1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#include <clc/clc.h>
24
25#include <math/clc_remainder.h>
26#include "../clcmacro.h"
27#include "config.h"
28#include "math.h"
29
30_CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y)
31{
32    int ux = as_int(x);
33    int ax = ux & EXSIGNBIT_SP32;
34    float xa = as_float(ax);
35    int sx = ux ^ ax;
36    int ex = ax >> EXPSHIFTBITS_SP32;
37
38    int uy = as_int(y);
39    int ay = uy & EXSIGNBIT_SP32;
40    float ya = as_float(ay);
41    int ey = ay >> EXPSHIFTBITS_SP32;
42
43    float xr = as_float(0x3f800000 | (ax & 0x007fffff));
44    float yr = as_float(0x3f800000 | (ay & 0x007fffff));
45    int c;
46    int k = ex - ey;
47
48    while (k > 0) {
49        c = xr >= yr;
50        xr -= c ? yr : 0.0f;
51        xr += xr;
52        --k;
53    }
54
55    c = xr >= yr;
56    xr -= c ? yr : 0.0f;
57
58    int lt = ex < ey;
59
60    xr = lt ? xa : xr;
61    yr = lt ? ya : yr;
62
63
64    float s = as_float(ey << EXPSHIFTBITS_SP32);
65    xr *= lt ? 1.0f : s;
66
67    c = ax == ay;
68    xr = c ? 0.0f : xr;
69
70    xr = as_float(sx ^ as_int(xr));
71
72    c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
73    xr = c ? as_float(QNANBITPATT_SP32) : xr;
74
75    return xr;
76
77}
78_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float);
79
80#ifdef cl_khr_fp64
81_CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y)
82{
83    ulong ux = as_ulong(x);
84    ulong ax = ux & ~SIGNBIT_DP64;
85    ulong xsgn = ux ^ ax;
86    double dx = as_double(ax);
87    int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
88    int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64);
89    xexp1 = xexp < 1 ? xexp1 : xexp;
90
91    ulong uy = as_ulong(y);
92    ulong ay = uy & ~SIGNBIT_DP64;
93    double dy = as_double(ay);
94    int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
95    int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64);
96    yexp1 = yexp < 1 ? yexp1 : yexp;
97
98    // First assume |x| > |y|
99
100    // Set ntimes to the number of times we need to do a
101    // partial remainder. If the exponent of x is an exact multiple
102    // of 53 larger than the exponent of y, and the mantissa of x is
103    // less than the mantissa of y, ntimes will be one too large
104    // but it doesn't matter - it just means that we'll go round
105    // the loop below one extra time.
106    int ntimes = max(0, (xexp1 - yexp1) / 53);
107    double w =  ldexp(dy, ntimes * 53);
108    w = ntimes == 0 ? dy : w;
109    double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
110
111    // Each time round the loop we compute a partial remainder.
112    // This is done by subtracting a large multiple of w
113    // from x each time, where w is a scaled up version of y.
114    // The subtraction must be performed exactly in quad
115    // precision, though the result at each stage can
116    // fit exactly in a double precision number.
117    int i;
118    double t, v, p, pp;
119
120    for (i = 0; i < ntimes; i++) {
121        // Compute integral multiplier
122        t = trunc(dx / w);
123
124        // Compute w * t in quad precision
125        p = w * t;
126        pp = fma(w, t, -p);
127
128        // Subtract w * t from dx
129        v = dx - p;
130        dx = v + (((dx - v) - p) - pp);
131
132        // If t was one too large, dx will be negative. Add back one w.
133        dx += dx < 0.0 ? w : 0.0;
134
135        // Scale w down by 2^(-53) for the next iteration
136        w *= scale;
137    }
138
139    // One more time
140    // Variable todd says whether the integer t is odd or not
141    t = floor(dx / w);
142    long lt = (long)t;
143    int todd = lt & 1;
144
145    p = w * t;
146    pp = fma(w, t, -p);
147    v = dx - p;
148    dx = v + (((dx - v) - p) - pp);
149    i = dx < 0.0;
150    todd ^= i;
151    dx += i ? w : 0.0;
152
153    // At this point, dx lies in the range [0,dy)
154    double ret = as_double(xsgn ^ as_ulong(dx));
155    dx = as_double(ax);
156
157    // Now handle |x| == |y|
158    int c = dx == dy;
159    t = as_double(xsgn);
160    ret = c ? t : ret;
161
162    // Next, handle |x| < |y|
163    c = dx < dy;
164    ret = c ? x : ret;
165
166    // We don't need anything special for |x| == 0
167
168    // |y| is 0
169    c = dy == 0.0;
170    ret = c ? as_double(QNANBITPATT_DP64) : ret;
171
172    // y is +-Inf, NaN
173    c = yexp > BIASEDEMAX_DP64;
174    t = y == y ? x : y;
175    ret = c ? t : ret;
176
177    // x is +=Inf, NaN
178    c = xexp > BIASEDEMAX_DP64;
179    ret = c ? as_double(QNANBITPATT_DP64) : ret;
180
181    return ret;
182}
183_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double);
184#endif
185