1 /**
2  * f2fs_format.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * Dual licensed under the GPL or LGPL version 2 licenses.
8  */
9 #define _LARGEFILE64_SOURCE
10 
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <fcntl.h>
14 #include <string.h>
15 #include <unistd.h>
16 #ifndef ANDROID_WINDOWS_HOST
17 #include <sys/stat.h>
18 #include <sys/mount.h>
19 #endif
20 #include <time.h>
21 #include <uuid.h>
22 
23 #include "f2fs_fs.h"
24 #include "quota.h"
25 #include "f2fs_format_utils.h"
26 
27 extern struct f2fs_configuration c;
28 struct f2fs_super_block raw_sb;
29 struct f2fs_super_block *sb = &raw_sb;
30 struct f2fs_checkpoint *cp;
31 
32 /* Return first segment number of each area */
33 #define prev_zone(cur)		(c.cur_seg[cur] - c.segs_per_zone)
34 #define next_zone(cur)		(c.cur_seg[cur] + c.segs_per_zone)
35 #define last_zone(cur)		((cur - 1) * c.segs_per_zone)
36 #define last_section(cur)	(cur + (c.secs_per_zone - 1) * c.segs_per_sec)
37 
38 /* Return time fixed by the user or current time by default */
39 #define mkfs_time ((c.fixed_time == -1) ? time(NULL) : c.fixed_time)
40 
41 static unsigned int quotatype_bits = 0;
42 
43 const char *media_ext_lists[] = {
44 	/* common prefix */
45 	"mp", // Covers mp3, mp4, mpeg, mpg
46 	"wm", // Covers wma, wmb, wmv
47 	"og", // Covers oga, ogg, ogm, ogv
48 	"jp", // Covers jpg, jpeg, jp2
49 
50 	/* video */
51 	"avi",
52 	"m4v",
53 	"m4p",
54 	"mkv",
55 	"mov",
56 	"webm",
57 
58 	/* audio */
59 	"wav",
60 	"m4a",
61 	"3gp",
62 	"opus",
63 	"flac",
64 
65 	/* image */
66 	"gif",
67 	"png",
68 	"svg",
69 	"webp",
70 
71 	/* archives */
72 	"jar",
73 	"deb",
74 	"iso",
75 	"gz",
76 	"xz",
77 	"zst",
78 
79 	/* others */
80 	"pdf",
81 	"pyc", // Python bytecode
82 	"ttc",
83 	"ttf",
84 	"exe",
85 
86 	/* android */
87 	"apk",
88 	"cnt", // Image alias
89 	"exo", // YouTube
90 	"odex", // Android RunTime
91 	"vdex", // Android RunTime
92 	"so",
93 
94 	NULL
95 };
96 
97 const char *hot_ext_lists[] = {
98 	"db",
99 
100 #ifndef WITH_ANDROID
101 	/* Virtual machines */
102 	"vmdk", // VMware or VirtualBox
103 	"vdi", // VirtualBox
104 	"qcow2", // QEMU
105 #endif
106 	NULL
107 };
108 
109 const char **default_ext_list[] = {
110 	media_ext_lists,
111 	hot_ext_lists
112 };
113 
is_extension_exist(const char * name)114 static bool is_extension_exist(const char *name)
115 {
116 	int i;
117 
118 	for (i = 0; i < F2FS_MAX_EXTENSION; i++) {
119 		char *ext = (char *)sb->extension_list[i];
120 		if (!strcmp(ext, name))
121 			return 1;
122 	}
123 
124 	return 0;
125 }
126 
cure_extension_list(void)127 static void cure_extension_list(void)
128 {
129 	const char **extlist;
130 	char *ext_str;
131 	char *ue;
132 	int name_len;
133 	int i, pos = 0;
134 
135 	set_sb(extension_count, 0);
136 	memset(sb->extension_list, 0, sizeof(sb->extension_list));
137 
138 	for (i = 0; i < 2; i++) {
139 		ext_str = c.extension_list[i];
140 		extlist = default_ext_list[i];
141 
142 		while (*extlist) {
143 			name_len = strlen(*extlist);
144 			memcpy(sb->extension_list[pos++], *extlist, name_len);
145 			extlist++;
146 		}
147 		if (i == 0)
148 			set_sb(extension_count, pos);
149 		else
150 			sb->hot_ext_count = pos - get_sb(extension_count);;
151 
152 		if (!ext_str)
153 			continue;
154 
155 		/* add user ext list */
156 		ue = strtok(ext_str, ", ");
157 		while (ue != NULL) {
158 			name_len = strlen(ue);
159 			if (name_len >= F2FS_EXTENSION_LEN) {
160 				MSG(0, "\tWarn: Extension name (%s) is too long\n", ue);
161 				goto next;
162 			}
163 			if (!is_extension_exist(ue))
164 				memcpy(sb->extension_list[pos++], ue, name_len);
165 next:
166 			ue = strtok(NULL, ", ");
167 			if (pos >= F2FS_MAX_EXTENSION)
168 				break;
169 		}
170 
171 		if (i == 0)
172 			set_sb(extension_count, pos);
173 		else
174 			sb->hot_ext_count = pos - get_sb(extension_count);
175 
176 		free(c.extension_list[i]);
177 	}
178 }
179 
verify_cur_segs(void)180 static void verify_cur_segs(void)
181 {
182 	int i, j;
183 	int reorder = 0;
184 
185 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
186 		for (j = i + 1; j < NR_CURSEG_TYPE; j++) {
187 			if (c.cur_seg[i] == c.cur_seg[j]) {
188 				reorder = 1;
189 				break;
190 			}
191 		}
192 	}
193 
194 	if (!reorder)
195 		return;
196 
197 	c.cur_seg[0] = 0;
198 	for (i = 1; i < NR_CURSEG_TYPE; i++)
199 		c.cur_seg[i] = next_zone(i - 1);
200 }
201 
f2fs_prepare_super_block(void)202 static int f2fs_prepare_super_block(void)
203 {
204 	u_int32_t blk_size_bytes;
205 	u_int32_t log_sectorsize, log_sectors_per_block;
206 	u_int32_t log_blocksize, log_blks_per_seg;
207 	u_int32_t segment_size_bytes, zone_size_bytes;
208 	u_int32_t sit_segments, nat_segments;
209 	u_int32_t blocks_for_sit, blocks_for_nat, blocks_for_ssa;
210 	u_int32_t total_valid_blks_available;
211 	u_int64_t zone_align_start_offset, diff;
212 	u_int64_t total_meta_zones, total_meta_segments;
213 	u_int32_t sit_bitmap_size, max_sit_bitmap_size;
214 	u_int32_t max_nat_bitmap_size, max_nat_segments;
215 	u_int32_t total_zones, avail_zones;
216 	enum quota_type qtype;
217 	int i;
218 
219 	set_sb(magic, F2FS_SUPER_MAGIC);
220 	set_sb(major_ver, F2FS_MAJOR_VERSION);
221 	set_sb(minor_ver, F2FS_MINOR_VERSION);
222 
223 	log_sectorsize = log_base_2(c.sector_size);
224 	log_sectors_per_block = log_base_2(c.sectors_per_blk);
225 	log_blocksize = log_sectorsize + log_sectors_per_block;
226 	log_blks_per_seg = log_base_2(c.blks_per_seg);
227 
228 	set_sb(log_sectorsize, log_sectorsize);
229 	set_sb(log_sectors_per_block, log_sectors_per_block);
230 
231 	set_sb(log_blocksize, log_blocksize);
232 	set_sb(log_blocks_per_seg, log_blks_per_seg);
233 
234 	set_sb(segs_per_sec, c.segs_per_sec);
235 	set_sb(secs_per_zone, c.secs_per_zone);
236 
237 	blk_size_bytes = 1 << log_blocksize;
238 	segment_size_bytes = blk_size_bytes * c.blks_per_seg;
239 	zone_size_bytes =
240 		blk_size_bytes * c.secs_per_zone *
241 		c.segs_per_sec * c.blks_per_seg;
242 
243 	set_sb(checksum_offset, 0);
244 
245 	set_sb(block_count, c.total_sectors >> log_sectors_per_block);
246 
247 	zone_align_start_offset =
248 		((u_int64_t) c.start_sector * DEFAULT_SECTOR_SIZE +
249 		2 * F2FS_BLKSIZE + zone_size_bytes - 1) /
250 		zone_size_bytes * zone_size_bytes -
251 		(u_int64_t) c.start_sector * DEFAULT_SECTOR_SIZE;
252 
253 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
254 		zone_align_start_offset = 8192;
255 
256 	if (c.start_sector % DEFAULT_SECTORS_PER_BLOCK) {
257 		MSG(1, "\t%s: Align start sector number to the page unit\n",
258 				c.zoned_mode ? "FAIL" : "WARN");
259 		MSG(1, "\ti.e., start sector: %d, ofs:%d (sects/page: %d)\n",
260 				c.start_sector,
261 				c.start_sector % DEFAULT_SECTORS_PER_BLOCK,
262 				DEFAULT_SECTORS_PER_BLOCK);
263 		if (c.zoned_mode)
264 			return -1;
265 	}
266 
267 	if (c.zoned_mode && c.ndevs > 1)
268 		zone_align_start_offset +=
269 			(c.devices[0].total_sectors * c.sector_size) % zone_size_bytes;
270 
271 	set_sb(segment0_blkaddr, zone_align_start_offset / blk_size_bytes);
272 	sb->cp_blkaddr = sb->segment0_blkaddr;
273 
274 	MSG(0, "Info: zone aligned segment0 blkaddr: %u\n",
275 					get_sb(segment0_blkaddr));
276 
277 	if (c.zoned_mode &&
278 		((c.ndevs == 1 &&
279 			(get_sb(segment0_blkaddr) + c.start_sector /
280 			DEFAULT_SECTORS_PER_BLOCK) % c.zone_blocks) ||
281 		(c.ndevs > 1 &&
282 			c.devices[1].start_blkaddr % c.zone_blocks))) {
283 		MSG(1, "\tError: Unaligned segment0 block address %u\n",
284 				get_sb(segment0_blkaddr));
285 		return -1;
286 	}
287 
288 	for (i = 0; i < c.ndevs; i++) {
289 		if (i == 0) {
290 			c.devices[i].total_segments =
291 				(c.devices[i].total_sectors *
292 				c.sector_size - zone_align_start_offset) /
293 				segment_size_bytes;
294 			c.devices[i].start_blkaddr = 0;
295 			c.devices[i].end_blkaddr = c.devices[i].total_segments *
296 						c.blks_per_seg - 1 +
297 						sb->segment0_blkaddr;
298 		} else {
299 			c.devices[i].total_segments =
300 				c.devices[i].total_sectors /
301 				(c.sectors_per_blk * c.blks_per_seg);
302 			c.devices[i].start_blkaddr =
303 					c.devices[i - 1].end_blkaddr + 1;
304 			c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
305 					c.devices[i].total_segments *
306 					c.blks_per_seg - 1;
307 		}
308 		if (c.ndevs > 1) {
309 			memcpy(sb->devs[i].path, c.devices[i].path, MAX_PATH_LEN);
310 			sb->devs[i].total_segments =
311 					cpu_to_le32(c.devices[i].total_segments);
312 		}
313 
314 		c.total_segments += c.devices[i].total_segments;
315 	}
316 	set_sb(segment_count, (c.total_segments / c.segs_per_zone *
317 						c.segs_per_zone));
318 	set_sb(segment_count_ckpt, F2FS_NUMBER_OF_CHECKPOINT_PACK);
319 
320 	set_sb(sit_blkaddr, get_sb(segment0_blkaddr) +
321 			get_sb(segment_count_ckpt) * c.blks_per_seg);
322 
323 	blocks_for_sit = SIZE_ALIGN(get_sb(segment_count), SIT_ENTRY_PER_BLOCK);
324 
325 	sit_segments = SEG_ALIGN(blocks_for_sit);
326 
327 	set_sb(segment_count_sit, sit_segments * 2);
328 
329 	set_sb(nat_blkaddr, get_sb(sit_blkaddr) + get_sb(segment_count_sit) *
330 			c.blks_per_seg);
331 
332 	total_valid_blks_available = (get_sb(segment_count) -
333 			(get_sb(segment_count_ckpt) +
334 			get_sb(segment_count_sit))) * c.blks_per_seg;
335 
336 	blocks_for_nat = SIZE_ALIGN(total_valid_blks_available,
337 			NAT_ENTRY_PER_BLOCK);
338 
339 	if (c.large_nat_bitmap) {
340 		nat_segments = SEG_ALIGN(blocks_for_nat) *
341 						DEFAULT_NAT_ENTRY_RATIO / 100;
342 		set_sb(segment_count_nat, nat_segments ? nat_segments : 1);
343 		max_nat_bitmap_size = (get_sb(segment_count_nat) <<
344 						log_blks_per_seg) / 8;
345 		set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
346 	} else {
347 		set_sb(segment_count_nat, SEG_ALIGN(blocks_for_nat));
348 		max_nat_bitmap_size = 0;
349 	}
350 
351 	/*
352 	 * The number of node segments should not be exceeded a "Threshold".
353 	 * This number resizes NAT bitmap area in a CP page.
354 	 * So the threshold is determined not to overflow one CP page
355 	 */
356 	sit_bitmap_size = ((get_sb(segment_count_sit) / 2) <<
357 				log_blks_per_seg) / 8;
358 
359 	if (sit_bitmap_size > MAX_SIT_BITMAP_SIZE)
360 		max_sit_bitmap_size = MAX_SIT_BITMAP_SIZE;
361 	else
362 		max_sit_bitmap_size = sit_bitmap_size;
363 
364 	if (c.large_nat_bitmap) {
365 		/* use cp_payload if free space of f2fs_checkpoint is not enough */
366 		if (max_sit_bitmap_size + max_nat_bitmap_size >
367 						MAX_BITMAP_SIZE_IN_CKPT) {
368 			u_int32_t diff =  max_sit_bitmap_size +
369 						max_nat_bitmap_size -
370 						MAX_BITMAP_SIZE_IN_CKPT;
371 			set_sb(cp_payload, F2FS_BLK_ALIGN(diff));
372 		} else {
373 			set_sb(cp_payload, 0);
374 		}
375 	} else {
376 		/*
377 		 * It should be reserved minimum 1 segment for nat.
378 		 * When sit is too large, we should expand cp area.
379 		 * It requires more pages for cp.
380 		 */
381 		if (max_sit_bitmap_size > MAX_SIT_BITMAP_SIZE_IN_CKPT) {
382 			max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT;
383 			set_sb(cp_payload, F2FS_BLK_ALIGN(max_sit_bitmap_size));
384 	        } else {
385 			max_nat_bitmap_size = MAX_BITMAP_SIZE_IN_CKPT -
386 							max_sit_bitmap_size;
387 			set_sb(cp_payload, 0);
388 		}
389 		max_nat_segments = (max_nat_bitmap_size * 8) >> log_blks_per_seg;
390 
391 		if (get_sb(segment_count_nat) > max_nat_segments)
392 			set_sb(segment_count_nat, max_nat_segments);
393 
394 		set_sb(segment_count_nat, get_sb(segment_count_nat) * 2);
395 	}
396 
397 	set_sb(ssa_blkaddr, get_sb(nat_blkaddr) + get_sb(segment_count_nat) *
398 			c.blks_per_seg);
399 
400 	total_valid_blks_available = (get_sb(segment_count) -
401 			(get_sb(segment_count_ckpt) +
402 			get_sb(segment_count_sit) +
403 			get_sb(segment_count_nat))) *
404 			c.blks_per_seg;
405 
406 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
407 		blocks_for_ssa = 0;
408 	else
409 		blocks_for_ssa = total_valid_blks_available /
410 				c.blks_per_seg + 1;
411 
412 	set_sb(segment_count_ssa, SEG_ALIGN(blocks_for_ssa));
413 
414 	total_meta_segments = get_sb(segment_count_ckpt) +
415 		get_sb(segment_count_sit) +
416 		get_sb(segment_count_nat) +
417 		get_sb(segment_count_ssa);
418 	diff = total_meta_segments % (c.segs_per_zone);
419 	if (diff)
420 		set_sb(segment_count_ssa, get_sb(segment_count_ssa) +
421 			(c.segs_per_zone - diff));
422 
423 	total_meta_zones = ZONE_ALIGN(total_meta_segments *
424 						c.blks_per_seg);
425 
426 	set_sb(main_blkaddr, get_sb(segment0_blkaddr) + total_meta_zones *
427 				c.segs_per_zone * c.blks_per_seg);
428 
429 	if (c.zoned_mode) {
430 		/*
431 		 * Make sure there is enough randomly writeable
432 		 * space at the beginning of the disk.
433 		 */
434 		unsigned long main_blkzone = get_sb(main_blkaddr) / c.zone_blocks;
435 
436 		if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
437 				c.devices[0].nr_rnd_zones < main_blkzone) {
438 			MSG(0, "\tError: Device does not have enough random "
439 					"write zones for F2FS volume (%lu needed)\n",
440 					main_blkzone);
441 			return -1;
442 		}
443 	}
444 
445 	total_zones = get_sb(segment_count) / (c.segs_per_zone) -
446 							total_meta_zones;
447 
448 	set_sb(section_count, total_zones * c.secs_per_zone);
449 
450 	set_sb(segment_count_main, get_sb(section_count) * c.segs_per_sec);
451 
452 	/*
453 	 * Let's determine the best reserved and overprovisioned space.
454 	 * For Zoned device, if zone capacity less than zone size, the segments
455 	 * starting after the zone capacity are unusable in each zone. So get
456 	 * overprovision ratio and reserved seg count based on avg usable
457 	 * segs_per_sec.
458 	 */
459 	if (c.overprovision == 0)
460 		c.overprovision = get_best_overprovision(sb);
461 
462 	c.reserved_segments =
463 			(2 * (100 / c.overprovision + 1) + NR_CURSEG_TYPE) *
464 			round_up(f2fs_get_usable_segments(sb), get_sb(section_count));
465 
466 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
467 		c.overprovision = 0;
468 		c.reserved_segments = 0;
469 	}
470 	if ((!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)) &&
471 		c.overprovision == 0) ||
472 		c.total_segments < F2FS_MIN_SEGMENTS ||
473 		(c.devices[0].total_sectors *
474 			c.sector_size < zone_align_start_offset) ||
475 		(get_sb(segment_count_main) - NR_CURSEG_TYPE) <
476 						c.reserved_segments) {
477 		MSG(0, "\tError: Device size is not sufficient for F2FS volume\n");
478 		return -1;
479 	}
480 
481 	if (c.vol_uuid) {
482 		if (uuid_parse(c.vol_uuid, sb->uuid)) {
483 			MSG(0, "\tError: supplied string is not a valid UUID\n");
484 			return -1;
485 		}
486 	} else {
487 		uuid_generate(sb->uuid);
488 	}
489 
490 	/* precompute checksum seed for metadata */
491 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
492 		c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
493 
494 	utf8_to_utf16(sb->volume_name, (const char *)c.vol_label,
495 				MAX_VOLUME_NAME, strlen(c.vol_label));
496 	set_sb(node_ino, 1);
497 	set_sb(meta_ino, 2);
498 	set_sb(root_ino, 3);
499 	c.next_free_nid = 4;
500 
501 	if (c.feature & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) {
502 		quotatype_bits = QUOTA_USR_BIT | QUOTA_GRP_BIT;
503 		if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
504 			quotatype_bits |= QUOTA_PRJ_BIT;
505 	}
506 
507 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
508 		if (!((1 << qtype) & quotatype_bits))
509 			continue;
510 		sb->qf_ino[qtype] = cpu_to_le32(c.next_free_nid++);
511 		MSG(0, "Info: add quota type = %u => %u\n",
512 					qtype, c.next_free_nid - 1);
513 	}
514 
515 	if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND))
516 		c.lpf_ino = c.next_free_nid++;
517 
518 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
519 		avail_zones = 2;
520 	else
521 		avail_zones = 6;
522 
523 	if (total_zones <= avail_zones) {
524 		MSG(1, "\tError: %d zones: Need more zones "
525 			"by shrinking zone size\n", total_zones);
526 		return -1;
527 	}
528 
529 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
530 		c.cur_seg[CURSEG_HOT_NODE] = 0;
531 		c.cur_seg[CURSEG_WARM_NODE] = 0;
532 		c.cur_seg[CURSEG_COLD_NODE] = 0;
533 		c.cur_seg[CURSEG_HOT_DATA] = 1;
534 		c.cur_seg[CURSEG_COLD_DATA] = 0;
535 		c.cur_seg[CURSEG_WARM_DATA] = 0;
536 	} else if (c.heap) {
537 		c.cur_seg[CURSEG_HOT_NODE] =
538 				last_section(last_zone(total_zones));
539 		c.cur_seg[CURSEG_WARM_NODE] = prev_zone(CURSEG_HOT_NODE);
540 		c.cur_seg[CURSEG_COLD_NODE] = prev_zone(CURSEG_WARM_NODE);
541 		c.cur_seg[CURSEG_HOT_DATA] = prev_zone(CURSEG_COLD_NODE);
542 		c.cur_seg[CURSEG_COLD_DATA] = 0;
543 		c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_COLD_DATA);
544 	} else if (c.zoned_mode) {
545 		c.cur_seg[CURSEG_HOT_NODE] = 0;
546 		c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
547 		c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
548 		c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
549 		c.cur_seg[CURSEG_WARM_DATA] = next_zone(CURSEG_HOT_DATA);
550 		c.cur_seg[CURSEG_COLD_DATA] = next_zone(CURSEG_WARM_DATA);
551 	} else {
552 		c.cur_seg[CURSEG_HOT_NODE] = 0;
553 		c.cur_seg[CURSEG_WARM_NODE] = next_zone(CURSEG_HOT_NODE);
554 		c.cur_seg[CURSEG_COLD_NODE] = next_zone(CURSEG_WARM_NODE);
555 		c.cur_seg[CURSEG_HOT_DATA] = next_zone(CURSEG_COLD_NODE);
556 		c.cur_seg[CURSEG_COLD_DATA] =
557 				max(last_zone((total_zones >> 2)),
558 					next_zone(CURSEG_HOT_DATA));
559 		c.cur_seg[CURSEG_WARM_DATA] =
560 				max(last_zone((total_zones >> 1)),
561 					next_zone(CURSEG_COLD_DATA));
562 	}
563 
564 	/* if there is redundancy, reassign it */
565 	if (!(c.feature & cpu_to_le32(F2FS_FEATURE_RO)))
566 		verify_cur_segs();
567 
568 	cure_extension_list();
569 
570 	/* get kernel version */
571 	if (c.kd >= 0) {
572 		dev_read_version(c.version, 0, VERSION_LEN);
573 		get_kernel_version(c.version);
574 		MSG(0, "Info: format version with\n  \"%s\"\n", c.version);
575 	} else {
576 		get_kernel_uname_version(c.version);
577 	}
578 
579 	memcpy(sb->version, c.version, VERSION_LEN);
580 	memcpy(sb->init_version, c.version, VERSION_LEN);
581 
582 	if (c.feature & cpu_to_le32(F2FS_FEATURE_CASEFOLD)) {
583 		set_sb(s_encoding, c.s_encoding);
584 		set_sb(s_encoding_flags, c.s_encoding_flags);
585 	}
586 
587 	sb->feature = c.feature;
588 
589 	if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
590 		set_sb(checksum_offset, SB_CHKSUM_OFFSET);
591 		set_sb(crc, f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
592 						SB_CHKSUM_OFFSET));
593 		MSG(1, "Info: SB CRC is set: offset (%d), crc (0x%x)\n",
594 					get_sb(checksum_offset), get_sb(crc));
595 	}
596 
597 	return 0;
598 }
599 
f2fs_init_sit_area(void)600 static int f2fs_init_sit_area(void)
601 {
602 	u_int32_t blk_size, seg_size;
603 	u_int32_t index = 0;
604 	u_int64_t sit_seg_addr = 0;
605 	u_int8_t *zero_buf = NULL;
606 
607 	blk_size = 1 << get_sb(log_blocksize);
608 	seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
609 
610 	zero_buf = calloc(sizeof(u_int8_t), seg_size);
611 	if(zero_buf == NULL) {
612 		MSG(1, "\tError: Calloc Failed for sit_zero_buf!!!\n");
613 		return -1;
614 	}
615 
616 	sit_seg_addr = get_sb(sit_blkaddr);
617 	sit_seg_addr *= blk_size;
618 
619 	DBG(1, "\tFilling sit area at offset 0x%08"PRIx64"\n", sit_seg_addr);
620 	for (index = 0; index < (get_sb(segment_count_sit) / 2); index++) {
621 		if (dev_fill(zero_buf, sit_seg_addr, seg_size)) {
622 			MSG(1, "\tError: While zeroing out the sit area "
623 					"on disk!!!\n");
624 			free(zero_buf);
625 			return -1;
626 		}
627 		sit_seg_addr += seg_size;
628 	}
629 
630 	free(zero_buf);
631 	return 0 ;
632 }
633 
f2fs_init_nat_area(void)634 static int f2fs_init_nat_area(void)
635 {
636 	u_int32_t blk_size, seg_size;
637 	u_int32_t index = 0;
638 	u_int64_t nat_seg_addr = 0;
639 	u_int8_t *nat_buf = NULL;
640 
641 	blk_size = 1 << get_sb(log_blocksize);
642 	seg_size = (1 << get_sb(log_blocks_per_seg)) * blk_size;
643 
644 	nat_buf = calloc(sizeof(u_int8_t), seg_size);
645 	if (nat_buf == NULL) {
646 		MSG(1, "\tError: Calloc Failed for nat_zero_blk!!!\n");
647 		return -1;
648 	}
649 
650 	nat_seg_addr = get_sb(nat_blkaddr);
651 	nat_seg_addr *= blk_size;
652 
653 	DBG(1, "\tFilling nat area at offset 0x%08"PRIx64"\n", nat_seg_addr);
654 	for (index = 0; index < get_sb(segment_count_nat) / 2; index++) {
655 		if (dev_fill(nat_buf, nat_seg_addr, seg_size)) {
656 			MSG(1, "\tError: While zeroing out the nat area "
657 					"on disk!!!\n");
658 			free(nat_buf);
659 			return -1;
660 		}
661 		nat_seg_addr = nat_seg_addr + (2 * seg_size);
662 	}
663 
664 	free(nat_buf);
665 	return 0 ;
666 }
667 
f2fs_write_check_point_pack(void)668 static int f2fs_write_check_point_pack(void)
669 {
670 	struct f2fs_summary_block *sum = NULL;
671 	struct f2fs_journal *journal;
672 	u_int32_t blk_size_bytes;
673 	u_int32_t nat_bits_bytes, nat_bits_blocks;
674 	unsigned char *nat_bits = NULL, *empty_nat_bits;
675 	u_int64_t cp_seg_blk = 0;
676 	u_int32_t crc = 0, flags;
677 	unsigned int i;
678 	char *cp_payload = NULL;
679 	char *sum_compact, *sum_compact_p;
680 	struct f2fs_summary *sum_entry;
681 	enum quota_type qtype;
682 	int off;
683 	int ret = -1;
684 
685 	cp = calloc(F2FS_BLKSIZE, 1);
686 	if (cp == NULL) {
687 		MSG(1, "\tError: Calloc failed for f2fs_checkpoint!!!\n");
688 		return ret;
689 	}
690 
691 	sum = calloc(F2FS_BLKSIZE, 1);
692 	if (sum == NULL) {
693 		MSG(1, "\tError: Calloc failed for summary_node!!!\n");
694 		goto free_cp;
695 	}
696 
697 	sum_compact = calloc(F2FS_BLKSIZE, 1);
698 	if (sum_compact == NULL) {
699 		MSG(1, "\tError: Calloc failed for summary buffer!!!\n");
700 		goto free_sum;
701 	}
702 	sum_compact_p = sum_compact;
703 
704 	nat_bits_bytes = get_sb(segment_count_nat) << 5;
705 	nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
706 						F2FS_BLKSIZE - 1);
707 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
708 	if (nat_bits == NULL) {
709 		MSG(1, "\tError: Calloc failed for nat bits buffer!!!\n");
710 		goto free_sum_compact;
711 	}
712 
713 	cp_payload = calloc(F2FS_BLKSIZE, 1);
714 	if (cp_payload == NULL) {
715 		MSG(1, "\tError: Calloc failed for cp_payload!!!\n");
716 		goto free_nat_bits;
717 	}
718 
719 	/* 1. cp page 1 of checkpoint pack 1 */
720 	srand((c.fake_seed) ? 0 : time(NULL));
721 	cp->checkpoint_ver = cpu_to_le64(rand() | 0x1);
722 	set_cp(cur_node_segno[0], c.cur_seg[CURSEG_HOT_NODE]);
723 	set_cp(cur_node_segno[1], c.cur_seg[CURSEG_WARM_NODE]);
724 	set_cp(cur_node_segno[2], c.cur_seg[CURSEG_COLD_NODE]);
725 	set_cp(cur_data_segno[0], c.cur_seg[CURSEG_HOT_DATA]);
726 	set_cp(cur_data_segno[1], c.cur_seg[CURSEG_WARM_DATA]);
727 	set_cp(cur_data_segno[2], c.cur_seg[CURSEG_COLD_DATA]);
728 	for (i = 3; i < MAX_ACTIVE_NODE_LOGS; i++) {
729 		set_cp(cur_node_segno[i], 0xffffffff);
730 		set_cp(cur_data_segno[i], 0xffffffff);
731 	}
732 
733 	set_cp(cur_node_blkoff[0], 1 + c.quota_inum + c.lpf_inum);
734 	set_cp(cur_data_blkoff[0], 1 + c.quota_dnum + c.lpf_dnum);
735 	set_cp(valid_block_count, 2 + c.quota_inum + c.quota_dnum +
736 			c.lpf_inum + c.lpf_dnum);
737 	set_cp(rsvd_segment_count, c.reserved_segments);
738 
739 	/*
740 	 * For zoned devices, if zone capacity less than zone size, get
741 	 * overprovision segment count based on usable segments in the device.
742 	 */
743 	set_cp(overprov_segment_count, (f2fs_get_usable_segments(sb) -
744 			get_cp(rsvd_segment_count)) *
745 			c.overprovision / 100);
746 	set_cp(overprov_segment_count, get_cp(overprov_segment_count) +
747 			get_cp(rsvd_segment_count));
748 
749 	if (f2fs_get_usable_segments(sb) <= get_cp(overprov_segment_count)) {
750 		MSG(0, "\tError: Not enough segments to create F2FS Volume\n");
751 		goto free_cp_payload;
752 	}
753 	MSG(0, "Info: Overprovision ratio = %.3lf%%\n", c.overprovision);
754 	MSG(0, "Info: Overprovision segments = %u (GC reserved = %u)\n",
755 					get_cp(overprov_segment_count),
756 					c.reserved_segments);
757 
758 	/* main segments - reserved segments - (node + data segments) */
759 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
760 		set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 2);
761 		set_cp(user_block_count, ((get_cp(free_segment_count) + 2 -
762 			get_cp(overprov_segment_count)) * c.blks_per_seg));
763 	} else {
764 		set_cp(free_segment_count, f2fs_get_usable_segments(sb) - 6);
765 		set_cp(user_block_count, ((get_cp(free_segment_count) + 6 -
766 			get_cp(overprov_segment_count)) * c.blks_per_seg));
767 	}
768 	/* cp page (2), data summaries (1), node summaries (3) */
769 	set_cp(cp_pack_total_block_count, 6 + get_sb(cp_payload));
770 	flags = CP_UMOUNT_FLAG | CP_COMPACT_SUM_FLAG;
771 	if (get_cp(cp_pack_total_block_count) <=
772 			(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
773 		flags |= CP_NAT_BITS_FLAG;
774 
775 	if (c.trimmed)
776 		flags |= CP_TRIMMED_FLAG;
777 
778 	if (c.large_nat_bitmap)
779 		flags |= CP_LARGE_NAT_BITMAP_FLAG;
780 
781 	set_cp(ckpt_flags, flags);
782 	set_cp(cp_pack_start_sum, 1 + get_sb(cp_payload));
783 	set_cp(valid_node_count, 1 + c.quota_inum + c.lpf_inum);
784 	set_cp(valid_inode_count, 1 + c.quota_inum + c.lpf_inum);
785 	set_cp(next_free_nid, c.next_free_nid);
786 	set_cp(sit_ver_bitmap_bytesize, ((get_sb(segment_count_sit) / 2) <<
787 			get_sb(log_blocks_per_seg)) / 8);
788 
789 	set_cp(nat_ver_bitmap_bytesize, ((get_sb(segment_count_nat) / 2) <<
790 			 get_sb(log_blocks_per_seg)) / 8);
791 
792 	if (c.large_nat_bitmap)
793 		set_cp(checksum_offset, CP_MIN_CHKSUM_OFFSET);
794 	else
795 		set_cp(checksum_offset, CP_CHKSUM_OFFSET);
796 
797 	crc = f2fs_checkpoint_chksum(cp);
798 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
799 							cpu_to_le32(crc);
800 
801 	blk_size_bytes = 1 << get_sb(log_blocksize);
802 
803 	if (blk_size_bytes != F2FS_BLKSIZE) {
804 		MSG(1, "\tError: Wrong block size %d / %d!!!\n",
805 					blk_size_bytes, F2FS_BLKSIZE);
806 		goto free_cp_payload;
807 	}
808 
809 	cp_seg_blk = get_sb(segment0_blkaddr);
810 
811 	DBG(1, "\tWriting main segments, cp at offset 0x%08"PRIx64"\n",
812 						cp_seg_blk);
813 	if (dev_write_block(cp, cp_seg_blk)) {
814 		MSG(1, "\tError: While writing the cp to disk!!!\n");
815 		goto free_cp_payload;
816 	}
817 
818 	for (i = 0; i < get_sb(cp_payload); i++) {
819 		cp_seg_blk++;
820 		if (dev_fill_block(cp_payload, cp_seg_blk)) {
821 			MSG(1, "\tError: While zeroing out the sit bitmap area "
822 					"on disk!!!\n");
823 			goto free_cp_payload;
824 		}
825 	}
826 
827 	/* Prepare and write Segment summary for HOT/WARM/COLD DATA
828 	 *
829 	 * The structure of compact summary
830 	 * +-------------------+
831 	 * | nat_journal       |
832 	 * +-------------------+
833 	 * | sit_journal       |
834 	 * +-------------------+
835 	 * | hot data summary  |
836 	 * +-------------------+
837 	 * | warm data summary |
838 	 * +-------------------+
839 	 * | cold data summary |
840 	 * +-------------------+
841 	*/
842 	memset(sum, 0, sizeof(struct f2fs_summary_block));
843 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_DATA);
844 
845 	journal = &sum->journal;
846 	journal->n_nats = cpu_to_le16(1 + c.quota_inum + c.lpf_inum);
847 	journal->nat_j.entries[0].nid = sb->root_ino;
848 	journal->nat_j.entries[0].ne.version = 0;
849 	journal->nat_j.entries[0].ne.ino = sb->root_ino;
850 	journal->nat_j.entries[0].ne.block_addr = cpu_to_le32(
851 			get_sb(main_blkaddr) +
852 			get_cp(cur_node_segno[0]) * c.blks_per_seg);
853 
854 	for (qtype = 0, i = 1; qtype < F2FS_MAX_QUOTAS; qtype++) {
855 		if (sb->qf_ino[qtype] == 0)
856 			continue;
857 		journal->nat_j.entries[i].nid = sb->qf_ino[qtype];
858 		journal->nat_j.entries[i].ne.version = 0;
859 		journal->nat_j.entries[i].ne.ino = sb->qf_ino[qtype];
860 		journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
861 				get_sb(main_blkaddr) +
862 				get_cp(cur_node_segno[0]) *
863 				c.blks_per_seg + i);
864 		i++;
865 	}
866 
867 	if (c.lpf_inum) {
868 		journal->nat_j.entries[i].nid = cpu_to_le32(c.lpf_ino);
869 		journal->nat_j.entries[i].ne.version = 0;
870 		journal->nat_j.entries[i].ne.ino = cpu_to_le32(c.lpf_ino);
871 		journal->nat_j.entries[i].ne.block_addr = cpu_to_le32(
872 				get_sb(main_blkaddr) +
873 				get_cp(cur_node_segno[0]) *
874 				c.blks_per_seg + i);
875 	}
876 
877 	memcpy(sum_compact_p, &journal->n_nats, SUM_JOURNAL_SIZE);
878 	sum_compact_p += SUM_JOURNAL_SIZE;
879 
880 	memset(sum, 0, sizeof(struct f2fs_summary_block));
881 
882 	/* inode sit for root */
883 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO))
884 		journal->n_sits = cpu_to_le16(2);
885 	else
886 		journal->n_sits = cpu_to_le16(6);
887 
888 	journal->sit_j.entries[0].segno = cp->cur_node_segno[0];
889 	journal->sit_j.entries[0].se.vblocks =
890 				cpu_to_le16((CURSEG_HOT_NODE << 10) |
891 						(1 + c.quota_inum + c.lpf_inum));
892 	f2fs_set_bit(0, (char *)journal->sit_j.entries[0].se.valid_map);
893 	for (i = 1; i <= c.quota_inum; i++)
894 		f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
895 	if (c.lpf_inum)
896 		f2fs_set_bit(i, (char *)journal->sit_j.entries[0].se.valid_map);
897 
898 	if (c.feature & cpu_to_le32(F2FS_FEATURE_RO)) {
899 		/* data sit for root */
900 		journal->sit_j.entries[1].segno = cp->cur_data_segno[0];
901 		journal->sit_j.entries[1].se.vblocks =
902 					cpu_to_le16((CURSEG_HOT_DATA << 10) |
903 							(1 + c.quota_dnum + c.lpf_dnum));
904 		f2fs_set_bit(0, (char *)journal->sit_j.entries[1].se.valid_map);
905 		for (i = 1; i <= c.quota_dnum; i++)
906 			f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
907 		if (c.lpf_dnum)
908 			f2fs_set_bit(i, (char *)journal->sit_j.entries[1].se.valid_map);
909 	} else {
910 		journal->sit_j.entries[1].segno = cp->cur_node_segno[1];
911 		journal->sit_j.entries[1].se.vblocks =
912 					cpu_to_le16((CURSEG_WARM_NODE << 10));
913 		journal->sit_j.entries[2].segno = cp->cur_node_segno[2];
914 		journal->sit_j.entries[2].se.vblocks =
915 					cpu_to_le16((CURSEG_COLD_NODE << 10));
916 
917 		/* data sit for root */
918 		journal->sit_j.entries[3].segno = cp->cur_data_segno[0];
919 		journal->sit_j.entries[3].se.vblocks =
920 					cpu_to_le16((CURSEG_HOT_DATA << 10) |
921 							(1 + c.quota_dnum + c.lpf_dnum));
922 		f2fs_set_bit(0, (char *)journal->sit_j.entries[3].se.valid_map);
923 		for (i = 1; i <= c.quota_dnum; i++)
924 			f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
925 		if (c.lpf_dnum)
926 			f2fs_set_bit(i, (char *)journal->sit_j.entries[3].se.valid_map);
927 
928 		journal->sit_j.entries[4].segno = cp->cur_data_segno[1];
929 		journal->sit_j.entries[4].se.vblocks =
930 					cpu_to_le16((CURSEG_WARM_DATA << 10));
931 		journal->sit_j.entries[5].segno = cp->cur_data_segno[2];
932 		journal->sit_j.entries[5].se.vblocks =
933 					cpu_to_le16((CURSEG_COLD_DATA << 10));
934 	}
935 
936 	memcpy(sum_compact_p, &journal->n_sits, SUM_JOURNAL_SIZE);
937 	sum_compact_p += SUM_JOURNAL_SIZE;
938 
939 	/* hot data summary */
940 	sum_entry = (struct f2fs_summary *)sum_compact_p;
941 	sum_entry->nid = sb->root_ino;
942 	sum_entry->ofs_in_node = 0;
943 
944 	off = 1;
945 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
946 		if (sb->qf_ino[qtype] == 0)
947 			continue;
948 		int j;
949 
950 		for (j = 0; j < QUOTA_DATA(qtype); j++) {
951 			(sum_entry + off + j)->nid = sb->qf_ino[qtype];
952 			(sum_entry + off + j)->ofs_in_node = cpu_to_le16(j);
953 		}
954 		off += QUOTA_DATA(qtype);
955 	}
956 
957 	if (c.lpf_dnum) {
958 		(sum_entry + off)->nid = cpu_to_le32(c.lpf_ino);
959 		(sum_entry + off)->ofs_in_node = 0;
960 	}
961 
962 	/* warm data summary, nothing to do */
963 	/* cold data summary, nothing to do */
964 
965 	cp_seg_blk++;
966 	DBG(1, "\tWriting Segment summary for HOT/WARM/COLD_DATA, at offset 0x%08"PRIx64"\n",
967 			cp_seg_blk);
968 	if (dev_write_block(sum_compact, cp_seg_blk)) {
969 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
970 		goto free_cp_payload;
971 	}
972 
973 	/* Prepare and write Segment summary for HOT_NODE */
974 	memset(sum, 0, sizeof(struct f2fs_summary_block));
975 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
976 
977 	sum->entries[0].nid = sb->root_ino;
978 	sum->entries[0].ofs_in_node = 0;
979 	for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
980 		if (sb->qf_ino[qtype] == 0)
981 			continue;
982 		sum->entries[1 + i].nid = sb->qf_ino[qtype];
983 		sum->entries[1 + i].ofs_in_node = 0;
984 		i++;
985 	}
986 	if (c.lpf_inum) {
987 		i++;
988 		sum->entries[i].nid = cpu_to_le32(c.lpf_ino);
989 		sum->entries[i].ofs_in_node = 0;
990 	}
991 
992 	cp_seg_blk++;
993 	DBG(1, "\tWriting Segment summary for HOT_NODE, at offset 0x%08"PRIx64"\n",
994 			cp_seg_blk);
995 	if (dev_write_block(sum, cp_seg_blk)) {
996 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
997 		goto free_cp_payload;
998 	}
999 
1000 	/* Fill segment summary for WARM_NODE to zero. */
1001 	memset(sum, 0, sizeof(struct f2fs_summary_block));
1002 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1003 
1004 	cp_seg_blk++;
1005 	DBG(1, "\tWriting Segment summary for WARM_NODE, at offset 0x%08"PRIx64"\n",
1006 			cp_seg_blk);
1007 	if (dev_write_block(sum, cp_seg_blk)) {
1008 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1009 		goto free_cp_payload;
1010 	}
1011 
1012 	/* Fill segment summary for COLD_NODE to zero. */
1013 	memset(sum, 0, sizeof(struct f2fs_summary_block));
1014 	SET_SUM_TYPE((&sum->footer), SUM_TYPE_NODE);
1015 	cp_seg_blk++;
1016 	DBG(1, "\tWriting Segment summary for COLD_NODE, at offset 0x%08"PRIx64"\n",
1017 			cp_seg_blk);
1018 	if (dev_write_block(sum, cp_seg_blk)) {
1019 		MSG(1, "\tError: While writing the sum_blk to disk!!!\n");
1020 		goto free_cp_payload;
1021 	}
1022 
1023 	/* cp page2 */
1024 	cp_seg_blk++;
1025 	DBG(1, "\tWriting cp page2, at offset 0x%08"PRIx64"\n", cp_seg_blk);
1026 	if (dev_write_block(cp, cp_seg_blk)) {
1027 		MSG(1, "\tError: While writing the cp to disk!!!\n");
1028 		goto free_cp_payload;
1029 	}
1030 
1031 	/* write NAT bits, if possible */
1032 	if (flags & CP_NAT_BITS_FLAG) {
1033 		uint32_t i;
1034 
1035 		*(__le64 *)nat_bits = get_cp_crc(cp);
1036 		empty_nat_bits = nat_bits + 8 + nat_bits_bytes;
1037 		memset(empty_nat_bits, 0xff, nat_bits_bytes);
1038 		test_and_clear_bit_le(0, empty_nat_bits);
1039 
1040 		/* write the last blocks in cp pack */
1041 		cp_seg_blk = get_sb(segment0_blkaddr) + (1 <<
1042 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
1043 
1044 		DBG(1, "\tWriting NAT bits pages, at offset 0x%08"PRIx64"\n",
1045 					cp_seg_blk);
1046 
1047 		for (i = 0; i < nat_bits_blocks; i++) {
1048 			if (dev_write_block(nat_bits + i *
1049 						F2FS_BLKSIZE, cp_seg_blk + i)) {
1050 				MSG(1, "\tError: write NAT bits to disk!!!\n");
1051 				goto free_cp_payload;
1052 			}
1053 		}
1054 	}
1055 
1056 	/* cp page 1 of check point pack 2
1057 	 * Initialize other checkpoint pack with version zero
1058 	 */
1059 	cp->checkpoint_ver = 0;
1060 
1061 	crc = f2fs_checkpoint_chksum(cp);
1062 	*((__le32 *)((unsigned char *)cp + get_cp(checksum_offset))) =
1063 							cpu_to_le32(crc);
1064 	cp_seg_blk = get_sb(segment0_blkaddr) + c.blks_per_seg;
1065 	DBG(1, "\tWriting cp page 1 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1066 				cp_seg_blk);
1067 	if (dev_write_block(cp, cp_seg_blk)) {
1068 		MSG(1, "\tError: While writing the cp to disk!!!\n");
1069 		goto free_cp_payload;
1070 	}
1071 
1072 	for (i = 0; i < get_sb(cp_payload); i++) {
1073 		cp_seg_blk++;
1074 		if (dev_fill_block(cp_payload, cp_seg_blk)) {
1075 			MSG(1, "\tError: While zeroing out the sit bitmap area "
1076 					"on disk!!!\n");
1077 			goto free_cp_payload;
1078 		}
1079 	}
1080 
1081 	/* cp page 2 of check point pack 2 */
1082 	cp_seg_blk += (le32_to_cpu(cp->cp_pack_total_block_count) -
1083 					get_sb(cp_payload) - 1);
1084 	DBG(1, "\tWriting cp page 2 of checkpoint pack 2, at offset 0x%08"PRIx64"\n",
1085 				cp_seg_blk);
1086 	if (dev_write_block(cp, cp_seg_blk)) {
1087 		MSG(1, "\tError: While writing the cp to disk!!!\n");
1088 		goto free_cp_payload;
1089 	}
1090 
1091 	ret = 0;
1092 
1093 free_cp_payload:
1094 	free(cp_payload);
1095 free_nat_bits:
1096 	free(nat_bits);
1097 free_sum_compact:
1098 	free(sum_compact);
1099 free_sum:
1100 	free(sum);
1101 free_cp:
1102 	free(cp);
1103 	return ret;
1104 }
1105 
f2fs_write_super_block(void)1106 static int f2fs_write_super_block(void)
1107 {
1108 	int index;
1109 	u_int8_t *zero_buff;
1110 
1111 	zero_buff = calloc(F2FS_BLKSIZE, 1);
1112 	if (zero_buff == NULL) {
1113 		MSG(1, "\tError: Calloc Failed for super_blk_zero_buf!!!\n");
1114 		return -1;
1115 	}
1116 
1117 	memcpy(zero_buff + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
1118 	DBG(1, "\tWriting super block, at offset 0x%08x\n", 0);
1119 	for (index = 0; index < 2; index++) {
1120 		if (dev_write_block(zero_buff, index)) {
1121 			MSG(1, "\tError: While while writing super_blk "
1122 					"on disk!!! index : %d\n", index);
1123 			free(zero_buff);
1124 			return -1;
1125 		}
1126 	}
1127 
1128 	free(zero_buff);
1129 	return 0;
1130 }
1131 
1132 #ifndef WITH_ANDROID
f2fs_discard_obsolete_dnode(void)1133 static int f2fs_discard_obsolete_dnode(void)
1134 {
1135 	struct f2fs_node *raw_node;
1136 	u_int64_t next_blkaddr = 0, offset;
1137 	u64 end_blkaddr = (get_sb(segment_count_main) <<
1138 			get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
1139 	u_int64_t start_inode_pos = get_sb(main_blkaddr);
1140 	u_int64_t last_inode_pos;
1141 
1142 	if (c.zoned_mode || c.feature & cpu_to_le32(F2FS_FEATURE_RO))
1143 		return 0;
1144 
1145 	raw_node = calloc(sizeof(struct f2fs_node), 1);
1146 	if (raw_node == NULL) {
1147 		MSG(1, "\tError: Calloc Failed for discard_raw_node!!!\n");
1148 		return -1;
1149 	}
1150 
1151 	/* avoid power-off-recovery based on roll-forward policy */
1152 	offset = get_sb(main_blkaddr);
1153 	offset += c.cur_seg[CURSEG_WARM_NODE] * c.blks_per_seg;
1154 
1155 	last_inode_pos = start_inode_pos +
1156 		c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg + c.quota_inum + c.lpf_inum;
1157 
1158 	do {
1159 		if (offset < get_sb(main_blkaddr) || offset >= end_blkaddr)
1160 			break;
1161 
1162 		if (dev_read_block(raw_node, offset)) {
1163 			MSG(1, "\tError: While traversing direct node!!!\n");
1164 			free(raw_node);
1165 			return -1;
1166 		}
1167 
1168 		next_blkaddr = le32_to_cpu(raw_node->footer.next_blkaddr);
1169 		memset(raw_node, 0, F2FS_BLKSIZE);
1170 
1171 		DBG(1, "\tDiscard dnode, at offset 0x%08"PRIx64"\n", offset);
1172 		if (dev_write_block(raw_node, offset)) {
1173 			MSG(1, "\tError: While discarding direct node!!!\n");
1174 			free(raw_node);
1175 			return -1;
1176 		}
1177 		offset = next_blkaddr;
1178 		/* should avoid recursive chain due to stale data */
1179 		if (offset >= start_inode_pos || offset <= last_inode_pos)
1180 			break;
1181 	} while (1);
1182 
1183 	free(raw_node);
1184 	return 0;
1185 }
1186 #endif
1187 
f2fs_write_root_inode(void)1188 static int f2fs_write_root_inode(void)
1189 {
1190 	struct f2fs_node *raw_node = NULL;
1191 	u_int64_t blk_size_bytes, data_blk_nor;
1192 	u_int64_t main_area_node_seg_blk_offset = 0;
1193 
1194 	raw_node = calloc(F2FS_BLKSIZE, 1);
1195 	if (raw_node == NULL) {
1196 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1197 		return -1;
1198 	}
1199 
1200 	raw_node->footer.nid = sb->root_ino;
1201 	raw_node->footer.ino = sb->root_ino;
1202 	raw_node->footer.cp_ver = cpu_to_le64(1);
1203 	raw_node->footer.next_blkaddr = cpu_to_le32(
1204 			get_sb(main_blkaddr) +
1205 			c.cur_seg[CURSEG_HOT_NODE] *
1206 			c.blks_per_seg + 1);
1207 
1208 	raw_node->i.i_mode = cpu_to_le16(0x41ed);
1209 	if (c.lpf_ino)
1210 		raw_node->i.i_links = cpu_to_le32(3);
1211 	else
1212 		raw_node->i.i_links = cpu_to_le32(2);
1213 	raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1214 	raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1215 
1216 	blk_size_bytes = 1 << get_sb(log_blocksize);
1217 	raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes); /* dentry */
1218 	raw_node->i.i_blocks = cpu_to_le64(2);
1219 
1220 	raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1221 	raw_node->i.i_atime_nsec = 0;
1222 	raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1223 	raw_node->i.i_ctime_nsec = 0;
1224 	raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1225 	raw_node->i.i_mtime_nsec = 0;
1226 	raw_node->i.i_generation = 0;
1227 	raw_node->i.i_xattr_nid = 0;
1228 	raw_node->i.i_flags = 0;
1229 	raw_node->i.i_current_depth = cpu_to_le32(1);
1230 	raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1231 
1232 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1233 		raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1234 		raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1235 	}
1236 
1237 	if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1238 		raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1239 
1240 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1241 		raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1242 		raw_node->i.i_crtime_nsec = 0;
1243 	}
1244 
1245 	if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1246 		raw_node->i.i_compress_algrithm = 0;
1247 		raw_node->i.i_log_cluster_size = 0;
1248 		raw_node->i.i_padding = 0;
1249 	}
1250 
1251 	data_blk_nor = get_sb(main_blkaddr) +
1252 		c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg;
1253 	raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1254 
1255 	raw_node->i.i_ext.fofs = 0;
1256 	raw_node->i.i_ext.blk_addr = 0;
1257 	raw_node->i.i_ext.len = 0;
1258 
1259 	main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1260 	main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1261 					c.blks_per_seg;
1262 
1263 	DBG(1, "\tWriting root inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1264 			get_sb(main_blkaddr),
1265 			c.cur_seg[CURSEG_HOT_NODE],
1266 			c.blks_per_seg, main_area_node_seg_blk_offset);
1267 	if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1268 		MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1269 		free(raw_node);
1270 		return -1;
1271 	}
1272 
1273 	free(raw_node);
1274 	return 0;
1275 }
1276 
f2fs_write_default_quota(int qtype,unsigned int blkaddr,__le32 raw_id)1277 static int f2fs_write_default_quota(int qtype, unsigned int blkaddr,
1278 						__le32 raw_id)
1279 {
1280 	char *filebuf = calloc(F2FS_BLKSIZE, 2);
1281 	int file_magics[] = INITQMAGICS;
1282 	struct v2_disk_dqheader ddqheader;
1283 	struct v2_disk_dqinfo ddqinfo;
1284 	struct v2r1_disk_dqblk dqblk;
1285 
1286 	if (filebuf == NULL) {
1287 		MSG(1, "\tError: Calloc Failed for filebuf!!!\n");
1288 		return -1;
1289 	}
1290 
1291 	/* Write basic quota header */
1292 	ddqheader.dqh_magic = cpu_to_le32(file_magics[qtype]);
1293 	/* only support QF_VFSV1 */
1294 	ddqheader.dqh_version = cpu_to_le32(1);
1295 
1296 	memcpy(filebuf, &ddqheader, sizeof(ddqheader));
1297 
1298 	/* Fill Initial quota file content */
1299 	ddqinfo.dqi_bgrace = cpu_to_le32(MAX_DQ_TIME);
1300 	ddqinfo.dqi_igrace = cpu_to_le32(MAX_IQ_TIME);
1301 	ddqinfo.dqi_flags = cpu_to_le32(0);
1302 	ddqinfo.dqi_blocks = cpu_to_le32(QT_TREEOFF + 5);
1303 	ddqinfo.dqi_free_blk = cpu_to_le32(0);
1304 	ddqinfo.dqi_free_entry = cpu_to_le32(5);
1305 
1306 	memcpy(filebuf + V2_DQINFOOFF, &ddqinfo, sizeof(ddqinfo));
1307 
1308 	filebuf[1024] = 2;
1309 	filebuf[2048] = 3;
1310 	filebuf[3072] = 4;
1311 	filebuf[4096] = 5;
1312 
1313 	filebuf[5120 + 8] = 1;
1314 
1315 	dqblk.dqb_id = raw_id;
1316 	dqblk.dqb_pad = cpu_to_le32(0);
1317 	dqblk.dqb_ihardlimit = cpu_to_le64(0);
1318 	dqblk.dqb_isoftlimit = cpu_to_le64(0);
1319 	if (c.lpf_ino)
1320 		dqblk.dqb_curinodes = cpu_to_le64(2);
1321 	else
1322 		dqblk.dqb_curinodes = cpu_to_le64(1);
1323 	dqblk.dqb_bhardlimit = cpu_to_le64(0);
1324 	dqblk.dqb_bsoftlimit = cpu_to_le64(0);
1325 	if (c.lpf_ino)
1326 		dqblk.dqb_curspace = cpu_to_le64(8192);
1327 	else
1328 		dqblk.dqb_curspace = cpu_to_le64(4096);
1329 	dqblk.dqb_btime = cpu_to_le64(0);
1330 	dqblk.dqb_itime = cpu_to_le64(0);
1331 
1332 	memcpy(filebuf + 5136, &dqblk, sizeof(struct v2r1_disk_dqblk));
1333 
1334 	/* Write two blocks */
1335 	if (dev_write_block(filebuf, blkaddr) ||
1336 	    dev_write_block(filebuf + F2FS_BLKSIZE, blkaddr + 1)) {
1337 		MSG(1, "\tError: While writing the quota_blk to disk!!!\n");
1338 		free(filebuf);
1339 		return -1;
1340 	}
1341 	DBG(1, "\tWriting quota data, at offset %08x, %08x\n",
1342 					blkaddr, blkaddr + 1);
1343 	free(filebuf);
1344 	c.quota_dnum += QUOTA_DATA(qtype);
1345 	return 0;
1346 }
1347 
f2fs_write_qf_inode(int qtype)1348 static int f2fs_write_qf_inode(int qtype)
1349 {
1350 	struct f2fs_node *raw_node = NULL;
1351 	u_int64_t data_blk_nor;
1352 	u_int64_t main_area_node_seg_blk_offset = 0;
1353 	__le32 raw_id;
1354 	int i;
1355 
1356 	raw_node = calloc(F2FS_BLKSIZE, 1);
1357 	if (raw_node == NULL) {
1358 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1359 		return -1;
1360 	}
1361 
1362 	raw_node->footer.nid = sb->qf_ino[qtype];
1363 	raw_node->footer.ino = sb->qf_ino[qtype];
1364 	raw_node->footer.cp_ver = cpu_to_le64(1);
1365 	raw_node->footer.next_blkaddr = cpu_to_le32(
1366 			get_sb(main_blkaddr) +
1367 			c.cur_seg[CURSEG_HOT_NODE] *
1368 			c.blks_per_seg + 1 + qtype + 1);
1369 
1370 	raw_node->i.i_mode = cpu_to_le16(0x8180);
1371 	raw_node->i.i_links = cpu_to_le32(1);
1372 	raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1373 	raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1374 
1375 	raw_node->i.i_size = cpu_to_le64(1024 * 6); /* Hard coded */
1376 	raw_node->i.i_blocks = cpu_to_le64(1 + QUOTA_DATA(qtype));
1377 
1378 	raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1379 	raw_node->i.i_atime_nsec = 0;
1380 	raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1381 	raw_node->i.i_ctime_nsec = 0;
1382 	raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1383 	raw_node->i.i_mtime_nsec = 0;
1384 	raw_node->i.i_generation = 0;
1385 	raw_node->i.i_xattr_nid = 0;
1386 	raw_node->i.i_flags = FS_IMMUTABLE_FL;
1387 	raw_node->i.i_current_depth = cpu_to_le32(0);
1388 	raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1389 
1390 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1391 		raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1392 		raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1393 	}
1394 
1395 	if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1396 		raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1397 
1398 	data_blk_nor = get_sb(main_blkaddr) +
1399 		c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg + 1;
1400 
1401 	for (i = 0; i < qtype; i++)
1402 		if (sb->qf_ino[i])
1403 			data_blk_nor += QUOTA_DATA(i);
1404 	if (qtype == 0)
1405 		raw_id = raw_node->i.i_uid;
1406 	else if (qtype == 1)
1407 		raw_id = raw_node->i.i_gid;
1408 	else if (qtype == 2)
1409 		raw_id = raw_node->i.i_projid;
1410 	else
1411 		ASSERT(0);
1412 
1413 	/* write two blocks */
1414 	if (f2fs_write_default_quota(qtype, data_blk_nor, raw_id)) {
1415 		free(raw_node);
1416 		return -1;
1417 	}
1418 
1419 	for (i = 0; i < QUOTA_DATA(qtype); i++)
1420 		raw_node->i.i_addr[get_extra_isize(raw_node) + i] =
1421 					cpu_to_le32(data_blk_nor + i);
1422 	raw_node->i.i_ext.fofs = 0;
1423 	raw_node->i.i_ext.blk_addr = 0;
1424 	raw_node->i.i_ext.len = 0;
1425 
1426 	main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1427 	main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1428 					c.blks_per_seg + qtype + 1;
1429 
1430 	DBG(1, "\tWriting quota inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1431 			get_sb(main_blkaddr),
1432 			c.cur_seg[CURSEG_HOT_NODE],
1433 			c.blks_per_seg, main_area_node_seg_blk_offset);
1434 	if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1435 		MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1436 		free(raw_node);
1437 		return -1;
1438 	}
1439 
1440 	free(raw_node);
1441 	c.quota_inum++;
1442 	return 0;
1443 }
1444 
f2fs_update_nat_root(void)1445 static int f2fs_update_nat_root(void)
1446 {
1447 	struct f2fs_nat_block *nat_blk = NULL;
1448 	u_int64_t nat_seg_blk_offset = 0;
1449 	enum quota_type qtype;
1450 	int i;
1451 
1452 	nat_blk = calloc(F2FS_BLKSIZE, 1);
1453 	if(nat_blk == NULL) {
1454 		MSG(1, "\tError: Calloc Failed for nat_blk!!!\n");
1455 		return -1;
1456 	}
1457 
1458 	/* update quota */
1459 	for (qtype = i = 0; qtype < F2FS_MAX_QUOTAS; qtype++) {
1460 		if (sb->qf_ino[qtype] == 0)
1461 			continue;
1462 		nat_blk->entries[sb->qf_ino[qtype]].block_addr =
1463 				cpu_to_le32(get_sb(main_blkaddr) +
1464 				c.cur_seg[CURSEG_HOT_NODE] *
1465 				c.blks_per_seg + i + 1);
1466 		nat_blk->entries[sb->qf_ino[qtype]].ino = sb->qf_ino[qtype];
1467 		i++;
1468 	}
1469 
1470 	/* update root */
1471 	nat_blk->entries[get_sb(root_ino)].block_addr = cpu_to_le32(
1472 		get_sb(main_blkaddr) +
1473 		c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg);
1474 	nat_blk->entries[get_sb(root_ino)].ino = sb->root_ino;
1475 
1476 	/* update node nat */
1477 	nat_blk->entries[get_sb(node_ino)].block_addr = cpu_to_le32(1);
1478 	nat_blk->entries[get_sb(node_ino)].ino = sb->node_ino;
1479 
1480 	/* update meta nat */
1481 	nat_blk->entries[get_sb(meta_ino)].block_addr = cpu_to_le32(1);
1482 	nat_blk->entries[get_sb(meta_ino)].ino = sb->meta_ino;
1483 
1484 	nat_seg_blk_offset = get_sb(nat_blkaddr);
1485 
1486 	DBG(1, "\tWriting nat root, at offset 0x%08"PRIx64"\n",
1487 					nat_seg_blk_offset);
1488 	if (dev_write_block(nat_blk, nat_seg_blk_offset)) {
1489 		MSG(1, "\tError: While writing the nat_blk set0 to disk!\n");
1490 		free(nat_blk);
1491 		return -1;
1492 	}
1493 
1494 	free(nat_blk);
1495 	return 0;
1496 }
1497 
f2fs_add_default_dentry_lpf(void)1498 static block_t f2fs_add_default_dentry_lpf(void)
1499 {
1500 	struct f2fs_dentry_block *dent_blk;
1501 	uint64_t data_blk_offset;
1502 
1503 	dent_blk = calloc(F2FS_BLKSIZE, 1);
1504 	if (dent_blk == NULL) {
1505 		MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1506 		return 0;
1507 	}
1508 
1509 	dent_blk->dentry[0].hash_code = 0;
1510 	dent_blk->dentry[0].ino = cpu_to_le32(c.lpf_ino);
1511 	dent_blk->dentry[0].name_len = cpu_to_le16(1);
1512 	dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1513 	memcpy(dent_blk->filename[0], ".", 1);
1514 
1515 	dent_blk->dentry[1].hash_code = 0;
1516 	dent_blk->dentry[1].ino = sb->root_ino;
1517 	dent_blk->dentry[1].name_len = cpu_to_le16(2);
1518 	dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1519 	memcpy(dent_blk->filename[1], "..", 2);
1520 
1521 	test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1522 	test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1523 
1524 	data_blk_offset = get_sb(main_blkaddr);
1525 	data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] * c.blks_per_seg +
1526 		1 + c.quota_dnum;
1527 
1528 	DBG(1, "\tWriting default dentry lost+found, at offset 0x%08"PRIx64"\n",
1529 			data_blk_offset);
1530 	if (dev_write_block(dent_blk, data_blk_offset)) {
1531 		MSG(1, "\tError While writing the dentry_blk to disk!!!\n");
1532 		free(dent_blk);
1533 		return 0;
1534 	}
1535 
1536 	free(dent_blk);
1537 	c.lpf_dnum++;
1538 	return data_blk_offset;
1539 }
1540 
f2fs_write_lpf_inode(void)1541 static int f2fs_write_lpf_inode(void)
1542 {
1543 	struct f2fs_node *raw_node;
1544 	u_int64_t blk_size_bytes, main_area_node_seg_blk_offset;
1545 	block_t data_blk_nor;
1546 	int err = 0;
1547 
1548 	ASSERT(c.lpf_ino);
1549 
1550 	raw_node = calloc(F2FS_BLKSIZE, 1);
1551 	if (raw_node == NULL) {
1552 		MSG(1, "\tError: Calloc Failed for raw_node!!!\n");
1553 		return -1;
1554 	}
1555 
1556 	raw_node->footer.nid = cpu_to_le32(c.lpf_ino);
1557 	raw_node->footer.ino = raw_node->footer.nid;
1558 	raw_node->footer.cp_ver = cpu_to_le64(1);
1559 	raw_node->footer.next_blkaddr = cpu_to_le32(
1560 			get_sb(main_blkaddr) +
1561 			c.cur_seg[CURSEG_HOT_NODE] * c.blks_per_seg +
1562 			1 + c.quota_inum + 1);
1563 
1564 	raw_node->i.i_mode = cpu_to_le16(0x41c0); /* 0700 */
1565 	raw_node->i.i_links = cpu_to_le32(2);
1566 	raw_node->i.i_uid = cpu_to_le32(c.root_uid);
1567 	raw_node->i.i_gid = cpu_to_le32(c.root_gid);
1568 
1569 	blk_size_bytes = 1 << get_sb(log_blocksize);
1570 	raw_node->i.i_size = cpu_to_le64(1 * blk_size_bytes);
1571 	raw_node->i.i_blocks = cpu_to_le64(2);
1572 
1573 	raw_node->i.i_atime = cpu_to_le32(mkfs_time);
1574 	raw_node->i.i_atime_nsec = 0;
1575 	raw_node->i.i_ctime = cpu_to_le32(mkfs_time);
1576 	raw_node->i.i_ctime_nsec = 0;
1577 	raw_node->i.i_mtime = cpu_to_le32(mkfs_time);
1578 	raw_node->i.i_mtime_nsec = 0;
1579 	raw_node->i.i_generation = 0;
1580 	raw_node->i.i_xattr_nid = 0;
1581 	raw_node->i.i_flags = 0;
1582 	raw_node->i.i_pino = le32_to_cpu(sb->root_ino);
1583 	raw_node->i.i_namelen = le32_to_cpu(strlen(LPF));
1584 	memcpy(raw_node->i.i_name, LPF, strlen(LPF));
1585 	raw_node->i.i_current_depth = cpu_to_le32(1);
1586 	raw_node->i.i_dir_level = DEF_DIR_LEVEL;
1587 
1588 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
1589 		raw_node->i.i_inline = F2FS_EXTRA_ATTR;
1590 		raw_node->i.i_extra_isize = cpu_to_le16(calc_extra_isize());
1591 	}
1592 
1593 	if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
1594 		raw_node->i.i_projid = cpu_to_le32(F2FS_DEF_PROJID);
1595 
1596 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
1597 		raw_node->i.i_crtime = cpu_to_le32(mkfs_time);
1598 		raw_node->i.i_crtime_nsec = 0;
1599 	}
1600 
1601 	if (c.feature & cpu_to_le32(F2FS_FEATURE_COMPRESSION)) {
1602 		raw_node->i.i_compress_algrithm = 0;
1603 		raw_node->i.i_log_cluster_size = 0;
1604 		raw_node->i.i_padding = 0;
1605 	}
1606 
1607 	data_blk_nor = f2fs_add_default_dentry_lpf();
1608 	if (data_blk_nor == 0) {
1609 		MSG(1, "\tError: Failed to add default dentries for lost+found!!!\n");
1610 		err = -1;
1611 		goto exit;
1612 	}
1613 	raw_node->i.i_addr[get_extra_isize(raw_node)] = cpu_to_le32(data_blk_nor);
1614 
1615 	main_area_node_seg_blk_offset = get_sb(main_blkaddr);
1616 	main_area_node_seg_blk_offset += c.cur_seg[CURSEG_HOT_NODE] *
1617 		c.blks_per_seg + c.quota_inum + 1;
1618 
1619 	DBG(1, "\tWriting lost+found inode (hot node), %x %x %x at offset 0x%08"PRIu64"\n",
1620 			get_sb(main_blkaddr),
1621 			c.cur_seg[CURSEG_HOT_NODE],
1622 			c.blks_per_seg, main_area_node_seg_blk_offset);
1623 	if (write_inode(raw_node, main_area_node_seg_blk_offset) < 0) {
1624 		MSG(1, "\tError: While writing the raw_node to disk!!!\n");
1625 		err = -1;
1626 		goto exit;
1627 	}
1628 
1629 	c.lpf_inum++;
1630 exit:
1631 	free(raw_node);
1632 	return err;
1633 }
1634 
f2fs_add_default_dentry_root(void)1635 static int f2fs_add_default_dentry_root(void)
1636 {
1637 	struct f2fs_dentry_block *dent_blk = NULL;
1638 	u_int64_t data_blk_offset = 0;
1639 
1640 	dent_blk = calloc(F2FS_BLKSIZE, 1);
1641 	if(dent_blk == NULL) {
1642 		MSG(1, "\tError: Calloc Failed for dent_blk!!!\n");
1643 		return -1;
1644 	}
1645 
1646 	dent_blk->dentry[0].hash_code = 0;
1647 	dent_blk->dentry[0].ino = sb->root_ino;
1648 	dent_blk->dentry[0].name_len = cpu_to_le16(1);
1649 	dent_blk->dentry[0].file_type = F2FS_FT_DIR;
1650 	memcpy(dent_blk->filename[0], ".", 1);
1651 
1652 	dent_blk->dentry[1].hash_code = 0;
1653 	dent_blk->dentry[1].ino = sb->root_ino;
1654 	dent_blk->dentry[1].name_len = cpu_to_le16(2);
1655 	dent_blk->dentry[1].file_type = F2FS_FT_DIR;
1656 	memcpy(dent_blk->filename[1], "..", 2);
1657 
1658 	/* bitmap for . and .. */
1659 	test_and_set_bit_le(0, dent_blk->dentry_bitmap);
1660 	test_and_set_bit_le(1, dent_blk->dentry_bitmap);
1661 
1662 	if (c.lpf_ino) {
1663 		int len = strlen(LPF);
1664 		f2fs_hash_t hash = f2fs_dentry_hash(0, 0, (unsigned char *)LPF, len);
1665 
1666 		dent_blk->dentry[2].hash_code = cpu_to_le32(hash);
1667 		dent_blk->dentry[2].ino = cpu_to_le32(c.lpf_ino);
1668 		dent_blk->dentry[2].name_len = cpu_to_le16(len);
1669 		dent_blk->dentry[2].file_type = F2FS_FT_DIR;
1670 		memcpy(dent_blk->filename[2], LPF, F2FS_SLOT_LEN);
1671 
1672 		memcpy(dent_blk->filename[3], LPF + F2FS_SLOT_LEN,
1673 				len - F2FS_SLOT_LEN);
1674 
1675 		test_and_set_bit_le(2, dent_blk->dentry_bitmap);
1676 		test_and_set_bit_le(3, dent_blk->dentry_bitmap);
1677 	}
1678 
1679 	data_blk_offset = get_sb(main_blkaddr);
1680 	data_blk_offset += c.cur_seg[CURSEG_HOT_DATA] *
1681 				c.blks_per_seg;
1682 
1683 	DBG(1, "\tWriting default dentry root, at offset 0x%08"PRIx64"\n",
1684 				data_blk_offset);
1685 	if (dev_write_block(dent_blk, data_blk_offset)) {
1686 		MSG(1, "\tError: While writing the dentry_blk to disk!!!\n");
1687 		free(dent_blk);
1688 		return -1;
1689 	}
1690 
1691 	free(dent_blk);
1692 	return 0;
1693 }
1694 
f2fs_create_root_dir(void)1695 static int f2fs_create_root_dir(void)
1696 {
1697 	enum quota_type qtype;
1698 	int err = 0;
1699 
1700 	err = f2fs_write_root_inode();
1701 	if (err < 0) {
1702 		MSG(1, "\tError: Failed to write root inode!!!\n");
1703 		goto exit;
1704 	}
1705 
1706 	for (qtype = 0; qtype < F2FS_MAX_QUOTAS; qtype++)  {
1707 		if (sb->qf_ino[qtype] == 0)
1708 			continue;
1709 		err = f2fs_write_qf_inode(qtype);
1710 		if (err < 0) {
1711 			MSG(1, "\tError: Failed to write quota inode!!!\n");
1712 			goto exit;
1713 		}
1714 	}
1715 
1716 	if (c.feature & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
1717 		err = f2fs_write_lpf_inode();
1718 		if (err < 0) {
1719 			MSG(1, "\tError: Failed to write lost+found inode!!!\n");
1720 			goto exit;
1721 		}
1722 	}
1723 
1724 #ifndef WITH_ANDROID
1725 	err = f2fs_discard_obsolete_dnode();
1726 	if (err < 0) {
1727 		MSG(1, "\tError: Failed to discard obsolete dnode!!!\n");
1728 		goto exit;
1729 	}
1730 #endif
1731 
1732 	err = f2fs_update_nat_root();
1733 	if (err < 0) {
1734 		MSG(1, "\tError: Failed to update NAT for root!!!\n");
1735 		goto exit;
1736 	}
1737 
1738 	err = f2fs_add_default_dentry_root();
1739 	if (err < 0) {
1740 		MSG(1, "\tError: Failed to add default dentries for root!!!\n");
1741 		goto exit;
1742 	}
1743 exit:
1744 	if (err)
1745 		MSG(1, "\tError: Could not create the root directory!!!\n");
1746 
1747 	return err;
1748 }
1749 
f2fs_format_device(void)1750 int f2fs_format_device(void)
1751 {
1752 	int err = 0;
1753 
1754 	err= f2fs_prepare_super_block();
1755 	if (err < 0) {
1756 		MSG(0, "\tError: Failed to prepare a super block!!!\n");
1757 		goto exit;
1758 	}
1759 
1760 	if (c.trim) {
1761 		err = f2fs_trim_devices();
1762 		if (err < 0) {
1763 			MSG(0, "\tError: Failed to trim whole device!!!\n");
1764 			goto exit;
1765 		}
1766 	}
1767 
1768 	err = f2fs_init_sit_area();
1769 	if (err < 0) {
1770 		MSG(0, "\tError: Failed to initialise the SIT AREA!!!\n");
1771 		goto exit;
1772 	}
1773 
1774 	err = f2fs_init_nat_area();
1775 	if (err < 0) {
1776 		MSG(0, "\tError: Failed to initialise the NAT AREA!!!\n");
1777 		goto exit;
1778 	}
1779 
1780 	err = f2fs_create_root_dir();
1781 	if (err < 0) {
1782 		MSG(0, "\tError: Failed to create the root directory!!!\n");
1783 		goto exit;
1784 	}
1785 
1786 	err = f2fs_write_check_point_pack();
1787 	if (err < 0) {
1788 		MSG(0, "\tError: Failed to write the check point pack!!!\n");
1789 		goto exit;
1790 	}
1791 
1792 	err = f2fs_write_super_block();
1793 	if (err < 0) {
1794 		MSG(0, "\tError: Failed to write the super block!!!\n");
1795 		goto exit;
1796 	}
1797 exit:
1798 	if (err)
1799 		MSG(0, "\tError: Could not format the device!!!\n");
1800 
1801 	return err;
1802 }
1803