1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 
4 #include "unicode/utypes.h"
5 
6 #if !UCONFIG_NO_FORMATTING
7 
8 #include "charstr.h"
9 #include "uassert.h"
10 #include "unicode/numberformatter.h"
11 #include "number_types.h"
12 #include "number_decimalquantity.h"
13 #include "double-conversion.h"
14 #include "number_roundingutils.h"
15 #include "number_skeletons.h"
16 #include "putilimp.h"
17 #include "string_segment.h"
18 
19 using namespace icu;
20 using namespace icu::number;
21 using namespace icu::number::impl;
22 
23 
24 using double_conversion::DoubleToStringConverter;
25 using icu::StringSegment;
26 
parseIncrementOption(const StringSegment & segment,Precision & outPrecision,UErrorCode & status)27 void number::impl::parseIncrementOption(const StringSegment &segment,
28                                         Precision &outPrecision,
29                                         UErrorCode &status) {
30     // Need to do char <-> UChar conversion...
31     U_ASSERT(U_SUCCESS(status));
32     CharString buffer;
33     SKELETON_UCHAR_TO_CHAR(buffer, segment.toTempUnicodeString(), 0, segment.length(), status);
34 
35     // Utilize DecimalQuantity/decNumber to parse this for us.
36     DecimalQuantity dq;
37     UErrorCode localStatus = U_ZERO_ERROR;
38     dq.setToDecNumber({buffer.data(), buffer.length()}, localStatus);
39     if (U_FAILURE(localStatus)) {
40         // throw new SkeletonSyntaxException("Invalid rounding increment", segment, e);
41         status = U_NUMBER_SKELETON_SYNTAX_ERROR;
42         return;
43     }
44     double increment = dq.toDouble();
45 
46     // We also need to figure out how many digits. Do a brute force string operation.
47     int decimalOffset = 0;
48     while (decimalOffset < segment.length() && segment.charAt(decimalOffset) != '.') {
49         decimalOffset++;
50     }
51     if (decimalOffset == segment.length()) {
52         outPrecision = Precision::increment(increment);
53     } else {
54         int32_t fractionLength = segment.length() - decimalOffset - 1;
55         outPrecision = Precision::increment(increment).withMinFraction(fractionLength);
56     }
57 }
58 
59 namespace {
60 
getRoundingMagnitudeFraction(int maxFrac)61 int32_t getRoundingMagnitudeFraction(int maxFrac) {
62     if (maxFrac == -1) {
63         return INT32_MIN;
64     }
65     return -maxFrac;
66 }
67 
getRoundingMagnitudeSignificant(const DecimalQuantity & value,int maxSig)68 int32_t getRoundingMagnitudeSignificant(const DecimalQuantity &value, int maxSig) {
69     if (maxSig == -1) {
70         return INT32_MIN;
71     }
72     int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
73     return magnitude - maxSig + 1;
74 }
75 
getDisplayMagnitudeFraction(int minFrac)76 int32_t getDisplayMagnitudeFraction(int minFrac) {
77     if (minFrac == 0) {
78         return INT32_MAX;
79     }
80     return -minFrac;
81 }
82 
getDisplayMagnitudeSignificant(const DecimalQuantity & value,int minSig)83 int32_t getDisplayMagnitudeSignificant(const DecimalQuantity &value, int minSig) {
84     int magnitude = value.isZeroish() ? 0 : value.getMagnitude();
85     return magnitude - minSig + 1;
86 }
87 
88 }
89 
90 
91 MultiplierProducer::~MultiplierProducer() = default;
92 
93 
doubleFractionLength(double input,int8_t * singleDigit)94 digits_t roundingutils::doubleFractionLength(double input, int8_t* singleDigit) {
95     char buffer[DoubleToStringConverter::kBase10MaximalLength + 1];
96     bool sign; // unused; always positive
97     int32_t length;
98     int32_t point;
99     DoubleToStringConverter::DoubleToAscii(
100             input,
101             DoubleToStringConverter::DtoaMode::SHORTEST,
102             0,
103             buffer,
104             sizeof(buffer),
105             &sign,
106             &length,
107             &point
108     );
109 
110     if (singleDigit == nullptr) {
111         // no-op
112     } else if (length == 1) {
113         *singleDigit = buffer[0] - '0';
114     } else {
115         *singleDigit = -1;
116     }
117 
118     return static_cast<digits_t>(length - point);
119 }
120 
121 
unlimited()122 Precision Precision::unlimited() {
123     return Precision(RND_NONE, {});
124 }
125 
integer()126 FractionPrecision Precision::integer() {
127     return constructFraction(0, 0);
128 }
129 
fixedFraction(int32_t minMaxFractionPlaces)130 FractionPrecision Precision::fixedFraction(int32_t minMaxFractionPlaces) {
131     if (minMaxFractionPlaces >= 0 && minMaxFractionPlaces <= kMaxIntFracSig) {
132         return constructFraction(minMaxFractionPlaces, minMaxFractionPlaces);
133     } else {
134         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
135     }
136 }
137 
minFraction(int32_t minFractionPlaces)138 FractionPrecision Precision::minFraction(int32_t minFractionPlaces) {
139     if (minFractionPlaces >= 0 && minFractionPlaces <= kMaxIntFracSig) {
140         return constructFraction(minFractionPlaces, -1);
141     } else {
142         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
143     }
144 }
145 
maxFraction(int32_t maxFractionPlaces)146 FractionPrecision Precision::maxFraction(int32_t maxFractionPlaces) {
147     if (maxFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig) {
148         return constructFraction(0, maxFractionPlaces);
149     } else {
150         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
151     }
152 }
153 
minMaxFraction(int32_t minFractionPlaces,int32_t maxFractionPlaces)154 FractionPrecision Precision::minMaxFraction(int32_t minFractionPlaces, int32_t maxFractionPlaces) {
155     if (minFractionPlaces >= 0 && maxFractionPlaces <= kMaxIntFracSig &&
156         minFractionPlaces <= maxFractionPlaces) {
157         return constructFraction(minFractionPlaces, maxFractionPlaces);
158     } else {
159         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
160     }
161 }
162 
fixedSignificantDigits(int32_t minMaxSignificantDigits)163 Precision Precision::fixedSignificantDigits(int32_t minMaxSignificantDigits) {
164     if (minMaxSignificantDigits >= 1 && minMaxSignificantDigits <= kMaxIntFracSig) {
165         return constructSignificant(minMaxSignificantDigits, minMaxSignificantDigits);
166     } else {
167         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
168     }
169 }
170 
minSignificantDigits(int32_t minSignificantDigits)171 Precision Precision::minSignificantDigits(int32_t minSignificantDigits) {
172     if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
173         return constructSignificant(minSignificantDigits, -1);
174     } else {
175         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
176     }
177 }
178 
maxSignificantDigits(int32_t maxSignificantDigits)179 Precision Precision::maxSignificantDigits(int32_t maxSignificantDigits) {
180     if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
181         return constructSignificant(1, maxSignificantDigits);
182     } else {
183         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
184     }
185 }
186 
minMaxSignificantDigits(int32_t minSignificantDigits,int32_t maxSignificantDigits)187 Precision Precision::minMaxSignificantDigits(int32_t minSignificantDigits, int32_t maxSignificantDigits) {
188     if (minSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig &&
189         minSignificantDigits <= maxSignificantDigits) {
190         return constructSignificant(minSignificantDigits, maxSignificantDigits);
191     } else {
192         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
193     }
194 }
195 
increment(double roundingIncrement)196 IncrementPrecision Precision::increment(double roundingIncrement) {
197     if (roundingIncrement > 0.0) {
198         return constructIncrement(roundingIncrement, 0);
199     } else {
200         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
201     }
202 }
203 
currency(UCurrencyUsage currencyUsage)204 CurrencyPrecision Precision::currency(UCurrencyUsage currencyUsage) {
205     return constructCurrency(currencyUsage);
206 }
207 
withMinDigits(int32_t minSignificantDigits) const208 Precision FractionPrecision::withMinDigits(int32_t minSignificantDigits) const {
209     if (fType == RND_ERROR) { return *this; } // no-op in error state
210     if (minSignificantDigits >= 1 && minSignificantDigits <= kMaxIntFracSig) {
211         return constructFractionSignificant(*this, minSignificantDigits, -1);
212     } else {
213         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
214     }
215 }
216 
withMaxDigits(int32_t maxSignificantDigits) const217 Precision FractionPrecision::withMaxDigits(int32_t maxSignificantDigits) const {
218     if (fType == RND_ERROR) { return *this; } // no-op in error state
219     if (maxSignificantDigits >= 1 && maxSignificantDigits <= kMaxIntFracSig) {
220         return constructFractionSignificant(*this, -1, maxSignificantDigits);
221     } else {
222         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
223     }
224 }
225 
226 // Private method on base class
withCurrency(const CurrencyUnit & currency,UErrorCode & status) const227 Precision Precision::withCurrency(const CurrencyUnit &currency, UErrorCode &status) const {
228     if (fType == RND_ERROR) { return *this; } // no-op in error state
229     U_ASSERT(fType == RND_CURRENCY);
230     const char16_t *isoCode = currency.getISOCurrency();
231     double increment = ucurr_getRoundingIncrementForUsage(isoCode, fUnion.currencyUsage, &status);
232     int32_t minMaxFrac = ucurr_getDefaultFractionDigitsForUsage(
233             isoCode, fUnion.currencyUsage, &status);
234     if (increment != 0.0) {
235         return constructIncrement(increment, minMaxFrac);
236     } else {
237         return constructFraction(minMaxFrac, minMaxFrac);
238     }
239 }
240 
241 // Public method on CurrencyPrecision subclass
withCurrency(const CurrencyUnit & currency) const242 Precision CurrencyPrecision::withCurrency(const CurrencyUnit &currency) const {
243     UErrorCode localStatus = U_ZERO_ERROR;
244     Precision result = Precision::withCurrency(currency, localStatus);
245     if (U_FAILURE(localStatus)) {
246         return {localStatus};
247     }
248     return result;
249 }
250 
withMinFraction(int32_t minFrac) const251 Precision IncrementPrecision::withMinFraction(int32_t minFrac) const {
252     if (fType == RND_ERROR) { return *this; } // no-op in error state
253     if (minFrac >= 0 && minFrac <= kMaxIntFracSig) {
254         return constructIncrement(fUnion.increment.fIncrement, minFrac);
255     } else {
256         return {U_NUMBER_ARG_OUTOFBOUNDS_ERROR};
257     }
258 }
259 
constructFraction(int32_t minFrac,int32_t maxFrac)260 FractionPrecision Precision::constructFraction(int32_t minFrac, int32_t maxFrac) {
261     FractionSignificantSettings settings;
262     settings.fMinFrac = static_cast<digits_t>(minFrac);
263     settings.fMaxFrac = static_cast<digits_t>(maxFrac);
264     settings.fMinSig = -1;
265     settings.fMaxSig = -1;
266     PrecisionUnion union_;
267     union_.fracSig = settings;
268     return {RND_FRACTION, union_};
269 }
270 
constructSignificant(int32_t minSig,int32_t maxSig)271 Precision Precision::constructSignificant(int32_t minSig, int32_t maxSig) {
272     FractionSignificantSettings settings;
273     settings.fMinFrac = -1;
274     settings.fMaxFrac = -1;
275     settings.fMinSig = static_cast<digits_t>(minSig);
276     settings.fMaxSig = static_cast<digits_t>(maxSig);
277     PrecisionUnion union_;
278     union_.fracSig = settings;
279     return {RND_SIGNIFICANT, union_};
280 }
281 
282 Precision
constructFractionSignificant(const FractionPrecision & base,int32_t minSig,int32_t maxSig)283 Precision::constructFractionSignificant(const FractionPrecision &base, int32_t minSig, int32_t maxSig) {
284     FractionSignificantSettings settings = base.fUnion.fracSig;
285     settings.fMinSig = static_cast<digits_t>(minSig);
286     settings.fMaxSig = static_cast<digits_t>(maxSig);
287     PrecisionUnion union_;
288     union_.fracSig = settings;
289     return {RND_FRACTION_SIGNIFICANT, union_};
290 }
291 
constructIncrement(double increment,int32_t minFrac)292 IncrementPrecision Precision::constructIncrement(double increment, int32_t minFrac) {
293     IncrementSettings settings;
294     // Note: For number formatting, fIncrement is used for RND_INCREMENT but not
295     // RND_INCREMENT_ONE or RND_INCREMENT_FIVE. However, fIncrement is used in all
296     // three when constructing a skeleton.
297     settings.fIncrement = increment;
298     settings.fMinFrac = static_cast<digits_t>(minFrac);
299     // One of the few pre-computed quantities:
300     // Note: it is possible for minFrac to be more than maxFrac... (misleading)
301     int8_t singleDigit;
302     settings.fMaxFrac = roundingutils::doubleFractionLength(increment, &singleDigit);
303     PrecisionUnion union_;
304     union_.increment = settings;
305     if (singleDigit == 1) {
306         // NOTE: In C++, we must return the correct value type with the correct union.
307         // It would be invalid to return a RND_FRACTION here because the methods on the
308         // IncrementPrecision type assume that the union is backed by increment data.
309         return {RND_INCREMENT_ONE, union_};
310     } else if (singleDigit == 5) {
311         return {RND_INCREMENT_FIVE, union_};
312     } else {
313         return {RND_INCREMENT, union_};
314     }
315 }
316 
constructCurrency(UCurrencyUsage usage)317 CurrencyPrecision Precision::constructCurrency(UCurrencyUsage usage) {
318     PrecisionUnion union_;
319     union_.currencyUsage = usage;
320     return {RND_CURRENCY, union_};
321 }
322 
323 
RoundingImpl(const Precision & precision,UNumberFormatRoundingMode roundingMode,const CurrencyUnit & currency,UErrorCode & status)324 RoundingImpl::RoundingImpl(const Precision& precision, UNumberFormatRoundingMode roundingMode,
325                            const CurrencyUnit& currency, UErrorCode& status)
326         : fPrecision(precision), fRoundingMode(roundingMode), fPassThrough(false) {
327     if (precision.fType == Precision::RND_CURRENCY) {
328         fPrecision = precision.withCurrency(currency, status);
329     }
330 }
331 
passThrough()332 RoundingImpl RoundingImpl::passThrough() {
333     return {};
334 }
335 
isSignificantDigits() const336 bool RoundingImpl::isSignificantDigits() const {
337     return fPrecision.fType == Precision::RND_SIGNIFICANT;
338 }
339 
340 int32_t
chooseMultiplierAndApply(impl::DecimalQuantity & input,const impl::MultiplierProducer & producer,UErrorCode & status)341 RoundingImpl::chooseMultiplierAndApply(impl::DecimalQuantity &input, const impl::MultiplierProducer &producer,
342                                   UErrorCode &status) {
343     // Do not call this method with zero, NaN, or infinity.
344     U_ASSERT(!input.isZeroish());
345 
346     // Perform the first attempt at rounding.
347     int magnitude = input.getMagnitude();
348     int multiplier = producer.getMultiplier(magnitude);
349     input.adjustMagnitude(multiplier);
350     apply(input, status);
351 
352     // If the number rounded to zero, exit.
353     if (input.isZeroish() || U_FAILURE(status)) {
354         return multiplier;
355     }
356 
357     // If the new magnitude after rounding is the same as it was before rounding, then we are done.
358     // This case applies to most numbers.
359     if (input.getMagnitude() == magnitude + multiplier) {
360         return multiplier;
361     }
362 
363     // If the above case DIDN'T apply, then we have a case like 99.9 -> 100 or 999.9 -> 1000:
364     // The number rounded up to the next magnitude. Check if the multiplier changes; if it doesn't,
365     // we do not need to make any more adjustments.
366     int _multiplier = producer.getMultiplier(magnitude + 1);
367     if (multiplier == _multiplier) {
368         return multiplier;
369     }
370 
371     // We have a case like 999.9 -> 1000, where the correct output is "1K", not "1000".
372     // Fix the magnitude and re-apply the rounding strategy.
373     input.adjustMagnitude(_multiplier - multiplier);
374     apply(input, status);
375     return _multiplier;
376 }
377 
378 /** This is the method that contains the actual rounding logic. */
apply(impl::DecimalQuantity & value,UErrorCode & status) const379 void RoundingImpl::apply(impl::DecimalQuantity &value, UErrorCode& status) const {
380     if (U_FAILURE(status)) {
381         return;
382     }
383     if (fPassThrough) {
384         return;
385     }
386     switch (fPrecision.fType) {
387         case Precision::RND_BOGUS:
388         case Precision::RND_ERROR:
389             // Errors should be caught before the apply() method is called
390             status = U_INTERNAL_PROGRAM_ERROR;
391             break;
392 
393         case Precision::RND_NONE:
394             value.roundToInfinity();
395             break;
396 
397         case Precision::RND_FRACTION:
398             value.roundToMagnitude(
399                     getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac),
400                     fRoundingMode,
401                     status);
402             value.setMinFraction(
403                     uprv_max(0, -getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac)));
404             break;
405 
406         case Precision::RND_SIGNIFICANT:
407             value.roundToMagnitude(
408                     getRoundingMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMaxSig),
409                     fRoundingMode,
410                     status);
411             value.setMinFraction(
412                     uprv_max(0, -getDisplayMagnitudeSignificant(value, fPrecision.fUnion.fracSig.fMinSig)));
413             // Make sure that digits are displayed on zero.
414             if (value.isZeroish() && fPrecision.fUnion.fracSig.fMinSig > 0) {
415                 value.setMinInteger(1);
416             }
417             break;
418 
419         case Precision::RND_FRACTION_SIGNIFICANT: {
420             int32_t displayMag = getDisplayMagnitudeFraction(fPrecision.fUnion.fracSig.fMinFrac);
421             int32_t roundingMag = getRoundingMagnitudeFraction(fPrecision.fUnion.fracSig.fMaxFrac);
422             if (fPrecision.fUnion.fracSig.fMinSig == -1) {
423                 // Max Sig override
424                 int32_t candidate = getRoundingMagnitudeSignificant(
425                         value,
426                         fPrecision.fUnion.fracSig.fMaxSig);
427                 roundingMag = uprv_max(roundingMag, candidate);
428             } else {
429                 // Min Sig override
430                 int32_t candidate = getDisplayMagnitudeSignificant(
431                         value,
432                         fPrecision.fUnion.fracSig.fMinSig);
433                 roundingMag = uprv_min(roundingMag, candidate);
434             }
435             value.roundToMagnitude(roundingMag, fRoundingMode, status);
436             value.setMinFraction(uprv_max(0, -displayMag));
437             break;
438         }
439 
440         case Precision::RND_INCREMENT:
441             value.roundToIncrement(
442                     fPrecision.fUnion.increment.fIncrement,
443                     fRoundingMode,
444                     status);
445             value.setMinFraction(fPrecision.fUnion.increment.fMinFrac);
446             break;
447 
448         case Precision::RND_INCREMENT_ONE:
449             value.roundToMagnitude(
450                     -fPrecision.fUnion.increment.fMaxFrac,
451                     fRoundingMode,
452                     status);
453             value.setMinFraction(fPrecision.fUnion.increment.fMinFrac);
454             break;
455 
456         case Precision::RND_INCREMENT_FIVE:
457             value.roundToNickel(
458                     -fPrecision.fUnion.increment.fMaxFrac,
459                     fRoundingMode,
460                     status);
461             value.setMinFraction(fPrecision.fUnion.increment.fMinFrac);
462             break;
463 
464         case Precision::RND_CURRENCY:
465             // Call .withCurrency() before .apply()!
466             UPRV_UNREACHABLE;
467 
468         default:
469             UPRV_UNREACHABLE;
470     }
471 }
472 
apply(impl::DecimalQuantity & value,int32_t minInt,UErrorCode)473 void RoundingImpl::apply(impl::DecimalQuantity &value, int32_t minInt, UErrorCode /*status*/) {
474     // This method is intended for the one specific purpose of helping print "00.000E0".
475     U_ASSERT(isSignificantDigits());
476     U_ASSERT(value.isZeroish());
477     value.setMinFraction(fPrecision.fUnion.fracSig.fMinSig - minInt);
478 }
479 
480 #endif /* #if !UCONFIG_NO_FORMATTING */
481