1/*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
21 */
22
23#ifdef cl_khr_fp64
24
25#include <clc/clc.h>
26#include "ep_log.h"
27#include "math.h"
28#include "tables.h"
29
30#pragma OPENCL EXTENSION cl_khr_fp64 : enable
31
32#define LN0 8.33333333333317923934e-02
33#define LN1 1.25000000037717509602e-02
34#define LN2 2.23213998791944806202e-03
35#define LN3 4.34887777707614552256e-04
36
37#define LF0 8.33333333333333593622e-02
38#define LF1 1.24999999978138668903e-02
39#define LF2 2.23219810758559851206e-03
40
41_CLC_DEF void __clc_ep_log(double x, int *xexp, double *r1, double *r2)
42{
43    // Computes natural log(x). Algorithm based on:
44    // Ping-Tak Peter Tang
45    // "Table-driven implementation of the logarithm function in IEEE
46    // floating-point arithmetic"
47    // ACM Transactions on Mathematical Software (TOMS)
48    // Volume 16, Issue 4 (December 1990)
49    int near_one = x >= 0x1.e0faap-1 & x <= 0x1.1082cp+0;
50
51    ulong ux = as_ulong(x);
52    ulong uxs = as_ulong(as_double(0x03d0000000000000UL | ux) - 0x1.0p-962);
53    int c = ux < IMPBIT_DP64;
54    ux = c ? uxs : ux;
55    int expadjust = c ? 60 : 0;
56
57    // Store the exponent of x in xexp and put f into the range [0.5,1)
58    int xexp1 = ((as_int2(ux).hi >> 20) & 0x7ff) - EXPBIAS_DP64 - expadjust;
59    double f = as_double(HALFEXPBITS_DP64 | (ux & MANTBITS_DP64));
60    *xexp = near_one ? 0 : xexp1;
61
62    double r = x - 1.0;
63    double u1 = MATH_DIVIDE(r, 2.0 + r);
64    double ru1 = -r * u1;
65    u1 = u1 + u1;
66
67    int index = as_int2(ux).hi >> 13;
68    index = ((0x80 | (index & 0x7e)) >> 1) + (index & 0x1);
69
70    double f1 = index * 0x1.0p-7;
71    double f2 = f - f1;
72    double u2 = MATH_DIVIDE(f2, fma(0.5, f2, f1));
73
74    double2 tv = USE_TABLE(ln_tbl, (index - 64));
75    double z1 = tv.s0;
76    double q = tv.s1;
77
78    z1 = near_one ? r : z1;
79    q = near_one ? 0.0 : q;
80    double u = near_one ? u1 : u2;
81    double v = u*u;
82
83    double cc = near_one ? ru1 : u2;
84
85    double z21 = fma(v, fma(v, fma(v, LN3, LN2), LN1), LN0);
86    double z22 = fma(v, fma(v, LF2, LF1), LF0);
87    double z2 = near_one ? z21 : z22;
88    z2 = fma(u*v, z2, cc) + q;
89
90    *r1 = z1;
91    *r2 = z2;
92}
93
94#endif
95