1/* 2 * Copyright (c) 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a copy 5 * of this software and associated documentation files (the "Software"), to deal 6 * in the Software without restriction, including without limitation the rights 7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 8 * copies of the Software, and to permit persons to whom the Software is 9 * furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 20 * THE SOFTWARE. 21 */ 22#include <clc/clc.h> 23 24#include "math.h" 25#include "../clcmacro.h" 26 27_CLC_OVERLOAD _CLC_DEF float acos(float x) { 28 // Computes arccos(x). 29 // The argument is first reduced by noting that arccos(x) 30 // is invalid for abs(x) > 1. For denormal and small 31 // arguments arccos(x) = pi/2 to machine accuracy. 32 // Remaining argument ranges are handled as follows. 33 // For abs(x) <= 0.5 use 34 // arccos(x) = pi/2 - arcsin(x) 35 // = pi/2 - (x + x^3*R(x^2)) 36 // where R(x^2) is a rational minimax approximation to 37 // (arcsin(x) - x)/x^3. 38 // For abs(x) > 0.5 exploit the identity: 39 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2) 40 // together with the above rational approximation, and 41 // reconstruct the terms carefully. 42 43 44 // Some constants and split constants. 45 const float piby2 = 1.5707963705e+00F; 46 const float pi = 3.1415926535897933e+00F; 47 const float piby2_head = 1.5707963267948965580e+00F; 48 const float piby2_tail = 6.12323399573676603587e-17F; 49 50 uint ux = as_uint(x); 51 uint aux = ux & ~SIGNBIT_SP32; 52 int xneg = ux != aux; 53 int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; 54 float y = as_float(aux); 55 56 // transform if |x| >= 0.5 57 int transform = xexp >= -1; 58 59 float y2 = y * y; 60 float yt = 0.5f * (1.0f - y); 61 float r = transform ? yt : y2; 62 63 // Use a rational approximation for [0.0, 0.5] 64 float a = mad(r, 65 mad(r, 66 mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F), 67 -0.0565298683201845211985026327361F), 68 0.184161606965100694821398249421F); 69 70 float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F); 71 float u = r * MATH_DIVIDE(a, b); 72 73 float s = MATH_SQRT(r); 74 y = s; 75 float s1 = as_float(as_uint(s) & 0xffff0000); 76 float c = MATH_DIVIDE(mad(s1, -s1, r), s + s1); 77 float rettn = mad(s + mad(y, u, -piby2_tail), -2.0f, pi); 78 float rettp = 2.0F * (s1 + mad(y, u, c)); 79 float rett = xneg ? rettn : rettp; 80 float ret = piby2_head - (x - mad(x, -u, piby2_tail)); 81 82 ret = transform ? rett : ret; 83 ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret; 84 ret = ux == 0x3f800000U ? 0.0f : ret; 85 ret = ux == 0xbf800000U ? pi : ret; 86 ret = xexp < -26 ? piby2 : ret; 87 return ret; 88} 89 90_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acos, float); 91 92#ifdef cl_khr_fp64 93 94#pragma OPENCL EXTENSION cl_khr_fp64 : enable 95 96_CLC_OVERLOAD _CLC_DEF double acos(double x) { 97 // Computes arccos(x). 98 // The argument is first reduced by noting that arccos(x) 99 // is invalid for abs(x) > 1. For denormal and small 100 // arguments arccos(x) = pi/2 to machine accuracy. 101 // Remaining argument ranges are handled as follows. 102 // For abs(x) <= 0.5 use 103 // arccos(x) = pi/2 - arcsin(x) 104 // = pi/2 - (x + x^3*R(x^2)) 105 // where R(x^2) is a rational minimax approximation to 106 // (arcsin(x) - x)/x^3. 107 // For abs(x) > 0.5 exploit the identity: 108 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2) 109 // together with the above rational approximation, and 110 // reconstruct the terms carefully. 111 112 const double pi = 3.1415926535897933e+00; /* 0x400921fb54442d18 */ 113 const double piby2 = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */ 114 const double piby2_head = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */ 115 const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */ 116 117 double y = fabs(x); 118 int xneg = as_int2(x).hi < 0; 119 int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64; 120 121 // abs(x) >= 0.5 122 int transform = xexp >= -1; 123 124 double rt = 0.5 * (1.0 - y); 125 double y2 = y * y; 126 double r = transform ? rt : y2; 127 128 // Use a rational approximation for [0.0, 0.5] 129 double un = fma(r, 130 fma(r, 131 fma(r, 132 fma(r, 133 fma(r, 0.0000482901920344786991880522822991, 134 0.00109242697235074662306043804220), 135 -0.0549989809235685841612020091328), 136 0.275558175256937652532686256258), 137 -0.445017216867635649900123110649), 138 0.227485835556935010735943483075); 139 140 double ud = fma(r, 141 fma(r, 142 fma(r, 143 fma(r, 0.105869422087204370341222318533, 144 -0.943639137032492685763471240072), 145 2.76568859157270989520376345954), 146 -3.28431505720958658909889444194), 147 1.36491501334161032038194214209); 148 149 double u = r * MATH_DIVIDE(un, ud); 150 151 // Reconstruct acos carefully in transformed region 152 double s = sqrt(r); 153 double ztn = fma(-2.0, (s + fma(s, u, -piby2_tail)), pi); 154 155 double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL); 156 double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1); 157 double ztp = 2.0 * (s1 + fma(s, u, c)); 158 double zt = xneg ? ztn : ztp; 159 double z = piby2_head - (x - fma(-x, u, piby2_tail)); 160 161 z = transform ? zt : z; 162 163 z = xexp < -56 ? piby2 : z; 164 z = isnan(x) ? as_double((as_ulong(x) | QNANBITPATT_DP64)) : z; 165 z = x == 1.0 ? 0.0 : z; 166 z = x == -1.0 ? pi : z; 167 168 return z; 169} 170 171_CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acos, double); 172 173#endif // cl_khr_fp64 174