1/* 2 * Copyright (c) 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a copy 5 * of this software and associated documentation files (the "Software"), to deal 6 * in the Software without restriction, including without limitation the rights 7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 8 * copies of the Software, and to permit persons to whom the Software is 9 * furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 20 * THE SOFTWARE. 21 */ 22 23#include <clc/clc.h> 24 25#include "config.h" 26#include "math.h" 27#include "tables.h" 28#include "../clcmacro.h" 29 30// compute pow using log and exp 31// x^y = exp(y * log(x)) 32// 33// we take care not to lose precision in the intermediate steps 34// 35// When computing log, calculate it in splits, 36// 37// r = f * (p_invead + p_inv_tail) 38// r = rh + rt 39// 40// calculate log polynomial using r, in end addition, do 41// poly = poly + ((rh-r) + rt) 42// 43// lth = -r 44// ltt = ((xexp * log2_t) - poly) + logT 45// lt = lth + ltt 46// 47// lh = (xexp * log2_h) + logH 48// l = lh + lt 49// 50// Calculate final log answer as gh and gt, 51// gh = l & higher-half bits 52// gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh)) 53// 54// yh = y & higher-half bits 55// yt = y - yh 56// 57// Before entering computation of exp, 58// vs = ((yt*gt + yt*gh) + yh*gt) 59// v = vs + yh*gh 60// vt = ((yh*gh - v) + vs) 61// 62// In calculation of exp, add vt to r that is used for poly 63// At the end of exp, do 64// ((((expT * poly) + expT) + expH*poly) + expH) 65 66_CLC_DEF _CLC_OVERLOAD float __clc_pown(float x, int ny) 67{ 68 float y = (float)ny; 69 70 int ix = as_int(x); 71 int ax = ix & EXSIGNBIT_SP32; 72 int xpos = ix == ax; 73 74 int iy = as_int(y); 75 int ay = iy & EXSIGNBIT_SP32; 76 int ypos = iy == ay; 77 78 // Extra precise log calculation 79 // First handle case that x is close to 1 80 float r = 1.0f - as_float(ax); 81 int near1 = fabs(r) < 0x1.0p-4f; 82 float r2 = r*r; 83 84 // Coefficients are just 1/3, 1/4, 1/5 and 1/6 85 float poly = mad(r, 86 mad(r, 87 mad(r, 88 mad(r, 0x1.24924ap-3f, 0x1.555556p-3f), 89 0x1.99999ap-3f), 90 0x1.000000p-2f), 91 0x1.555556p-2f); 92 93 poly *= r2*r; 94 95 float lth_near1 = -r2 * 0.5f; 96 float ltt_near1 = -poly; 97 float lt_near1 = lth_near1 + ltt_near1; 98 float lh_near1 = -r; 99 float l_near1 = lh_near1 + lt_near1; 100 101 // Computations for x not near 1 102 int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32; 103 float mf = (float)m; 104 int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f); 105 float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253); 106 int c = m == -127; 107 int ixn = c ? ixs : ax; 108 float mfn = c ? mfs : mf; 109 110 int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1); 111 112 // F - Y 113 float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32)); 114 115 indx = indx >> 16; 116 float2 tv = USE_TABLE(log_inv_tbl_ep, indx); 117 float rh = f * tv.s0; 118 float rt = f * tv.s1; 119 r = rh + rt; 120 121 poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r); 122 poly += (rh - r) + rt; 123 124 const float LOG2_HEAD = 0x1.62e000p-1f; // 0.693115234 125 const float LOG2_TAIL = 0x1.0bfbe8p-15f; // 0.0000319461833 126 tv = USE_TABLE(loge_tbl, indx); 127 float lth = -r; 128 float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1; 129 float lt = lth + ltt; 130 float lh = mad(mfn, LOG2_HEAD, tv.s0); 131 float l = lh + lt; 132 133 // Select near 1 or not 134 lth = near1 ? lth_near1 : lth; 135 ltt = near1 ? ltt_near1 : ltt; 136 lt = near1 ? lt_near1 : lt; 137 lh = near1 ? lh_near1 : lh; 138 l = near1 ? l_near1 : l; 139 140 float gh = as_float(as_int(l) & 0xfffff000); 141 float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh); 142 143 float yh = as_float(iy & 0xfffff000); 144 145 float yt = (float)(ny - (int)yh); 146 147 float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt)); 148 float ylogx = mad(yh, gh, ylogx_s); 149 float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s; 150 151 // Extra precise exp of ylogx 152 const float R_64_BY_LOG2 = 0x1.715476p+6f; // 64/log2 : 92.332482616893657 153 int n = convert_int(ylogx * R_64_BY_LOG2); 154 float nf = (float) n; 155 156 int j = n & 0x3f; 157 m = n >> 6; 158 int m2 = m << EXPSHIFTBITS_SP32; 159 160 const float R_LOG2_BY_64_LD = 0x1.620000p-7f; // log2/64 lead: 0.0108032227 161 const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; // log2/64 tail: 0.0000272020388 162 r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t; 163 164 // Truncated Taylor series for e^r 165 poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r); 166 167 tv = USE_TABLE(exp_tbl_ep, j); 168 169 float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0; 170 float sexpylogx = expylogx * as_float(0x1 << (m + 149)); 171 float texpylogx = as_float(as_int(expylogx) + m2); 172 expylogx = m < -125 ? sexpylogx : texpylogx; 173 174 // Result is +-Inf if (ylogx + ylogx_t) > 128*log2 175 expylogx = ((ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f)) ? as_float(PINFBITPATT_SP32) : expylogx; 176 177 // Result is 0 if ylogx < -149*log2 178 expylogx = ylogx < -0x1.9d1da0p+6f ? 0.0f : expylogx; 179 180 // Classify y: 181 // inty = 0 means not an integer. 182 // inty = 1 means odd integer. 183 // inty = 2 means even integer. 184 185 int inty = 2 - (ny & 1); 186 187 float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32)); 188 expylogx = ((inty == 1) & !xpos) ? signval : expylogx; 189 int ret = as_int(expylogx); 190 191 // Corner case handling 192 int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32; 193 ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret; 194 ret = ((ax == 0) & !ypos & (inty == 2)) ? PINFBITPATT_SP32 : ret; 195 ret = ((ax == 0) & ypos & (inty == 2)) ? 0 : ret; 196 int xzero = !xpos ? 0x80000000 : 0L; 197 ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret; 198 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret; 199 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty != 1)) ? 0 : ret; 200 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret; 201 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret; 202 ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret; 203 ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret; 204 ret = ax > PINFBITPATT_SP32 ? ix : ret; 205 ret = ny == 0 ? 0x3f800000 : ret; 206 207 return as_float(ret); 208} 209_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_pown, float, int) 210 211#ifdef cl_khr_fp64 212_CLC_DEF _CLC_OVERLOAD double __clc_pown(double x, int ny) 213{ 214 const double real_log2_tail = 5.76999904754328540596e-08; 215 const double real_log2_lead = 6.93147122859954833984e-01; 216 217 double y = (double) ny; 218 219 long ux = as_long(x); 220 long ax = ux & (~SIGNBIT_DP64); 221 int xpos = ax == ux; 222 223 long uy = as_long(y); 224 long ay = uy & (~SIGNBIT_DP64); 225 int ypos = ay == uy; 226 227 // Extended precision log 228 double v, vt; 229 { 230 int exp = (int)(ax >> 52) - 1023; 231 int mask_exp_1023 = exp == -1023; 232 double xexp = (double) exp; 233 long mantissa = ax & 0x000FFFFFFFFFFFFFL; 234 235 long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0); 236 exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045; 237 double xexp1 = (double) exp; 238 long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL; 239 240 xexp = mask_exp_1023 ? xexp1 : xexp; 241 mantissa = mask_exp_1023 ? mantissa1 : mantissa; 242 243 long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1); 244 int index = rax >> 44; 245 246 double F = as_double(rax | 0x3FE0000000000000L); 247 double Y = as_double(mantissa | 0x3FE0000000000000L); 248 double f = F - Y; 249 double2 tv = USE_TABLE(log_f_inv_tbl, index); 250 double log_h = tv.s0; 251 double log_t = tv.s1; 252 double f_inv = (log_h + log_t) * f; 253 double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L); 254 double r2 = fma(-F, r1, f) * (log_h + log_t); 255 double r = r1 + r2; 256 257 double poly = fma(r, 258 fma(r, 259 fma(r, 260 fma(r, 1.0/7.0, 1.0/6.0), 261 1.0/5.0), 262 1.0/4.0), 263 1.0/3.0); 264 poly = poly * r * r * r; 265 266 double hr1r1 = 0.5*r1*r1; 267 double poly0h = r1 + hr1r1; 268 double poly0t = r1 - poly0h + hr1r1; 269 poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t; 270 271 tv = USE_TABLE(powlog_tbl, index); 272 log_h = tv.s0; 273 log_t = tv.s1; 274 275 double resT_t = fma(xexp, real_log2_tail, + log_t) - poly; 276 double resT = resT_t - poly0h; 277 double resH = fma(xexp, real_log2_lead, log_h); 278 double resT_h = poly0h; 279 280 double H = resT + resH; 281 double H_h = as_double(as_long(H) & 0xfffffffff8000000L); 282 double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h); 283 H = H_h; 284 285 double y_head = as_double(uy & 0xfffffffff8000000L); 286 double y_tail = y - y_head; 287 288 int mask_2_24 = ay > 0x4170000000000000; // 2^24 289 int nyh = convert_int(y_head); 290 int nyt = ny - nyh; 291 double y_tail1 = (double)nyt; 292 y_tail = mask_2_24 ? y_tail1 : y_tail; 293 294 double temp = fma(y_tail, H, fma(y_head, T, y_tail*T)); 295 v = fma(y_head, H, temp); 296 vt = fma(y_head, H, -v) + temp; 297 } 298 299 // Now calculate exp of (v,vt) 300 301 double expv; 302 { 303 const double max_exp_arg = 709.782712893384; 304 const double min_exp_arg = -745.1332191019411; 305 const double sixtyfour_by_lnof2 = 92.33248261689366; 306 const double lnof2_by_64_head = 0.010830424260348081; 307 const double lnof2_by_64_tail = -4.359010638708991e-10; 308 309 double temp = v * sixtyfour_by_lnof2; 310 int n = (int)temp; 311 double dn = (double)n; 312 int j = n & 0x0000003f; 313 int m = n >> 6; 314 315 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j); 316 double f1 = tv.s0; 317 double f2 = tv.s1; 318 double f = f1 + f2; 319 320 double r1 = fma(dn, -lnof2_by_64_head, v); 321 double r2 = dn * lnof2_by_64_tail; 322 double r = (r1 + r2) + vt; 323 324 double q = fma(r, 325 fma(r, 326 fma(r, 327 fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03), 328 4.16666666662260795726e-02), 329 1.66666666665260878863e-01), 330 5.00000000000000008883e-01); 331 q = fma(r*r, q, r); 332 333 expv = fma(f, q, f2) + f1; 334 expv = ldexp(expv, m); 335 336 expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv; 337 expv = v < min_exp_arg ? 0.0 : expv; 338 } 339 340 // See whether y is an integer. 341 // inty = 0 means not an integer. 342 // inty = 1 means odd integer. 343 // inty = 2 means even integer. 344 345 int inty = 2 - (ny & 1); 346 347 expv *= ((inty == 1) & !xpos) ? -1.0 : 1.0; 348 349 long ret = as_long(expv); 350 351 // Now all the edge cases 352 long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64; 353 ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret; 354 ret = ((ax == 0L) & !ypos & (inty == 2)) ? PINFBITPATT_DP64 : ret; 355 ret = ((ax == 0L) & ypos & (inty == 2)) ? 0L : ret; 356 long xzero = !xpos ? 0x8000000000000000L : 0L; 357 ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret; 358 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret; 359 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty != 1)) ? 0L : ret; 360 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret; 361 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret; 362 ret = ((ux == PINFBITPATT_DP64) & !ypos) ? 0L : ret; 363 ret = ((ux == PINFBITPATT_DP64) & ypos) ? PINFBITPATT_DP64 : ret; 364 ret = ax > PINFBITPATT_DP64 ? ux : ret; 365 ret = ny == 0 ? 0x3ff0000000000000L : ret; 366 367 return as_double(ret); 368} 369_CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_pown, double, int) 370#endif 371