1/* 2 * Copyright (c) 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a copy 5 * of this software and associated documentation files (the "Software"), to deal 6 * in the Software without restriction, including without limitation the rights 7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 8 * copies of the Software, and to permit persons to whom the Software is 9 * furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 20 * THE SOFTWARE. 21 */ 22 23#include <clc/clc.h> 24 25#include "math.h" 26#include "tables.h" 27#include "../clcmacro.h" 28 29_CLC_OVERLOAD _CLC_DEF float atan2(float y, float x) 30{ 31 const float pi = 0x1.921fb6p+1f; 32 const float piby2 = 0x1.921fb6p+0f; 33 const float piby4 = 0x1.921fb6p-1f; 34 const float threepiby4 = 0x1.2d97c8p+1f; 35 36 float ax = fabs(x); 37 float ay = fabs(y); 38 float v = min(ax, ay); 39 float u = max(ax, ay); 40 41 // Scale since u could be large, as in "regular" divide 42 float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f; 43 float vbyu = s * MATH_DIVIDE(v, s*u); 44 45 float vbyu2 = vbyu * vbyu; 46 47#define USE_2_2_APPROXIMATION 48#if defined USE_2_2_APPROXIMATION 49 float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu; 50 float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f); 51#else 52 float p = mad(vbyu2, mad(vbyu2, -0x1.55cd22p-5f, -0x1.26cf76p-2f), -0x1.55554ep-2f) * vbyu2 * vbyu; 53 float q = mad(vbyu2, mad(vbyu2, mad(vbyu2, 0x1.9f1304p-5f, 0x1.2656fap-1f), 0x1.76b4b8p+0f), 1.0f); 54#endif 55 56 // Octant 0 result 57 float a = mad(p, MATH_RECIP(q), vbyu); 58 59 // Fix up 3 other octants 60 float at = piby2 - a; 61 a = ay > ax ? at : a; 62 at = pi - a; 63 a = x < 0.0F ? at : a; 64 65 // y == 0 => 0 for x >= 0, pi for x < 0 66 at = as_int(x) < 0 ? pi : 0.0f; 67 a = y == 0.0f ? at : a; 68 69 // if (!FINITE_ONLY()) { 70 // x and y are +- Inf 71 at = x > 0.0f ? piby4 : threepiby4; 72 a = ax == INFINITY & ay == INFINITY ? at : a; 73 74 // x or y is NaN 75 a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a; 76 // } 77 78 // Fixup sign and return 79 return copysign(a, y); 80} 81 82_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2, float, float); 83 84#ifdef cl_khr_fp64 85 86#pragma OPENCL EXTENSION cl_khr_fp64 : enable 87 88_CLC_OVERLOAD _CLC_DEF double atan2(double y, double x) 89{ 90 const double pi = 3.1415926535897932e+00; /* 0x400921fb54442d18 */ 91 const double piby2 = 1.5707963267948966e+00; /* 0x3ff921fb54442d18 */ 92 const double piby4 = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */ 93 const double three_piby4 = 2.3561944901923449e+00; /* 0x4002d97c7f3321d2 */ 94 const double pi_head = 3.1415926218032836e+00; /* 0x400921fb50000000 */ 95 const double pi_tail = 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */ 96 const double piby2_head = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */ 97 const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */ 98 99 double x2 = x; 100 int xneg = as_int2(x).hi < 0; 101 int xexp = (as_int2(x).hi >> 20) & 0x7ff; 102 103 double y2 = y; 104 int yneg = as_int2(y).hi < 0; 105 int yexp = (as_int2(y).hi >> 20) & 0x7ff; 106 107 int cond2 = (xexp < 1021) & (yexp < 1021); 108 int diffexp = yexp - xexp; 109 110 // Scale up both x and y if they are both below 1/4 111 double x1 = ldexp(x, 1024); 112 int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff; 113 double y1 = ldexp(y, 1024); 114 int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff; 115 int diffexp1 = yexp1 - xexp1; 116 117 diffexp = cond2 ? diffexp1 : diffexp; 118 x = cond2 ? x1 : x; 119 y = cond2 ? y1 : y; 120 121 // General case: take absolute values of arguments 122 double u = fabs(x); 123 double v = fabs(y); 124 125 // Swap u and v if necessary to obtain 0 < v < u. Compute v/u. 126 int swap_vu = u < v; 127 double uu = u; 128 u = swap_vu ? v : u; 129 v = swap_vu ? uu : v; 130 131 double vbyu = v / u; 132 double q1, q2; 133 134 // General values of v/u. Use a look-up table and series expansion. 135 136 { 137 double val = vbyu > 0.0625 ? vbyu : 0.063; 138 int index = convert_int(fma(256.0, val, 0.5)); 139 double2 tv = USE_TABLE(atan_jby256_tbl, index - 16); 140 q1 = tv.s0; 141 q2 = tv.s1; 142 double c = (double)index * 0x1.0p-8; 143 144 // We're going to scale u and v by 2^(-u_exponent) to bring them close to 1 145 // u_exponent could be EMAX so we have to do it in 2 steps 146 int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64); 147 //double um = __amdil_ldexp_f64(u, m); 148 //double vm = __amdil_ldexp_f64(v, m); 149 double um = ldexp(u, m); 150 double vm = ldexp(v, m); 151 152 // 26 leading bits of u 153 double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL); 154 double u2 = um - u1; 155 156 double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um)); 157 158 // Polynomial approximation to atan(r) 159 double s = r * r; 160 q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r); 161 } 162 163 164 double q3, q4; 165 { 166 q3 = 0.0; 167 q4 = vbyu; 168 } 169 170 double q5, q6; 171 { 172 double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL); 173 double u2 = u - u1; 174 double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL); 175 double vu2 = vbyu - vu1; 176 177 q5 = 0.0; 178 double s = vbyu * vbyu; 179 q6 = vbyu + fma(-vbyu * s, 180 fma(-s, 181 fma(-s, 182 fma(-s, 183 fma(-s, 0.90029810285449784439E-01, 184 0.11110736283514525407), 185 0.14285713561807169030), 186 0.19999999999393223405), 187 0.33333333333333170500), 188 MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u)); 189 } 190 191 192 q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5; 193 q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6; 194 195 q1 = vbyu > 0.0625 ? q1 : q3; 196 q2 = vbyu > 0.0625 ? q2 : q4; 197 198 // Tidy-up according to which quadrant the arguments lie in 199 double res1, res2, res3, res4; 200 q1 = swap_vu ? piby2_head - q1 : q1; 201 q2 = swap_vu ? piby2_tail - q2 : q2; 202 q1 = xneg ? pi_head - q1 : q1; 203 q2 = xneg ? pi_tail - q2 : q2; 204 q1 = q1 + q2; 205 res4 = yneg ? -q1 : q1; 206 207 res1 = yneg ? -three_piby4 : three_piby4; 208 res2 = yneg ? -piby4 : piby4; 209 res3 = xneg ? res1 : res2; 210 211 res3 = isinf(x2) & isinf(y2) ? res3 : res4; 212 res1 = yneg ? -pi : pi; 213 214 // abs(x)/abs(y) > 2^56 and x < 0 215 res3 = (diffexp < -56 && xneg) ? res1 : res3; 216 217 res4 = MATH_DIVIDE(y, x); 218 // x positive and dominant over y by a factor of 2^28 219 res3 = diffexp < -28 & xneg == 0 ? res4 : res3; 220 221 // abs(y)/abs(x) > 2^56 222 res4 = yneg ? -piby2 : piby2; // atan(y/x) is insignificant compared to piby2 223 res3 = diffexp > 56 ? res4 : res3; 224 225 res3 = x2 == 0.0 ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y 226 res4 = xneg ? res1 : y2; 227 228 res3 = y2 == 0.0 ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x 229 res3 = isnan(y2) ? y2 : res3; 230 res3 = isnan(x2) ? x2 : res3; 231 232 return res3; 233} 234 235_CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2, double, double); 236 237#endif 238