1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 
8 #include <cstdlib>
9 #include <cmath>
10 #include <limits>
11 #include <stdlib.h>
12 
13 #include "unicode/plurrule.h"
14 #include "cmemory.h"
15 #include "number_decnum.h"
16 #include "putilimp.h"
17 #include "number_decimalquantity.h"
18 #include "number_roundingutils.h"
19 #include "double-conversion.h"
20 #include "charstr.h"
21 #include "number_utils.h"
22 #include "uassert.h"
23 #include "util.h"
24 
25 using namespace icu;
26 using namespace icu::number;
27 using namespace icu::number::impl;
28 
29 using icu::double_conversion::DoubleToStringConverter;
30 using icu::double_conversion::StringToDoubleConverter;
31 
32 namespace {
33 
34 int8_t NEGATIVE_FLAG = 1;
35 int8_t INFINITY_FLAG = 2;
36 int8_t NAN_FLAG = 4;
37 
38 /** Helper function for safe subtraction (no overflow). */
safeSubtract(int32_t a,int32_t b)39 inline int32_t safeSubtract(int32_t a, int32_t b) {
40     // Note: In C++, signed integer subtraction is undefined behavior.
41     int32_t diff = static_cast<int32_t>(static_cast<uint32_t>(a) - static_cast<uint32_t>(b));
42     if (b < 0 && diff < a) { return INT32_MAX; }
43     if (b > 0 && diff > a) { return INT32_MIN; }
44     return diff;
45 }
46 
47 static double DOUBLE_MULTIPLIERS[] = {
48         1e0,
49         1e1,
50         1e2,
51         1e3,
52         1e4,
53         1e5,
54         1e6,
55         1e7,
56         1e8,
57         1e9,
58         1e10,
59         1e11,
60         1e12,
61         1e13,
62         1e14,
63         1e15,
64         1e16,
65         1e17,
66         1e18,
67         1e19,
68         1e20,
69         1e21};
70 
71 }  // namespace
72 
73 icu::IFixedDecimal::~IFixedDecimal() = default;
74 
DecimalQuantity()75 DecimalQuantity::DecimalQuantity() {
76     setBcdToZero();
77     flags = 0;
78 }
79 
~DecimalQuantity()80 DecimalQuantity::~DecimalQuantity() {
81     if (usingBytes) {
82         uprv_free(fBCD.bcdBytes.ptr);
83         fBCD.bcdBytes.ptr = nullptr;
84         usingBytes = false;
85     }
86 }
87 
DecimalQuantity(const DecimalQuantity & other)88 DecimalQuantity::DecimalQuantity(const DecimalQuantity &other) {
89     *this = other;
90 }
91 
DecimalQuantity(DecimalQuantity && src)92 DecimalQuantity::DecimalQuantity(DecimalQuantity&& src) U_NOEXCEPT {
93     *this = std::move(src);
94 }
95 
operator =(const DecimalQuantity & other)96 DecimalQuantity &DecimalQuantity::operator=(const DecimalQuantity &other) {
97     if (this == &other) {
98         return *this;
99     }
100     copyBcdFrom(other);
101     copyFieldsFrom(other);
102     return *this;
103 }
104 
operator =(DecimalQuantity && src)105 DecimalQuantity& DecimalQuantity::operator=(DecimalQuantity&& src) U_NOEXCEPT {
106     if (this == &src) {
107         return *this;
108     }
109     moveBcdFrom(src);
110     copyFieldsFrom(src);
111     return *this;
112 }
113 
copyFieldsFrom(const DecimalQuantity & other)114 void DecimalQuantity::copyFieldsFrom(const DecimalQuantity& other) {
115     bogus = other.bogus;
116     lReqPos = other.lReqPos;
117     rReqPos = other.rReqPos;
118     scale = other.scale;
119     precision = other.precision;
120     flags = other.flags;
121     origDouble = other.origDouble;
122     origDelta = other.origDelta;
123     isApproximate = other.isApproximate;
124     exponent = other.exponent;
125 }
126 
clear()127 void DecimalQuantity::clear() {
128     lReqPos = 0;
129     rReqPos = 0;
130     flags = 0;
131     setBcdToZero(); // sets scale, precision, hasDouble, origDouble, origDelta, and BCD data
132 }
133 
setMinInteger(int32_t minInt)134 void DecimalQuantity::setMinInteger(int32_t minInt) {
135     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
136     U_ASSERT(minInt >= 0);
137 
138     // Special behavior: do not set minInt to be less than what is already set.
139     // This is so significant digits rounding can set the integer length.
140     if (minInt < lReqPos) {
141         minInt = lReqPos;
142     }
143 
144     // Save values into internal state
145     lReqPos = minInt;
146 }
147 
setMinFraction(int32_t minFrac)148 void DecimalQuantity::setMinFraction(int32_t minFrac) {
149     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
150     U_ASSERT(minFrac >= 0);
151 
152     // Save values into internal state
153     // Negation is safe for minFrac/maxFrac because -Integer.MAX_VALUE > Integer.MIN_VALUE
154     rReqPos = -minFrac;
155 }
156 
applyMaxInteger(int32_t maxInt)157 void DecimalQuantity::applyMaxInteger(int32_t maxInt) {
158     // Validation should happen outside of DecimalQuantity, e.g., in the Precision class.
159     U_ASSERT(maxInt >= 0);
160 
161     if (precision == 0) {
162         return;
163     }
164 
165     if (maxInt <= scale) {
166         setBcdToZero();
167         return;
168     }
169 
170     int32_t magnitude = getMagnitude();
171     if (maxInt <= magnitude) {
172         popFromLeft(magnitude - maxInt + 1);
173         compact();
174     }
175 }
176 
getPositionFingerprint() const177 uint64_t DecimalQuantity::getPositionFingerprint() const {
178     uint64_t fingerprint = 0;
179     fingerprint ^= (lReqPos << 16);
180     fingerprint ^= (static_cast<uint64_t>(rReqPos) << 32);
181     return fingerprint;
182 }
183 
roundToIncrement(double roundingIncrement,RoundingMode roundingMode,UErrorCode & status)184 void DecimalQuantity::roundToIncrement(double roundingIncrement, RoundingMode roundingMode,
185                                        UErrorCode& status) {
186     // Do not call this method with an increment having only a 1 or a 5 digit!
187     // Use a more efficient call to either roundToMagnitude() or roundToNickel().
188     // Check a few popular rounding increments; a more thorough check is in Java.
189     U_ASSERT(roundingIncrement != 0.01);
190     U_ASSERT(roundingIncrement != 0.05);
191     U_ASSERT(roundingIncrement != 0.1);
192     U_ASSERT(roundingIncrement != 0.5);
193     U_ASSERT(roundingIncrement != 1);
194     U_ASSERT(roundingIncrement != 5);
195 
196     DecNum incrementDN;
197     incrementDN.setTo(roundingIncrement, status);
198     if (U_FAILURE(status)) { return; }
199 
200     // Divide this DecimalQuantity by the increment, round, then multiply back.
201     divideBy(incrementDN, status);
202     if (U_FAILURE(status)) { return; }
203     roundToMagnitude(0, roundingMode, status);
204     if (U_FAILURE(status)) { return; }
205     multiplyBy(incrementDN, status);
206     if (U_FAILURE(status)) { return; }
207 }
208 
multiplyBy(const DecNum & multiplicand,UErrorCode & status)209 void DecimalQuantity::multiplyBy(const DecNum& multiplicand, UErrorCode& status) {
210     if (isZeroish()) {
211         return;
212     }
213     // Convert to DecNum, multiply, and convert back.
214     DecNum decnum;
215     toDecNum(decnum, status);
216     if (U_FAILURE(status)) { return; }
217     decnum.multiplyBy(multiplicand, status);
218     if (U_FAILURE(status)) { return; }
219     setToDecNum(decnum, status);
220 }
221 
divideBy(const DecNum & divisor,UErrorCode & status)222 void DecimalQuantity::divideBy(const DecNum& divisor, UErrorCode& status) {
223     if (isZeroish()) {
224         return;
225     }
226     // Convert to DecNum, multiply, and convert back.
227     DecNum decnum;
228     toDecNum(decnum, status);
229     if (U_FAILURE(status)) { return; }
230     decnum.divideBy(divisor, status);
231     if (U_FAILURE(status)) { return; }
232     setToDecNum(decnum, status);
233 }
234 
negate()235 void DecimalQuantity::negate() {
236     flags ^= NEGATIVE_FLAG;
237 }
238 
getMagnitude() const239 int32_t DecimalQuantity::getMagnitude() const {
240     U_ASSERT(precision != 0);
241     return scale + precision - 1;
242 }
243 
adjustMagnitude(int32_t delta)244 bool DecimalQuantity::adjustMagnitude(int32_t delta) {
245     if (precision != 0) {
246         // i.e., scale += delta; origDelta += delta
247         bool overflow = uprv_add32_overflow(scale, delta, &scale);
248         overflow = uprv_add32_overflow(origDelta, delta, &origDelta) || overflow;
249         // Make sure that precision + scale won't overflow, either
250         int32_t dummy;
251         overflow = overflow || uprv_add32_overflow(scale, precision, &dummy);
252         return overflow;
253     }
254     return false;
255 }
256 
getPluralOperand(PluralOperand operand) const257 double DecimalQuantity::getPluralOperand(PluralOperand operand) const {
258     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
259     // See the comment at the top of this file explaining the "isApproximate" field.
260     U_ASSERT(!isApproximate);
261 
262     switch (operand) {
263         case PLURAL_OPERAND_I:
264             // Invert the negative sign if necessary
265             return static_cast<double>(isNegative() ? -toLong(true) : toLong(true));
266         case PLURAL_OPERAND_F:
267             return static_cast<double>(toFractionLong(true));
268         case PLURAL_OPERAND_T:
269             return static_cast<double>(toFractionLong(false));
270         case PLURAL_OPERAND_V:
271             return fractionCount();
272         case PLURAL_OPERAND_W:
273             return fractionCountWithoutTrailingZeros();
274         case PLURAL_OPERAND_E:
275             return static_cast<double>(getExponent());
276         default:
277             return std::abs(toDouble());
278     }
279 }
280 
getExponent() const281 int32_t DecimalQuantity::getExponent() const {
282     return exponent;
283 }
284 
adjustExponent(int delta)285 void DecimalQuantity::adjustExponent(int delta) {
286     exponent = exponent + delta;
287 }
288 
hasIntegerValue() const289 bool DecimalQuantity::hasIntegerValue() const {
290     return scale >= 0;
291 }
292 
getUpperDisplayMagnitude() const293 int32_t DecimalQuantity::getUpperDisplayMagnitude() const {
294     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
295     // See the comment in the header file explaining the "isApproximate" field.
296     U_ASSERT(!isApproximate);
297 
298     int32_t magnitude = scale + precision;
299     int32_t result = (lReqPos > magnitude) ? lReqPos : magnitude;
300     return result - 1;
301 }
302 
getLowerDisplayMagnitude() const303 int32_t DecimalQuantity::getLowerDisplayMagnitude() const {
304     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
305     // See the comment in the header file explaining the "isApproximate" field.
306     U_ASSERT(!isApproximate);
307 
308     int32_t magnitude = scale;
309     int32_t result = (rReqPos < magnitude) ? rReqPos : magnitude;
310     return result;
311 }
312 
getDigit(int32_t magnitude) const313 int8_t DecimalQuantity::getDigit(int32_t magnitude) const {
314     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
315     // See the comment at the top of this file explaining the "isApproximate" field.
316     U_ASSERT(!isApproximate);
317 
318     return getDigitPos(magnitude - scale);
319 }
320 
fractionCount() const321 int32_t DecimalQuantity::fractionCount() const {
322     int32_t fractionCountWithExponent = -getLowerDisplayMagnitude() - exponent;
323     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;
324 }
325 
fractionCountWithoutTrailingZeros() const326 int32_t DecimalQuantity::fractionCountWithoutTrailingZeros() const {
327     int32_t fractionCountWithExponent = -scale - exponent;
328     return fractionCountWithExponent > 0 ? fractionCountWithExponent : 0;  // max(-fractionCountWithExponent, 0)
329 }
330 
isNegative() const331 bool DecimalQuantity::isNegative() const {
332     return (flags & NEGATIVE_FLAG) != 0;
333 }
334 
signum() const335 Signum DecimalQuantity::signum() const {
336     bool isZero = (isZeroish() && !isInfinite());
337     bool isNeg = isNegative();
338     if (isZero && isNeg) {
339         return SIGNUM_NEG_ZERO;
340     } else if (isZero) {
341         return SIGNUM_POS_ZERO;
342     } else if (isNeg) {
343         return SIGNUM_NEG;
344     } else {
345         return SIGNUM_POS;
346     }
347 }
348 
isInfinite() const349 bool DecimalQuantity::isInfinite() const {
350     return (flags & INFINITY_FLAG) != 0;
351 }
352 
isNaN() const353 bool DecimalQuantity::isNaN() const {
354     return (flags & NAN_FLAG) != 0;
355 }
356 
isZeroish() const357 bool DecimalQuantity::isZeroish() const {
358     return precision == 0;
359 }
360 
setToInt(int32_t n)361 DecimalQuantity &DecimalQuantity::setToInt(int32_t n) {
362     setBcdToZero();
363     flags = 0;
364     if (n == INT32_MIN) {
365         flags |= NEGATIVE_FLAG;
366         // leave as INT32_MIN; handled below in _setToInt()
367     } else if (n < 0) {
368         flags |= NEGATIVE_FLAG;
369         n = -n;
370     }
371     if (n != 0) {
372         _setToInt(n);
373         compact();
374     }
375     return *this;
376 }
377 
_setToInt(int32_t n)378 void DecimalQuantity::_setToInt(int32_t n) {
379     if (n == INT32_MIN) {
380         readLongToBcd(-static_cast<int64_t>(n));
381     } else {
382         readIntToBcd(n);
383     }
384 }
385 
setToLong(int64_t n)386 DecimalQuantity &DecimalQuantity::setToLong(int64_t n) {
387     setBcdToZero();
388     flags = 0;
389     if (n < 0 && n > INT64_MIN) {
390         flags |= NEGATIVE_FLAG;
391         n = -n;
392     }
393     if (n != 0) {
394         _setToLong(n);
395         compact();
396     }
397     return *this;
398 }
399 
_setToLong(int64_t n)400 void DecimalQuantity::_setToLong(int64_t n) {
401     if (n == INT64_MIN) {
402         DecNum decnum;
403         UErrorCode localStatus = U_ZERO_ERROR;
404         decnum.setTo("9.223372036854775808E+18", localStatus);
405         if (U_FAILURE(localStatus)) { return; } // unexpected
406         flags |= NEGATIVE_FLAG;
407         readDecNumberToBcd(decnum);
408     } else if (n <= INT32_MAX) {
409         readIntToBcd(static_cast<int32_t>(n));
410     } else {
411         readLongToBcd(n);
412     }
413 }
414 
setToDouble(double n)415 DecimalQuantity &DecimalQuantity::setToDouble(double n) {
416     setBcdToZero();
417     flags = 0;
418     // signbit() from <math.h> handles +0.0 vs -0.0
419     if (std::signbit(n)) {
420         flags |= NEGATIVE_FLAG;
421         n = -n;
422     }
423     if (std::isnan(n) != 0) {
424         flags |= NAN_FLAG;
425     } else if (std::isfinite(n) == 0) {
426         flags |= INFINITY_FLAG;
427     } else if (n != 0) {
428         _setToDoubleFast(n);
429         compact();
430     }
431     return *this;
432 }
433 
_setToDoubleFast(double n)434 void DecimalQuantity::_setToDoubleFast(double n) {
435     isApproximate = true;
436     origDouble = n;
437     origDelta = 0;
438 
439     // Make sure the double is an IEEE 754 double.  If not, fall back to the slow path right now.
440     // TODO: Make a fast path for other types of doubles.
441     if (!std::numeric_limits<double>::is_iec559) {
442         convertToAccurateDouble();
443         return;
444     }
445 
446     // To get the bits from the double, use memcpy, which takes care of endianness.
447     uint64_t ieeeBits;
448     uprv_memcpy(&ieeeBits, &n, sizeof(n));
449     int32_t exponent = static_cast<int32_t>((ieeeBits & 0x7ff0000000000000L) >> 52) - 0x3ff;
450 
451     // Not all integers can be represented exactly for exponent > 52
452     if (exponent <= 52 && static_cast<int64_t>(n) == n) {
453         _setToLong(static_cast<int64_t>(n));
454         return;
455     }
456 
457     if (exponent == -1023 || exponent == 1024) {
458         // The extreme values of exponent are special; use slow path.
459         convertToAccurateDouble();
460         return;
461     }
462 
463     // 3.3219... is log2(10)
464     auto fracLength = static_cast<int32_t> ((52 - exponent) / 3.32192809488736234787031942948939017586);
465     if (fracLength >= 0) {
466         int32_t i = fracLength;
467         // 1e22 is the largest exact double.
468         for (; i >= 22; i -= 22) n *= 1e22;
469         n *= DOUBLE_MULTIPLIERS[i];
470     } else {
471         int32_t i = fracLength;
472         // 1e22 is the largest exact double.
473         for (; i <= -22; i += 22) n /= 1e22;
474         n /= DOUBLE_MULTIPLIERS[-i];
475     }
476     auto result = static_cast<int64_t>(uprv_round(n));
477     if (result != 0) {
478         _setToLong(result);
479         scale -= fracLength;
480     }
481 }
482 
convertToAccurateDouble()483 void DecimalQuantity::convertToAccurateDouble() {
484     U_ASSERT(origDouble != 0);
485     int32_t delta = origDelta;
486 
487     // Call the slow oracle function (Double.toString in Java, DoubleToAscii in C++).
488     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
489     bool sign; // unused; always positive
490     int32_t length;
491     int32_t point;
492     DoubleToStringConverter::DoubleToAscii(
493         origDouble,
494         DoubleToStringConverter::DtoaMode::SHORTEST,
495         0,
496         buffer,
497         sizeof(buffer),
498         &sign,
499         &length,
500         &point
501     );
502 
503     setBcdToZero();
504     readDoubleConversionToBcd(buffer, length, point);
505     scale += delta;
506     explicitExactDouble = true;
507 }
508 
setToDecNumber(StringPiece n,UErrorCode & status)509 DecimalQuantity &DecimalQuantity::setToDecNumber(StringPiece n, UErrorCode& status) {
510     setBcdToZero();
511     flags = 0;
512 
513     // Compute the decNumber representation
514     DecNum decnum;
515     decnum.setTo(n, status);
516 
517     _setToDecNum(decnum, status);
518     return *this;
519 }
520 
setToDecNum(const DecNum & decnum,UErrorCode & status)521 DecimalQuantity& DecimalQuantity::setToDecNum(const DecNum& decnum, UErrorCode& status) {
522     setBcdToZero();
523     flags = 0;
524 
525     _setToDecNum(decnum, status);
526     return *this;
527 }
528 
_setToDecNum(const DecNum & decnum,UErrorCode & status)529 void DecimalQuantity::_setToDecNum(const DecNum& decnum, UErrorCode& status) {
530     if (U_FAILURE(status)) { return; }
531     if (decnum.isNegative()) {
532         flags |= NEGATIVE_FLAG;
533     }
534     if (!decnum.isZero()) {
535         readDecNumberToBcd(decnum);
536         compact();
537     }
538 }
539 
toLong(bool truncateIfOverflow) const540 int64_t DecimalQuantity::toLong(bool truncateIfOverflow) const {
541     // NOTE: Call sites should be guarded by fitsInLong(), like this:
542     // if (dq.fitsInLong()) { /* use dq.toLong() */ } else { /* use some fallback */ }
543     // Fallback behavior upon truncateIfOverflow is to truncate at 17 digits.
544     uint64_t result = 0L;
545     int32_t upperMagnitude = exponent + scale + precision - 1;
546     if (truncateIfOverflow) {
547         upperMagnitude = std::min(upperMagnitude, 17);
548     }
549     for (int32_t magnitude = upperMagnitude; magnitude >= 0; magnitude--) {
550         result = result * 10 + getDigitPos(magnitude - scale - exponent);
551     }
552     if (isNegative()) {
553         return static_cast<int64_t>(0LL - result); // i.e., -result
554     }
555     return static_cast<int64_t>(result);
556 }
557 
toFractionLong(bool includeTrailingZeros) const558 uint64_t DecimalQuantity::toFractionLong(bool includeTrailingZeros) const {
559     uint64_t result = 0L;
560     int32_t magnitude = -1 - exponent;
561     int32_t lowerMagnitude = scale;
562     if (includeTrailingZeros) {
563         lowerMagnitude = std::min(lowerMagnitude, rReqPos);
564     }
565     for (; magnitude >= lowerMagnitude && result <= 1e18L; magnitude--) {
566         result = result * 10 + getDigitPos(magnitude - scale);
567     }
568     // Remove trailing zeros; this can happen during integer overflow cases.
569     if (!includeTrailingZeros) {
570         while (result > 0 && (result % 10) == 0) {
571             result /= 10;
572         }
573     }
574     return result;
575 }
576 
fitsInLong(bool ignoreFraction) const577 bool DecimalQuantity::fitsInLong(bool ignoreFraction) const {
578     if (isInfinite() || isNaN()) {
579         return false;
580     }
581     if (isZeroish()) {
582         return true;
583     }
584     if (exponent + scale < 0 && !ignoreFraction) {
585         return false;
586     }
587     int magnitude = getMagnitude();
588     if (magnitude < 18) {
589         return true;
590     }
591     if (magnitude > 18) {
592         return false;
593     }
594     // Hard case: the magnitude is 10^18.
595     // The largest int64 is: 9,223,372,036,854,775,807
596     for (int p = 0; p < precision; p++) {
597         int8_t digit = getDigit(18 - p);
598         static int8_t INT64_BCD[] = { 9, 2, 2, 3, 3, 7, 2, 0, 3, 6, 8, 5, 4, 7, 7, 5, 8, 0, 8 };
599         if (digit < INT64_BCD[p]) {
600             return true;
601         } else if (digit > INT64_BCD[p]) {
602             return false;
603         }
604     }
605     // Exactly equal to max long plus one.
606     return isNegative();
607 }
608 
toDouble() const609 double DecimalQuantity::toDouble() const {
610     // If this assertion fails, you need to call roundToInfinity() or some other rounding method.
611     // See the comment in the header file explaining the "isApproximate" field.
612     U_ASSERT(!isApproximate);
613 
614     if (isNaN()) {
615         return NAN;
616     } else if (isInfinite()) {
617         return isNegative() ? -INFINITY : INFINITY;
618     }
619 
620     // We are processing well-formed input, so we don't need any special options to StringToDoubleConverter.
621     StringToDoubleConverter converter(0, 0, 0, "", "");
622     UnicodeString numberString = this->toScientificString();
623     int32_t count;
624     return converter.StringToDouble(
625             reinterpret_cast<const uint16_t*>(numberString.getBuffer()),
626             numberString.length(),
627             &count);
628 }
629 
toDecNum(DecNum & output,UErrorCode & status) const630 DecNum& DecimalQuantity::toDecNum(DecNum& output, UErrorCode& status) const {
631     // Special handling for zero
632     if (precision == 0) {
633         output.setTo("0", status);
634     }
635 
636     // Use the BCD constructor. We need to do a little bit of work to convert, though.
637     // The decNumber constructor expects most-significant first, but we store least-significant first.
638     MaybeStackArray<uint8_t, 20> ubcd(precision, status);
639     if (U_FAILURE(status)) {
640         return output;
641     }
642     for (int32_t m = 0; m < precision; m++) {
643         ubcd[precision - m - 1] = static_cast<uint8_t>(getDigitPos(m));
644     }
645     output.setTo(ubcd.getAlias(), precision, scale, isNegative(), status);
646     return output;
647 }
648 
truncate()649 void DecimalQuantity::truncate() {
650     if (scale < 0) {
651         shiftRight(-scale);
652         scale = 0;
653         compact();
654     }
655 }
656 
roundToNickel(int32_t magnitude,RoundingMode roundingMode,UErrorCode & status)657 void DecimalQuantity::roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
658     roundToMagnitude(magnitude, roundingMode, true, status);
659 }
660 
roundToMagnitude(int32_t magnitude,RoundingMode roundingMode,UErrorCode & status)661 void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status) {
662     roundToMagnitude(magnitude, roundingMode, false, status);
663 }
664 
roundToMagnitude(int32_t magnitude,RoundingMode roundingMode,bool nickel,UErrorCode & status)665 void DecimalQuantity::roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status) {
666     // The position in the BCD at which rounding will be performed; digits to the right of position
667     // will be rounded away.
668     int position = safeSubtract(magnitude, scale);
669 
670     // "trailing" = least significant digit to the left of rounding
671     int8_t trailingDigit = getDigitPos(position);
672 
673     if (position <= 0 && !isApproximate && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
674         // All digits are to the left of the rounding magnitude.
675     } else if (precision == 0) {
676         // No rounding for zero.
677     } else {
678         // Perform rounding logic.
679         // "leading" = most significant digit to the right of rounding
680         int8_t leadingDigit = getDigitPos(safeSubtract(position, 1));
681 
682         // Compute which section of the number we are in.
683         // EDGE means we are at the bottom or top edge, like 1.000 or 1.999 (used by doubles)
684         // LOWER means we are between the bottom edge and the midpoint, like 1.391
685         // MIDPOINT means we are exactly in the middle, like 1.500
686         // UPPER means we are between the midpoint and the top edge, like 1.916
687         roundingutils::Section section;
688         if (!isApproximate) {
689             if (nickel && trailingDigit != 2 && trailingDigit != 7) {
690                 // Nickel rounding, and not at .02x or .07x
691                 if (trailingDigit < 2) {
692                     // .00, .01 => down to .00
693                     section = roundingutils::SECTION_LOWER;
694                 } else if (trailingDigit < 5) {
695                     // .03, .04 => up to .05
696                     section = roundingutils::SECTION_UPPER;
697                 } else if (trailingDigit < 7) {
698                     // .05, .06 => down to .05
699                     section = roundingutils::SECTION_LOWER;
700                 } else {
701                     // .08, .09 => up to .10
702                     section = roundingutils::SECTION_UPPER;
703                 }
704             } else if (leadingDigit < 5) {
705                 // Includes nickel rounding .020-.024 and .070-.074
706                 section = roundingutils::SECTION_LOWER;
707             } else if (leadingDigit > 5) {
708                 // Includes nickel rounding .026-.029 and .076-.079
709                 section = roundingutils::SECTION_UPPER;
710             } else {
711                 // Includes nickel rounding .025 and .075
712                 section = roundingutils::SECTION_MIDPOINT;
713                 for (int p = safeSubtract(position, 2); p >= 0; p--) {
714                     if (getDigitPos(p) != 0) {
715                         section = roundingutils::SECTION_UPPER;
716                         break;
717                     }
718                 }
719             }
720         } else {
721             int32_t p = safeSubtract(position, 2);
722             int32_t minP = uprv_max(0, precision - 14);
723             if (leadingDigit == 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
724                 section = roundingutils::SECTION_LOWER_EDGE;
725                 for (; p >= minP; p--) {
726                     if (getDigitPos(p) != 0) {
727                         section = roundingutils::SECTION_LOWER;
728                         break;
729                     }
730                 }
731             } else if (leadingDigit == 4 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
732                 section = roundingutils::SECTION_MIDPOINT;
733                 for (; p >= minP; p--) {
734                     if (getDigitPos(p) != 9) {
735                         section = roundingutils::SECTION_LOWER;
736                         break;
737                     }
738                 }
739             } else if (leadingDigit == 5 && (!nickel || trailingDigit == 2 || trailingDigit == 7)) {
740                 section = roundingutils::SECTION_MIDPOINT;
741                 for (; p >= minP; p--) {
742                     if (getDigitPos(p) != 0) {
743                         section = roundingutils::SECTION_UPPER;
744                         break;
745                     }
746                 }
747             } else if (leadingDigit == 9 && (!nickel || trailingDigit == 4 || trailingDigit == 9)) {
748                 section = roundingutils::SECTION_UPPER_EDGE;
749                 for (; p >= minP; p--) {
750                     if (getDigitPos(p) != 9) {
751                         section = roundingutils::SECTION_UPPER;
752                         break;
753                     }
754                 }
755             } else if (nickel && trailingDigit != 2 && trailingDigit != 7) {
756                 // Nickel rounding, and not at .02x or .07x
757                 if (trailingDigit < 2) {
758                     // .00, .01 => down to .00
759                     section = roundingutils::SECTION_LOWER;
760                 } else if (trailingDigit < 5) {
761                     // .03, .04 => up to .05
762                     section = roundingutils::SECTION_UPPER;
763                 } else if (trailingDigit < 7) {
764                     // .05, .06 => down to .05
765                     section = roundingutils::SECTION_LOWER;
766                 } else {
767                     // .08, .09 => up to .10
768                     section = roundingutils::SECTION_UPPER;
769                 }
770             } else if (leadingDigit < 5) {
771                 // Includes nickel rounding .020-.024 and .070-.074
772                 section = roundingutils::SECTION_LOWER;
773             } else {
774                 // Includes nickel rounding .026-.029 and .076-.079
775                 section = roundingutils::SECTION_UPPER;
776             }
777 
778             bool roundsAtMidpoint = roundingutils::roundsAtMidpoint(roundingMode);
779             if (safeSubtract(position, 1) < precision - 14 ||
780                 (roundsAtMidpoint && section == roundingutils::SECTION_MIDPOINT) ||
781                 (!roundsAtMidpoint && section < 0 /* i.e. at upper or lower edge */)) {
782                 // Oops! This means that we have to get the exact representation of the double,
783                 // because the zone of uncertainty is along the rounding boundary.
784                 convertToAccurateDouble();
785                 roundToMagnitude(magnitude, roundingMode, nickel, status); // start over
786                 return;
787             }
788 
789             // Turn off the approximate double flag, since the value is now confirmed to be exact.
790             isApproximate = false;
791             origDouble = 0.0;
792             origDelta = 0;
793 
794             if (position <= 0 && (!nickel || trailingDigit == 0 || trailingDigit == 5)) {
795                 // All digits are to the left of the rounding magnitude.
796                 return;
797             }
798 
799             // Good to continue rounding.
800             if (section == -1) { section = roundingutils::SECTION_LOWER; }
801             if (section == -2) { section = roundingutils::SECTION_UPPER; }
802         }
803 
804         // Nickel rounding "half even" goes to the nearest whole (away from the 5).
805         bool isEven = nickel
806                 ? (trailingDigit < 2 || trailingDigit > 7
807                         || (trailingDigit == 2 && section != roundingutils::SECTION_UPPER)
808                         || (trailingDigit == 7 && section == roundingutils::SECTION_UPPER))
809                 : (trailingDigit % 2) == 0;
810 
811         bool roundDown = roundingutils::getRoundingDirection(isEven,
812                 isNegative(),
813                 section,
814                 roundingMode,
815                 status);
816         if (U_FAILURE(status)) {
817             return;
818         }
819 
820         // Perform truncation
821         if (position >= precision) {
822             setBcdToZero();
823             scale = magnitude;
824         } else {
825             shiftRight(position);
826         }
827 
828         if (nickel) {
829             if (trailingDigit < 5 && roundDown) {
830                 setDigitPos(0, 0);
831                 compact();
832                 return;
833             } else if (trailingDigit >= 5 && !roundDown) {
834                 setDigitPos(0, 9);
835                 trailingDigit = 9;
836                 // do not return: use the bubbling logic below
837             } else {
838                 setDigitPos(0, 5);
839                 // compact not necessary: digit at position 0 is nonzero
840                 return;
841             }
842         }
843 
844         // Bubble the result to the higher digits
845         if (!roundDown) {
846             if (trailingDigit == 9) {
847                 int bubblePos = 0;
848                 // Note: in the long implementation, the most digits BCD can have at this point is
849                 // 15, so bubblePos <= 15 and getDigitPos(bubblePos) is safe.
850                 for (; getDigitPos(bubblePos) == 9; bubblePos++) {}
851                 shiftRight(bubblePos); // shift off the trailing 9s
852             }
853             int8_t digit0 = getDigitPos(0);
854             U_ASSERT(digit0 != 9);
855             setDigitPos(0, static_cast<int8_t>(digit0 + 1));
856             precision += 1; // in case an extra digit got added
857         }
858 
859         compact();
860     }
861 }
862 
roundToInfinity()863 void DecimalQuantity::roundToInfinity() {
864     if (isApproximate) {
865         convertToAccurateDouble();
866     }
867 }
868 
appendDigit(int8_t value,int32_t leadingZeros,bool appendAsInteger)869 void DecimalQuantity::appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger) {
870     U_ASSERT(leadingZeros >= 0);
871 
872     // Zero requires special handling to maintain the invariant that the least-significant digit
873     // in the BCD is nonzero.
874     if (value == 0) {
875         if (appendAsInteger && precision != 0) {
876             scale += leadingZeros + 1;
877         }
878         return;
879     }
880 
881     // Deal with trailing zeros
882     if (scale > 0) {
883         leadingZeros += scale;
884         if (appendAsInteger) {
885             scale = 0;
886         }
887     }
888 
889     // Append digit
890     shiftLeft(leadingZeros + 1);
891     setDigitPos(0, value);
892 
893     // Fix scale if in integer mode
894     if (appendAsInteger) {
895         scale += leadingZeros + 1;
896     }
897 }
898 
toPlainString() const899 UnicodeString DecimalQuantity::toPlainString() const {
900     U_ASSERT(!isApproximate);
901     UnicodeString sb;
902     if (isNegative()) {
903         sb.append(u'-');
904     }
905     if (precision == 0) {
906         sb.append(u'0');
907         return sb;
908     }
909     int32_t upper = scale + precision + exponent - 1;
910     int32_t lower = scale + exponent;
911     if (upper < lReqPos - 1) {
912         upper = lReqPos - 1;
913     }
914     if (lower > rReqPos) {
915         lower = rReqPos;
916     }
917     int32_t p = upper;
918     if (p < 0) {
919         sb.append(u'0');
920     }
921     for (; p >= 0; p--) {
922         sb.append(u'0' + getDigitPos(p - scale - exponent));
923     }
924     if (lower < 0) {
925         sb.append(u'.');
926     }
927     for(; p >= lower; p--) {
928         sb.append(u'0' + getDigitPos(p - scale - exponent));
929     }
930     return sb;
931 }
932 
toScientificString() const933 UnicodeString DecimalQuantity::toScientificString() const {
934     U_ASSERT(!isApproximate);
935     UnicodeString result;
936     if (isNegative()) {
937         result.append(u'-');
938     }
939     if (precision == 0) {
940         result.append(u"0E+0", -1);
941         return result;
942     }
943     int32_t upperPos = precision - 1;
944     int32_t lowerPos = 0;
945     int32_t p = upperPos;
946     result.append(u'0' + getDigitPos(p));
947     if ((--p) >= lowerPos) {
948         result.append(u'.');
949         for (; p >= lowerPos; p--) {
950             result.append(u'0' + getDigitPos(p));
951         }
952     }
953     result.append(u'E');
954     int32_t _scale = upperPos + scale + exponent;
955     if (_scale == INT32_MIN) {
956         result.append({u"-2147483648", -1});
957         return result;
958     } else if (_scale < 0) {
959         _scale *= -1;
960         result.append(u'-');
961     } else {
962         result.append(u'+');
963     }
964     if (_scale == 0) {
965         result.append(u'0');
966     }
967     int32_t insertIndex = result.length();
968     while (_scale > 0) {
969         std::div_t res = std::div(_scale, 10);
970         result.insert(insertIndex, u'0' + res.rem);
971         _scale = res.quot;
972     }
973     return result;
974 }
975 
976 ////////////////////////////////////////////////////
977 /// End of DecimalQuantity_AbstractBCD.java      ///
978 /// Start of DecimalQuantity_DualStorageBCD.java ///
979 ////////////////////////////////////////////////////
980 
getDigitPos(int32_t position) const981 int8_t DecimalQuantity::getDigitPos(int32_t position) const {
982     if (usingBytes) {
983         if (position < 0 || position >= precision) { return 0; }
984         return fBCD.bcdBytes.ptr[position];
985     } else {
986         if (position < 0 || position >= 16) { return 0; }
987         return (int8_t) ((fBCD.bcdLong >> (position * 4)) & 0xf);
988     }
989 }
990 
setDigitPos(int32_t position,int8_t value)991 void DecimalQuantity::setDigitPos(int32_t position, int8_t value) {
992     U_ASSERT(position >= 0);
993     if (usingBytes) {
994         ensureCapacity(position + 1);
995         fBCD.bcdBytes.ptr[position] = value;
996     } else if (position >= 16) {
997         switchStorage();
998         ensureCapacity(position + 1);
999         fBCD.bcdBytes.ptr[position] = value;
1000     } else {
1001         int shift = position * 4;
1002         fBCD.bcdLong = (fBCD.bcdLong & ~(0xfL << shift)) | ((long) value << shift);
1003     }
1004 }
1005 
shiftLeft(int32_t numDigits)1006 void DecimalQuantity::shiftLeft(int32_t numDigits) {
1007     if (!usingBytes && precision + numDigits > 16) {
1008         switchStorage();
1009     }
1010     if (usingBytes) {
1011         ensureCapacity(precision + numDigits);
1012         uprv_memmove(fBCD.bcdBytes.ptr + numDigits, fBCD.bcdBytes.ptr, precision);
1013         uprv_memset(fBCD.bcdBytes.ptr, 0, numDigits);
1014     } else {
1015         fBCD.bcdLong <<= (numDigits * 4);
1016     }
1017     scale -= numDigits;
1018     precision += numDigits;
1019 }
1020 
shiftRight(int32_t numDigits)1021 void DecimalQuantity::shiftRight(int32_t numDigits) {
1022     if (usingBytes) {
1023         int i = 0;
1024         for (; i < precision - numDigits; i++) {
1025             fBCD.bcdBytes.ptr[i] = fBCD.bcdBytes.ptr[i + numDigits];
1026         }
1027         for (; i < precision; i++) {
1028             fBCD.bcdBytes.ptr[i] = 0;
1029         }
1030     } else {
1031         fBCD.bcdLong >>= (numDigits * 4);
1032     }
1033     scale += numDigits;
1034     precision -= numDigits;
1035 }
1036 
popFromLeft(int32_t numDigits)1037 void DecimalQuantity::popFromLeft(int32_t numDigits) {
1038     U_ASSERT(numDigits <= precision);
1039     if (usingBytes) {
1040         int i = precision - 1;
1041         for (; i >= precision - numDigits; i--) {
1042             fBCD.bcdBytes.ptr[i] = 0;
1043         }
1044     } else {
1045         fBCD.bcdLong &= (static_cast<uint64_t>(1) << ((precision - numDigits) * 4)) - 1;
1046     }
1047     precision -= numDigits;
1048 }
1049 
setBcdToZero()1050 void DecimalQuantity::setBcdToZero() {
1051     if (usingBytes) {
1052         uprv_free(fBCD.bcdBytes.ptr);
1053         fBCD.bcdBytes.ptr = nullptr;
1054         usingBytes = false;
1055     }
1056     fBCD.bcdLong = 0L;
1057     scale = 0;
1058     precision = 0;
1059     isApproximate = false;
1060     origDouble = 0;
1061     origDelta = 0;
1062     exponent = 0;
1063 }
1064 
readIntToBcd(int32_t n)1065 void DecimalQuantity::readIntToBcd(int32_t n) {
1066     U_ASSERT(n != 0);
1067     // ints always fit inside the long implementation.
1068     uint64_t result = 0L;
1069     int i = 16;
1070     for (; n != 0; n /= 10, i--) {
1071         result = (result >> 4) + ((static_cast<uint64_t>(n) % 10) << 60);
1072     }
1073     U_ASSERT(!usingBytes);
1074     fBCD.bcdLong = result >> (i * 4);
1075     scale = 0;
1076     precision = 16 - i;
1077 }
1078 
readLongToBcd(int64_t n)1079 void DecimalQuantity::readLongToBcd(int64_t n) {
1080     U_ASSERT(n != 0);
1081     if (n >= 10000000000000000L) {
1082         ensureCapacity();
1083         int i = 0;
1084         for (; n != 0L; n /= 10L, i++) {
1085             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(n % 10);
1086         }
1087         U_ASSERT(usingBytes);
1088         scale = 0;
1089         precision = i;
1090     } else {
1091         uint64_t result = 0L;
1092         int i = 16;
1093         for (; n != 0L; n /= 10L, i--) {
1094             result = (result >> 4) + ((n % 10) << 60);
1095         }
1096         U_ASSERT(i >= 0);
1097         U_ASSERT(!usingBytes);
1098         fBCD.bcdLong = result >> (i * 4);
1099         scale = 0;
1100         precision = 16 - i;
1101     }
1102 }
1103 
readDecNumberToBcd(const DecNum & decnum)1104 void DecimalQuantity::readDecNumberToBcd(const DecNum& decnum) {
1105     const decNumber* dn = decnum.getRawDecNumber();
1106     if (dn->digits > 16) {
1107         ensureCapacity(dn->digits);
1108         for (int32_t i = 0; i < dn->digits; i++) {
1109             fBCD.bcdBytes.ptr[i] = dn->lsu[i];
1110         }
1111     } else {
1112         uint64_t result = 0L;
1113         for (int32_t i = 0; i < dn->digits; i++) {
1114             result |= static_cast<uint64_t>(dn->lsu[i]) << (4 * i);
1115         }
1116         fBCD.bcdLong = result;
1117     }
1118     scale = dn->exponent;
1119     precision = dn->digits;
1120 }
1121 
readDoubleConversionToBcd(const char * buffer,int32_t length,int32_t point)1122 void DecimalQuantity::readDoubleConversionToBcd(
1123         const char* buffer, int32_t length, int32_t point) {
1124     // NOTE: Despite the fact that double-conversion's API is called
1125     // "DoubleToAscii", they actually use '0' (as opposed to u8'0').
1126     if (length > 16) {
1127         ensureCapacity(length);
1128         for (int32_t i = 0; i < length; i++) {
1129             fBCD.bcdBytes.ptr[i] = buffer[length-i-1] - '0';
1130         }
1131     } else {
1132         uint64_t result = 0L;
1133         for (int32_t i = 0; i < length; i++) {
1134             result |= static_cast<uint64_t>(buffer[length-i-1] - '0') << (4 * i);
1135         }
1136         fBCD.bcdLong = result;
1137     }
1138     scale = point - length;
1139     precision = length;
1140 }
1141 
compact()1142 void DecimalQuantity::compact() {
1143     if (usingBytes) {
1144         int32_t delta = 0;
1145         for (; delta < precision && fBCD.bcdBytes.ptr[delta] == 0; delta++);
1146         if (delta == precision) {
1147             // Number is zero
1148             setBcdToZero();
1149             return;
1150         } else {
1151             // Remove trailing zeros
1152             shiftRight(delta);
1153         }
1154 
1155         // Compute precision
1156         int32_t leading = precision - 1;
1157         for (; leading >= 0 && fBCD.bcdBytes.ptr[leading] == 0; leading--);
1158         precision = leading + 1;
1159 
1160         // Switch storage mechanism if possible
1161         if (precision <= 16) {
1162             switchStorage();
1163         }
1164 
1165     } else {
1166         if (fBCD.bcdLong == 0L) {
1167             // Number is zero
1168             setBcdToZero();
1169             return;
1170         }
1171 
1172         // Compact the number (remove trailing zeros)
1173         // TODO: Use a more efficient algorithm here and below. There is a logarithmic one.
1174         int32_t delta = 0;
1175         for (; delta < precision && getDigitPos(delta) == 0; delta++);
1176         fBCD.bcdLong >>= delta * 4;
1177         scale += delta;
1178 
1179         // Compute precision
1180         int32_t leading = precision - 1;
1181         for (; leading >= 0 && getDigitPos(leading) == 0; leading--);
1182         precision = leading + 1;
1183     }
1184 }
1185 
ensureCapacity()1186 void DecimalQuantity::ensureCapacity() {
1187     ensureCapacity(40);
1188 }
1189 
ensureCapacity(int32_t capacity)1190 void DecimalQuantity::ensureCapacity(int32_t capacity) {
1191     if (capacity == 0) { return; }
1192     int32_t oldCapacity = usingBytes ? fBCD.bcdBytes.len : 0;
1193     if (!usingBytes) {
1194         // TODO: There is nothing being done to check for memory allocation failures.
1195         // TODO: Consider indexing by nybbles instead of bytes in C++, so that we can
1196         // make these arrays half the size.
1197         fBCD.bcdBytes.ptr = static_cast<int8_t*>(uprv_malloc(capacity * sizeof(int8_t)));
1198         fBCD.bcdBytes.len = capacity;
1199         // Initialize the byte array to zeros (this is done automatically in Java)
1200         uprv_memset(fBCD.bcdBytes.ptr, 0, capacity * sizeof(int8_t));
1201     } else if (oldCapacity < capacity) {
1202         auto bcd1 = static_cast<int8_t*>(uprv_malloc(capacity * 2 * sizeof(int8_t)));
1203         uprv_memcpy(bcd1, fBCD.bcdBytes.ptr, oldCapacity * sizeof(int8_t));
1204         // Initialize the rest of the byte array to zeros (this is done automatically in Java)
1205         uprv_memset(bcd1 + oldCapacity, 0, (capacity - oldCapacity) * sizeof(int8_t));
1206         uprv_free(fBCD.bcdBytes.ptr);
1207         fBCD.bcdBytes.ptr = bcd1;
1208         fBCD.bcdBytes.len = capacity * 2;
1209     }
1210     usingBytes = true;
1211 }
1212 
switchStorage()1213 void DecimalQuantity::switchStorage() {
1214     if (usingBytes) {
1215         // Change from bytes to long
1216         uint64_t bcdLong = 0L;
1217         for (int i = precision - 1; i >= 0; i--) {
1218             bcdLong <<= 4;
1219             bcdLong |= fBCD.bcdBytes.ptr[i];
1220         }
1221         uprv_free(fBCD.bcdBytes.ptr);
1222         fBCD.bcdBytes.ptr = nullptr;
1223         fBCD.bcdLong = bcdLong;
1224         usingBytes = false;
1225     } else {
1226         // Change from long to bytes
1227         // Copy the long into a local variable since it will get munged when we allocate the bytes
1228         uint64_t bcdLong = fBCD.bcdLong;
1229         ensureCapacity();
1230         for (int i = 0; i < precision; i++) {
1231             fBCD.bcdBytes.ptr[i] = static_cast<int8_t>(bcdLong & 0xf);
1232             bcdLong >>= 4;
1233         }
1234         U_ASSERT(usingBytes);
1235     }
1236 }
1237 
copyBcdFrom(const DecimalQuantity & other)1238 void DecimalQuantity::copyBcdFrom(const DecimalQuantity &other) {
1239     setBcdToZero();
1240     if (other.usingBytes) {
1241         ensureCapacity(other.precision);
1242         uprv_memcpy(fBCD.bcdBytes.ptr, other.fBCD.bcdBytes.ptr, other.precision * sizeof(int8_t));
1243     } else {
1244         fBCD.bcdLong = other.fBCD.bcdLong;
1245     }
1246 }
1247 
moveBcdFrom(DecimalQuantity & other)1248 void DecimalQuantity::moveBcdFrom(DecimalQuantity &other) {
1249     setBcdToZero();
1250     if (other.usingBytes) {
1251         usingBytes = true;
1252         fBCD.bcdBytes.ptr = other.fBCD.bcdBytes.ptr;
1253         fBCD.bcdBytes.len = other.fBCD.bcdBytes.len;
1254         // Take ownership away from the old instance:
1255         other.fBCD.bcdBytes.ptr = nullptr;
1256         other.usingBytes = false;
1257     } else {
1258         fBCD.bcdLong = other.fBCD.bcdLong;
1259     }
1260 }
1261 
checkHealth() const1262 const char16_t* DecimalQuantity::checkHealth() const {
1263     if (usingBytes) {
1264         if (precision == 0) { return u"Zero precision but we are in byte mode"; }
1265         int32_t capacity = fBCD.bcdBytes.len;
1266         if (precision > capacity) { return u"Precision exceeds length of byte array"; }
1267         if (getDigitPos(precision - 1) == 0) { return u"Most significant digit is zero in byte mode"; }
1268         if (getDigitPos(0) == 0) { return u"Least significant digit is zero in long mode"; }
1269         for (int i = 0; i < precision; i++) {
1270             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in byte array"; }
1271             if (getDigitPos(i) < 0) { return u"Digit below 0 in byte array"; }
1272         }
1273         for (int i = precision; i < capacity; i++) {
1274             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in byte array"; }
1275         }
1276     } else {
1277         if (precision == 0 && fBCD.bcdLong != 0) {
1278             return u"Value in bcdLong even though precision is zero";
1279         }
1280         if (precision > 16) { return u"Precision exceeds length of long"; }
1281         if (precision != 0 && getDigitPos(precision - 1) == 0) {
1282             return u"Most significant digit is zero in long mode";
1283         }
1284         if (precision != 0 && getDigitPos(0) == 0) {
1285             return u"Least significant digit is zero in long mode";
1286         }
1287         for (int i = 0; i < precision; i++) {
1288             if (getDigitPos(i) >= 10) { return u"Digit exceeding 10 in long"; }
1289             if (getDigitPos(i) < 0) { return u"Digit below 0 in long (?!)"; }
1290         }
1291         for (int i = precision; i < 16; i++) {
1292             if (getDigitPos(i) != 0) { return u"Nonzero digits outside of range in long"; }
1293         }
1294     }
1295 
1296     // No error
1297     return nullptr;
1298 }
1299 
operator ==(const DecimalQuantity & other) const1300 bool DecimalQuantity::operator==(const DecimalQuantity& other) const {
1301     bool basicEquals =
1302             scale == other.scale
1303             && precision == other.precision
1304             && flags == other.flags
1305             && lReqPos == other.lReqPos
1306             && rReqPos == other.rReqPos
1307             && isApproximate == other.isApproximate;
1308     if (!basicEquals) {
1309         return false;
1310     }
1311 
1312     if (precision == 0) {
1313         return true;
1314     } else if (isApproximate) {
1315         return origDouble == other.origDouble && origDelta == other.origDelta;
1316     } else {
1317         for (int m = getUpperDisplayMagnitude(); m >= getLowerDisplayMagnitude(); m--) {
1318             if (getDigit(m) != other.getDigit(m)) {
1319                 return false;
1320             }
1321         }
1322         return true;
1323     }
1324 }
1325 
toString() const1326 UnicodeString DecimalQuantity::toString() const {
1327     UErrorCode localStatus = U_ZERO_ERROR;
1328     MaybeStackArray<char, 30> digits(precision + 1, localStatus);
1329     if (U_FAILURE(localStatus)) {
1330         return ICU_Utility::makeBogusString();
1331     }
1332     for (int32_t i = 0; i < precision; i++) {
1333         digits[i] = getDigitPos(precision - i - 1) + '0';
1334     }
1335     digits[precision] = 0; // terminate buffer
1336     char buffer8[100];
1337     snprintf(
1338             buffer8,
1339             sizeof(buffer8),
1340             "<DecimalQuantity %d:%d %s %s%s%s%d>",
1341             lReqPos,
1342             rReqPos,
1343             (usingBytes ? "bytes" : "long"),
1344             (isNegative() ? "-" : ""),
1345             (precision == 0 ? "0" : digits.getAlias()),
1346             "E",
1347             scale);
1348     return UnicodeString(buffer8, -1, US_INV);
1349 }
1350 
1351 #endif /* #if !UCONFIG_NO_FORMATTING */
1352