspend point 739 } 740 741and python iterator `__next__` would look like: 742 743.. code-block:: c++ 744 745 int __next__(void* hdl) { 746 coro.resume(hdl); 747 if (coro.done(hdl)) throw StopIteration(); 748 return *(int*)coro.promise(hdl, 4, false); 749 } 750 751 752Intrinsics 753========== 754 755Coroutine Manipulation Intrinsics 756--------------------------------- 757 758Intrinsics described in this section are used to manipulate an existing 759coroutine. They can be used in any function which happen to have a pointer 760to a `coroutine frame`_ or a pointer to a `coroutine promise`_. 761 762.. _coro.destroy: 763 764'llvm.coro.destroy' Intrinsic 765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 766 767Syntax: 768""""""" 769 770:: 771 772 declare void @llvm.coro.destroy(i8* <handle>) 773 774Overview: 775""""""""" 776 777The '``llvm.coro.destroy``' intrinsic destroys a suspended 778switched-resume coroutine. 779 780Arguments: 781"""""""""" 782 783The argument is a coroutine handle to a suspended coroutine. 784 785Semantics: 786"""""""""" 787 788When possible, the `coro.destroy` intrinsic is replaced with a direct call to 789the coroutine destroy function. Otherwise it is replaced with an indirect call 790based on the function pointer for the destroy function stored in the coroutine 791frame. Destroying a coroutine that is not suspended leads to undefined behavior. 792 793.. _coro.resume: 794 795'llvm.coro.resume' Intrinsic 796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 797 798:: 799 800 declare void @llvm.coro.resume(i8* <handle>) 801 802Overview: 803""""""""" 804 805The '``llvm.coro.resume``' intrinsic resumes a suspended switched-resume coroutine. 806 807Arguments: 808"""""""""" 809 810The argument is a handle to a suspended coroutine. 811 812Semantics: 813"""""""""" 814 815When possible, the `coro.resume` intrinsic is replaced with a direct call to the 816coroutine resume function. Otherwise it is replaced with an indirect call based 817on the function pointer for the resume function stored in the coroutine frame. 818Resuming a coroutine that is not suspended leads to undefined behavior. 819 820.. _coro.done: 821 822'llvm.coro.done' Intrinsic 823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 824 825:: 826 827 declare i1 @llvm.coro.done(i8* <handle>) 828 829Overview: 830""""""""" 831 832The '``llvm.coro.done``' intrinsic checks whether a suspended 833switched-resume coroutine is at the final suspend point or not. 834 835Arguments: 836"""""""""" 837 838The argument is a handle to a suspended coroutine. 839 840Semantics: 841"""""""""" 842 843Using this intrinsic on a coroutine that does not have a `final suspend`_ point 844or on a coroutine that is not suspended leads to undefined behavior. 845 846.. _coro.promise: 847 848'llvm.coro.promise' Intrinsic 849^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 850 851:: 852 853 declare i8* @llvm.coro.promise(i8* <ptr>, i32 <alignment>, i1 <from>) 854 855Overview: 856""""""""" 857 858The '``llvm.coro.promise``' intrinsic obtains a pointer to a 859`coroutine promise`_ given a switched-resume coroutine handle and vice versa. 860 861Arguments: 862"""""""""" 863 864The first argument is a handle to a coroutine if `from` is false. Otherwise, 865it is a pointer to a coroutine promise. 866 867The second argument is an alignment requirements of the promise. 868If a frontend designated `%promise = alloca i32` as a promise, the alignment 869argument to `coro.promise` should be the alignment of `i32` on the target 870platform. If a frontend designated `%promise = alloca i32, align 16` as a 871promise, the alignment argument should be 16. 872This argument only accepts constants. 873 874The third argument is a boolean indicating a direction of the transformation. 875If `from` is true, the intrinsic returns a coroutine handle given a pointer 876to a promise. If `from` is false, the intrinsics return a pointer to a promise 877from a coroutine handle. This argument only accepts constants. 878 879Semantics: 880"""""""""" 881 882Using this intrinsic on a coroutine that does not have a coroutine promise 883leads to undefined behavior. It is possible to read and modify coroutine 884promise of the coroutine which is currently executing. The coroutine author and 885a coroutine user are responsible to makes sure there is no data races. 886 887Example: 888"""""""" 889 890.. code-block:: llvm 891 892 define i8* @f(i32 %n) { 893 entry: 894 %promise = alloca i32 895 %pv = bitcast i32* %promise to i8* 896 ; the second argument to coro.id points to the coroutine promise. 897 %id = call token @llvm.coro.id(i32 0, i8* %pv, i8* null, i8* null) 898 ... 899 %hdl = call noalias i8* @llvm.coro.begin(token %id, i8* %alloc) 900 ... 901 store i32 42, i32* %promise ; store something into the promise 902 ... 903 ret i8* %hdl 904 } 905 906 define i32 @main() { 907 entry: 908 %hdl = call i8* @f(i32 4) ; starts the coroutine and returns its handle 909 %promise.addr.raw = call i8* @llvm.coro.promise(i8* %hdl, i32 4, i1 false) 910 %promise.addr = bitcast i8* %promise.addr.raw to i32* 911 %val = load i32, i32* %promise.addr ; load a value from the promise 912 call void @print(i32 %val) 913 call void @llvm.coro.destroy(i8* %hdl) 914 ret i32 0 915 } 916 917.. _coroutine intrinsics: 918 919Coroutine Structure Intrinsics 920------------------------------ 921Intrinsics described in this section are used within a coroutine to describe 922the coroutine structure. They should not be used outside of a coroutine. 923 924.. _coro.size: 925 926'llvm.coro.size' Intrinsic 927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 928:: 929 930 declare i32 @llvm.coro.size.i32() 931 declare i64 @llvm.coro.size.i64() 932 933Overview: 934""""""""" 935 936The '``llvm.coro.size``' intrinsic returns the number of bytes 937required to store a `coroutine frame`_. This is only supported for 938switched-resume coroutines. 939 940Arguments: 941"""""""""" 942 943None 944 945Semantics: 946"""""""""" 947 948The `coro.size` intrinsic is lowered to a constant representing the size of 949the coroutine frame. 950 951.. _coro.begin: 952 953'llvm.coro.begin' Intrinsic 954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 955:: 956 957 declare i8* @llvm.coro.begin(token <id>, i8* <mem>) 958 959Overview: 960""""""""" 961 962The '``llvm.coro.begin``' intrinsic returns an address of the coroutine frame. 963 964Arguments: 965"""""""""" 966 967The first argument is a token returned by a call to '``llvm.coro.id``' 968identifying the coroutine. 969 970The second argument is a pointer to a block of memory where coroutine frame 971will be stored if it is allocated dynamically. This pointer is ignored 972for returned-continuation coroutines. 973 974Semantics: 975"""""""""" 976 977Depending on the alignment requirements of the objects in the coroutine frame 978and/or on the codegen compactness reasons the pointer returned from `coro.begin` 979may be at offset to the `%mem` argument. (This could be beneficial if 980instructions that express relative access to data can be more compactly encoded 981with small positive and negative offsets). 982 983A frontend should emit exactly one `coro.begin` intrinsic per coroutine. 984 985.. _coro.free: 986 987'llvm.coro.free' Intrinsic 988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 989:: 990 991 declare i8* @llvm.coro.free(token %id, i8* <frame>) 992 993Overview: 994""""""""" 995 996The '``llvm.coro.free``' intrinsic returns a pointer to a block of memory where 997coroutine frame is stored or `null` if this instance of a coroutine did not use 998dynamically allocated memory for its coroutine frame. This intrinsic is not 999supported for returned-continuation coroutines. 1000 1001Arguments: 1002"""""""""" 1003 1004The first argument is a token returned by a call to '``llvm.coro.id``' 1005identifying the coroutine. 1006 1007The second argument is a pointer to the coroutine frame. This should be the same 1008pointer that was returned by prior `coro.begin` call. 1009 1010Example (custom deallocation function): 1011""""""""""""""""""""""""""""""""""""""" 1012 1013.. code-block:: llvm 1014 1015 cleanup: 1016 %mem = call i8* @llvm.coro.free(token %id, i8* %frame) 1017 %mem_not_null = icmp ne i8* %mem, null 1018 br i1 %mem_not_null, label %if.then, label %if.end 1019 if.then: 1020 call void @CustomFree(i8* %mem) 1021 br label %if.end 1022 if.end: 1023 ret void 1024 1025Example (standard deallocation functions): 1026"""""""""""""""""""""""""""""""""""""""""" 1027 1028.. code-block:: llvm 1029 1030 cleanup: 1031 %mem = call i8* @llvm.coro.free(token %id, i8* %frame) 1032 call void @free(i8* %mem) 1033 ret void 1034 1035.. _coro.alloc: 1036 1037'llvm.coro.alloc' Intrinsic 1038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1039:: 1040 1041 declare i1 @llvm.coro.alloc(token <id>) 1042 1043Overview: 1044""""""""" 1045 1046The '``llvm.coro.alloc``' intrinsic returns `true` if dynamic allocation is 1047required to obtain a memory for the coroutine frame and `false` otherwise. 1048This is not supported for returned-continuation coroutines. 1049 1050Arguments: 1051"""""""""" 1052 1053The first argument is a token returned by a call to '``llvm.coro.id``' 1054identifying the coroutine. 1055 1056Semantics: 1057"""""""""" 1058 1059A frontend should emit at most one `coro.alloc` intrinsic per coroutine. 1060The intrinsic is used to suppress dynamic allocation of the coroutine frame 1061when possible. 1062 1063Example: 1064"""""""" 1065 1066.. code-block:: llvm 1067 1068 entry: 1069 %id = call token @llvm.coro.id(i32 0, i8* null, i8* null, i8* null) 1070 %dyn.alloc.required = call i1 @llvm.coro.alloc(token %id) 1071 br i1 %dyn.alloc.required, label %coro.alloc, label %coro.begin 1072 1073 coro.alloc: 1074 %frame.size = call i32 @llvm.coro.size() 1075 %alloc = call i8* @MyAlloc(i32 %frame.size) 1076 br label %coro.begin 1077 1078 coro.begin: 1079 %phi = phi i8* [ null, %entry ], [ %alloc, %coro.alloc ] 1080 %frame = call i8* @llvm.coro.begin(token %id, i8* %phi) 1081 1082.. _coro.noop: 1083 1084'llvm.coro.noop' Intrinsic 1085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1086:: 1087 1088 declare i8* @llvm.coro.noop() 1089 1090Overview: 1091""""""""" 1092 1093The '``llvm.coro.noop``' intrinsic returns an address of the coroutine frame of 1094a coroutine that does nothing when resumed or destroyed. 1095 1096Arguments: 1097"""""""""" 1098 1099None 1100 1101Semantics: 1102"""""""""" 1103 1104This intrinsic is lowered to refer to a private constant coroutine frame. The 1105resume and destroy handlers for this frame are empty functions that do nothing. 1106Note that in different translation units llvm.coro.noop may return different pointers. 1107 1108.. _coro.frame: 1109 1110'llvm.coro.frame' Intrinsic 1111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1112:: 1113 1114 declare i8* @llvm.coro.frame() 1115 1116Overview: 1117""""""""" 1118 1119The '``llvm.coro.frame``' intrinsic returns an address of the coroutine frame of 1120the enclosing coroutine. 1121 1122Arguments: 1123"""""""""" 1124 1125None 1126 1127Semantics: 1128"""""""""" 1129 1130This intrinsic is lowered to refer to the `coro.begin`_ instruction. This is 1131a frontend convenience intrinsic that makes it easier to refer to the 1132coroutine frame. 1133 1134.. _coro.id: 1135 1136'llvm.coro.id' Intrinsic 1137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1138:: 1139 1140 declare token @llvm.coro.id(i32 <align>, i8* <promise>, i8* <coroaddr>, 1141 i8* <fnaddrs>) 1142 1143Overview: 1144""""""""" 1145 1146The '``llvm.coro.id``' intrinsic returns a token identifying a 1147switched-resume coroutine. 1148 1149Arguments: 1150"""""""""" 1151 1152The first argument provides information on the alignment of the memory returned 1153by the allocation function and given to `coro.begin` by the first argument. If 1154this argument is 0, the memory is assumed to be aligned to 2 * sizeof(i8*). 1155This argument only accepts constants. 1156 1157The second argument, if not `null`, designates a particular alloca instruction 1158to be a `coroutine promise`_. 1159 1160The third argument is `null` coming out of the frontend. The CoroEarly pass sets 1161this argument to point to the function this coro.id belongs to. 1162 1163The fourth argument is `null` before coroutine is split, and later is replaced 1164to point to a private global constant array containing function pointers to 1165outlined resume and destroy parts of the coroutine. 1166 1167 1168Semantics: 1169"""""""""" 1170 1171The purpose of this intrinsic is to tie together `coro.id`, `coro.alloc` and 1172`coro.begin` belonging to the same coroutine to prevent optimization passes from 1173duplicating any of these instructions unless entire body of the coroutine is 1174duplicated. 1175 1176A frontend should emit exactly one `coro.id` intrinsic per coroutine. 1177 1178.. _coro.id.async: 1179 1180'llvm.coro.id.async' Intrinsic 1181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1182:: 1183 1184 declare token @llvm.coro.id.async(i32 <context size>, i32 <align>, 1185 i8* <context arg>, 1186 i8* <async function pointer>) 1187 1188Overview: 1189""""""""" 1190 1191The '``llvm.coro.id.async``' intrinsic returns a token identifying an async coroutine. 1192 1193Arguments: 1194"""""""""" 1195 1196The first argument provides the initial size of the `async context` as required 1197from the frontend. Lowering will add to this size the size required by the frame 1198storage and store that value to the `async function pointer`. 1199 1200The second argument, is the alignment guarantee of the memory of the 1201`async context`. The frontend guarantees that the memory will be aligned by this 1202value. 1203 1204The third argument is the `async context` argument in the current coroutine. 1205 1206The fourth argument is the address of the `async function pointer` struct. 1207Lowering will update the context size requirement in this struct by adding the 1208coroutine frame size requirement to the initial size requirement as specified by 1209the first argument of this intrinisc. 1210 1211 1212Semantics: 1213"""""""""" 1214 1215A frontend should emit exactly one `coro.id.async` intrinsic per coroutine. 1216 1217.. _coro.id.retcon: 1218 1219'llvm.coro.id.retcon' Intrinsic 1220^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1221:: 1222 1223 declare token @llvm.coro.id.retcon(i32 <size>, i32 <align>, i8* <buffer>, 1224 i8* <continuation prototype>, 1225 i8* <alloc>, i8* <dealloc>) 1226 1227Overview: 1228""""""""" 1229 1230The '``llvm.coro.id.retcon``' intrinsic returns a token identifying a 1231multiple-suspend returned-continuation coroutine. 1232 1233The 'result-type sequence' of the coroutine is defined as follows: 1234 1235- if the return type of the coroutine function is ``void``, it is the 1236 empty sequence; 1237 1238- if the return type of the coroutine function is a ``struct``, it is the 1239 element types of that ``struct`` in order; 1240 1241- otherwise, it is just the return type of the coroutine function. 1242 1243The first element of the result-type sequence must be a pointer type; 1244continuation functions will be coerced to this type. The rest of 1245the sequence are the 'yield types', and any suspends in the coroutine 1246must take arguments of these types. 1247 1248Arguments: 1249"""""""""" 1250 1251The first and second arguments are the expected size and alignment of 1252the buffer provided as the third argument. They must be constant. 1253 1254The fourth argument must be a reference to a global function, called 1255the 'continuation prototype function'. The type, calling convention, 1256and attributes of any continuation functions will be taken from this 1257declaration. The return type of the prototype function must match the 1258return type of the current function. The first parameter type must be 1259a pointer type. The second parameter type must be an integer type; 1260it will be used only as a boolean flag. 1261 1262The fifth argument must be a reference to a global function that will 1263be used to allocate memory. It may not fail, either by returning null 1264or throwing an exception. It must take an integer and return a pointer. 1265 1266The sixth argument must be a reference to a global function that will 1267be used to deallocate memory. It must take a pointer and return ``void``. 1268 1269'llvm.coro.id.retcon.once' Intrinsic 1270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1271:: 1272 1273 declare token @llvm.coro.id.retcon.once(i32 <size>, i32 <align>, i8* <buffer>, 1274 i8* <prototype>, 1275 i8* <alloc>, i8* <dealloc>) 1276 1277Overview: 1278""""""""" 1279 1280The '``llvm.coro.id.retcon.once``' intrinsic returns a token identifying a 1281unique-suspend returned-continuation coroutine. 1282 1283Arguments: 1284"""""""""" 1285 1286As for ``llvm.core.id.retcon``, except that the return type of the 1287continuation prototype must be `void` instead of matching the 1288coroutine's return type. 1289 1290.. _coro.end: 1291 1292'llvm.coro.end' Intrinsic 1293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1294:: 1295 1296 declare i1 @llvm.coro.end(i8* <handle>, i1 <unwind>) 1297 1298Overview: 1299""""""""" 1300 1301The '``llvm.coro.end``' marks the point where execution of the resume part of 1302the coroutine should end and control should return to the caller. 1303 1304 1305Arguments: 1306"""""""""" 1307 1308The first argument should refer to the coroutine handle of the enclosing 1309coroutine. A frontend is allowed to supply null as the first parameter, in this 1310case `coro-early` pass will replace the null with an appropriate coroutine 1311handle value. 1312 1313The second argument should be `true` if this coro.end is in the block that is 1314part of the unwind sequence leaving the coroutine body due to an exception and 1315`false` otherwise. 1316 1317Semantics: 1318"""""""""" 1319The purpose of this intrinsic is to allow frontends to mark the cleanup and 1320other code that is only relevant during the initial invocation of the coroutine 1321and should not be present in resume and destroy parts. 1322 1323In returned-continuation lowering, ``llvm.coro.end`` fully destroys the 1324coroutine frame. If the second argument is `false`, it also returns from 1325the coroutine with a null continuation pointer, and the next instruction 1326will be unreachable. If the second argument is `true`, it falls through 1327so that the following logic can resume unwinding. In a yield-once 1328coroutine, reaching a non-unwind ``llvm.coro.end`` without having first 1329reached a ``llvm.coro.suspend.retcon`` has undefined behavior. 1330 1331The remainder of this section describes the behavior under switched-resume 1332lowering. 1333 1334This intrinsic is lowered when a coroutine is split into 1335the start, resume and destroy parts. In the start part, it is a no-op, 1336in resume and destroy parts, it is replaced with `ret void` instruction and 1337the rest of the block containing `coro.end` instruction is discarded. 1338In landing pads it is replaced with an appropriate instruction to unwind to 1339caller. The handling of coro.end differs depending on whether the target is 1340using landingpad or WinEH exception model. 1341 1342For landingpad based exception model, it is expected that frontend uses the 1343`coro.end`_ intrinsic as follows: 1344 1345.. code-block:: llvm 1346 1347 ehcleanup: 1348 %InResumePart = call i1 @llvm.coro.end(i8* null, i1 true) 1349 br i1 %InResumePart, label %eh.resume, label %cleanup.cont 1350 1351 cleanup.cont: 1352 ; rest of the cleanup 1353 1354 eh.resume: 1355 %exn = load i8*, i8** %exn.slot, align 8 1356 %sel = load i32, i32* %ehselector.slot, align 4 1357 %lpad.val = insertvalue { i8*, i32 } undef, i8* %exn, 0 1358 %lpad.val29 = insertvalue { i8*, i32 } %lpad.val, i32 %sel, 1 1359 resume { i8*, i32 } %lpad.val29 1360 1361The `CoroSpit` pass replaces `coro.end` with ``True`` in the resume functions, 1362thus leading to immediate unwind to the caller, whereas in start function it 1363is replaced with ``False``, thus allowing to proceed to the rest of the cleanup 1364code that is only needed during initial invocation of the coroutine. 1365 1366For Windows Exception handling model, a frontend should attach a funclet bundle 1367referring to an enclosing cleanuppad as follows: 1368 1369.. code-block:: llvm 1370 1371 ehcleanup: 1372 %tok = cleanuppad within none [] 1373 %unused = call i1 @llvm.coro.end(i8* null, i1 true) [ "funclet"(token %tok) ] 1374 cleanupret from %tok unwind label %RestOfTheCleanup 1375 1376The `CoroSplit` pass, if the funclet bundle is present, will insert 1377``cleanupret from %tok unwind to caller`` before 1378the `coro.end`_ intrinsic and will remove the rest of the block. 1379 1380The following table summarizes the handling of `coro.end`_ intrinsic. 1381 1382+--------------------------+-------------------+-------------------------------+ 1383| | In Start Function | In Resume/Destroy Functions | 1384+--------------------------+-------------------+-------------------------------+ 1385|unwind=false | nothing |``ret void`` | 1386+------------+-------------+-------------------+-------------------------------+ 1387| | WinEH | nothing |``cleanupret unwind to caller``| 1388|unwind=true +-------------+-------------------+-------------------------------+ 1389| | Landingpad | nothing | nothing | 1390+------------+-------------+-------------------+-------------------------------+ 1391 1392.. _coro.suspend: 1393.. _suspend points: 1394 1395'llvm.coro.suspend' Intrinsic 1396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1397:: 1398 1399 declare i8 @llvm.coro.suspend(token <save>, i1 <final>) 1400 1401Overview: 1402""""""""" 1403 1404The '``llvm.coro.suspend``' marks the point where execution of a 1405switched-resume coroutine is suspended and control is returned back 1406to the caller. Conditional branches consuming the result of this 1407intrinsic lead to basic blocks where coroutine should proceed when 1408suspended (-1), resumed (0) or destroyed (1). 1409 1410Arguments: 1411"""""""""" 1412 1413The first argument refers to a token of `coro.save` intrinsic that marks the 1414point when coroutine state is prepared for suspension. If `none` token is passed, 1415the intrinsic behaves as if there were a `coro.save` immediately preceding 1416the `coro.suspend` intrinsic. 1417 1418The second argument indicates whether this suspension point is `final`_. 1419The second argument only accepts constants. If more than one suspend point is 1420designated as final, the resume and destroy branches should lead to the same 1421basic blocks. 1422 1423Example (normal suspend point): 1424""""""""""""""""""""""""""""""" 1425 1426.. code-block:: llvm 1427 1428 %0 = call i8 @llvm.coro.suspend(token none, i1 false) 1429 switch i8 %0, label %suspend [i8 0, label %resume 1430 i8 1, label %cleanup] 1431 1432Example (final suspend point): 1433"""""""""""""""""""""""""""""" 1434 1435.. code-block:: llvm 1436 1437 while.end: 1438 %s.final = call i8 @llvm.coro.suspend(token none, i1 true) 1439 switch i8 %s.final, label %suspend [i8 0, label %trap 1440 i8 1, label %cleanup] 1441 trap: 1442 call void @llvm.trap() 1443 unreachable 1444 1445Semantics: 1446"""""""""" 1447 1448If a coroutine that was suspended at the suspend point marked by this intrinsic 1449is resumed via `coro.resume`_ the control will transfer to the basic block 1450of the 0-case. If it is resumed via `coro.destroy`_, it will proceed to the 1451basic block indicated by the 1-case. To suspend, coroutine proceed to the 1452default label. 1453 1454If suspend intrinsic is marked as final, it can consider the `true` branch 1455unreachable and can perform optimizations that can take advantage of that fact. 1456 1457.. _coro.save: 1458 1459'llvm.coro.save' Intrinsic 1460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1461:: 1462 1463 declare token @llvm.coro.save(i8* <handle>) 1464 1465Overview: 1466""""""""" 1467 1468The '``llvm.coro.save``' marks the point where a coroutine need to update its 1469state to prepare for resumption to be considered suspended (and thus eligible 1470for resumption). 1471 1472Arguments: 1473"""""""""" 1474 1475The first argument points to a coroutine handle of the enclosing coroutine. 1476 1477Semantics: 1478"""""""""" 1479 1480Whatever coroutine state changes are required to enable resumption of 1481the coroutine from the corresponding suspend point should be done at the point 1482of `coro.save` intrinsic. 1483 1484Example: 1485"""""""" 1486 1487Separate save and suspend points are necessary when a coroutine is used to 1488represent an asynchronous control flow driven by callbacks representing 1489completions of asynchronous operations. 1490 1491In such a case, a coroutine should be ready for resumption prior to a call to 1492`async_op` function that may trigger resumption of a coroutine from the same or 1493a different thread possibly prior to `async_op` call returning control back 1494to the coroutine: 1495 1496.. code-block:: llvm 1497 1498 %save1 = call token @llvm.coro.save(i8* %hdl) 1499 call void @async_op1(i8* %hdl) 1500 %suspend1 = call i1 @llvm.coro.suspend(token %save1, i1 false) 1501 switch i8 %suspend1, label %suspend [i8 0, label %resume1 1502 i8 1, label %cleanup] 1503 1504.. _coro.suspend.async: 1505 1506'llvm.coro.suspend.async' Intrinsic 1507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1508:: 1509 1510 declare {i8*, i8*, i8*} @llvm.coro.suspend.async( 1511 i8* <resume function>, 1512 i8* <context projection function>, 1513 ... <function to call> 1514 ... <arguments to function>) 1515 1516Overview: 1517""""""""" 1518 1519The '``llvm.coro.suspend.async``' intrinsic marks the point where 1520execution of a async coroutine is suspended and control is passed to a callee. 1521 1522Arguments: 1523"""""""""" 1524 1525The first argument should be the result of the `llvm.coro.async.resume` intrinsic. 1526Lowering will replace this intrinsic with the resume function for this suspend 1527point. 1528 1529The second argument is the `context projection function`. It should describe 1530how-to restore the `async context` in the continuation function from the first 1531argument of the continuation function. Its type is `i8* (i8*)`. 1532 1533The third argument is the function that models tranfer to the callee at the 1534suspend point. It should take 3 arguments. Lowering will `musttail` call this 1535function. 1536 1537The fourth to six argument are the arguments for the third argument. 1538 1539Semantics: 1540"""""""""" 1541 1542The result of the intrinsic are mapped to the arguments of the resume function. 1543Execution is suspended at this intrinsic and resumed when the resume function is 1544called. 1545 1546.. _coro.prepare.async: 1547 1548'llvm.coro.prepare.async' Intrinsic 1549^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1550:: 1551 1552 declare i8* @llvm.coro.prepare.async(i8* <coroutine function>) 1553 1554Overview: 1555""""""""" 1556 1557The '``llvm.coro.prepare.async``' intrinsic is used to block inlining of the 1558async coroutine until after coroutine splitting. 1559 1560Arguments: 1561"""""""""" 1562 1563The first argument should be an async coroutine of type `void (i8*, i8*, i8*)`. 1564Lowering will replace this intrinsic with its coroutine function argument. 1565 1566.. _coro.suspend.retcon: 1567 1568'llvm.coro.suspend.retcon' Intrinsic 1569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1570:: 1571 1572 declare i1 @llvm.coro.suspend.retcon(...) 1573 1574Overview: 1575""""""""" 1576 1577The '``llvm.coro.suspend.retcon``' intrinsic marks the point where 1578execution of a returned-continuation coroutine is suspended and control 1579is returned back to the caller. 1580 1581`llvm.coro.suspend.retcon`` does not support separate save points; 1582they are not useful when the continuation function is not locally 1583accessible. That would be a more appropriate feature for a ``passcon`` 1584lowering that is not yet implemented. 1585 1586Arguments: 1587"""""""""" 1588 1589The types of the arguments must exactly match the yielded-types sequence 1590of the coroutine. They will be turned into return values from the ramp 1591and continuation functions, along with the next continuation function. 1592 1593Semantics: 1594"""""""""" 1595 1596The result of the intrinsic indicates whether the coroutine should resume 1597abnormally (non-zero). 1598 1599In a normal coroutine, it is undefined behavior if the coroutine executes 1600a call to ``llvm.coro.suspend.retcon`` after resuming abnormally. 1601 1602In a yield-once coroutine, it is undefined behavior if the coroutine 1603executes a call to ``llvm.coro.suspend.retcon`` after resuming in any way. 1604 1605.. _coro.param: 1606 1607'llvm.coro.param' Intrinsic 1608^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1609:: 1610 1611 declare i1 @llvm.coro.param(i8* <original>, i8* <copy>) 1612 1613Overview: 1614""""""""" 1615 1616The '``llvm.coro.param``' is used by a frontend to mark up the code used to 1617construct and destruct copies of the parameters. If the optimizer discovers that 1618a particular parameter copy is not used after any suspends, it can remove the 1619construction and destruction of the copy by replacing corresponding coro.param 1620with `i1 false` and replacing any use of the `copy` with the `original`. 1621 1622Arguments: 1623"""""""""" 1624 1625The first argument points to an `alloca` storing the value of a parameter to a 1626coroutine. 1627 1628The second argument points to an `alloca` storing the value of the copy of that 1629parameter. 1630 1631Semantics: 1632"""""""""" 1633 1634The optimizer is free to always replace this intrinsic with `i1 true`. 1635 1636The optimizer is also allowed to replace it with `i1 false` provided that the 1637parameter copy is only used prior to control flow reaching any of the suspend 1638points. The code that would be DCE'd if the `coro.param` is replaced with 1639`i1 false` is not considered to be a use of the parameter copy. 1640 1641The frontend can emit this intrinsic if its language rules allow for this 1642optimization. 1643 1644Example: 1645"""""""" 1646Consider the following example. A coroutine takes two parameters `a` and `b` 1647that has a destructor and a move constructor. 1648 1649.. code-block:: c++ 1650 1651 struct A { ~A(); A(A&&); bool foo(); void bar(); }; 1652 1653 task<int> f(A a, A b) { 1654 if (a.foo()) 1655 return 42; 1656 1657 a.bar(); 1658 co_await read_async(); // introduces suspend point 1659 b.bar(); 1660 } 1661 1662Note that, uses of `b` is used after a suspend point and thus must be copied 1663into a coroutine frame, whereas `a` does not have to, since it never used 1664after suspend. 1665 1666A frontend can create parameter copies for `a` and `b` as follows: 1667 1668.. code-block:: text 1669 1670 task<int> f(A a', A b') { 1671 a = alloca A; 1672 b = alloca A; 1673 // move parameters to its copies 1674 if (coro.param(a', a)) A::A(a, A&& a'); 1675 if (coro.param(b', b)) A::A(b, A&& b'); 1676 ... 1677 // destroy parameters copies 1678 if (coro.param(a', a)) A::~A(a); 1679 if (coro.param(b', b)) A::~A(b); 1680 } 1681 1682The optimizer can replace coro.param(a',a) with `i1 false` and replace all uses 1683of `a` with `a'`, since it is not used after suspend. 1684 1685The optimizer must replace coro.param(b', b) with `i1 true`, since `b` is used 1686after suspend and therefore, it has to reside in the coroutine frame. 1687 1688Coroutine Transformation Passes 1689=============================== 1690CoroEarly 1691--------- 1692The pass CoroEarly lowers coroutine intrinsics that hide the details of the 1693structure of the coroutine frame, but, otherwise not needed to be preserved to 1694help later coroutine passes. This pass lowers `coro.frame`_, `coro.done`_, 1695and `coro.promise`_ intrinsics. 1696 1697.. _CoroSplit: 1698 1699CoroSplit 1700--------- 1701The pass CoroSplit buides coroutine frame and outlines resume and destroy parts 1702into separate functions. 1703 1704CoroElide 1705--------- 1706The pass CoroElide examines if the inlined coroutine is eligible for heap 1707allocation elision optimization. If so, it replaces 1708`coro.begin` intrinsic with an address of a coroutine frame placed on its caller 1709and replaces `coro.alloc` and `coro.free` intrinsics with `false` and `null` 1710respectively to remove the deallocation code. 1711This pass also replaces `coro.resume` and `coro.destroy` intrinsics with direct 1712calls to resume and destroy functions for a particular coroutine where possible. 1713 1714CoroCleanup 1715----------- 1716This pass runs late to lower all coroutine related intrinsics not replaced by 1717earlier passes. 1718 1719Areas Requiring Attention 1720========================= 1721#. Take advantage of the lifetime intrinsics for the data that goes into the 1722 coroutine frame. Leave lifetime intrinsics as is for the data that stays in 1723 allocas. 1724 1725#. The CoroElide optimization pass relies on coroutine ramp function to be 1726 inlined. It would be beneficial to split the ramp function further to 1727 increase the chance that it will get inlined into its caller. 1728 1729#. Design a convention that would make it possible to apply coroutine heap 1730 elision optimization across ABI boundaries. 1731 1732#. Cannot handle coroutines with `inalloca` parameters (used in x86 on Windows). 1733 1734#. Alignment is ignored by coro.begin and coro.free intrinsics. 1735 1736#. Make required changes to make sure that coroutine optimizations work with 1737 LTO. 1738 1739#. More tests, more tests, more tests 1740