1 2# G doubled once. 3a = 18905f76a53755c679fb732b7762251075ba95fc5fedb60179e730d418a9143c, 8571ff1825885d85d2e88688dd21f3258b4ab8e4ba19e45cddf25357ce95560a, 00000000fffffffeffffffffffffffffffffffff000000000000000000000001 4r = f6bb32e43dcf3a3b732205038d1490d9aa6ae3c1a433827d850046d410ddd64d, 78c577510a5b8a3b19a8fb0e92042dbe152cd7cbeb236ff82f3648d361bee1a5 5 6# Point at infinity doubled. This uses the (0, 0, 0) representation of 7# the point at infinity instead of the classic (1, 1, 0) 8# representation. 9a = 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000, 0000000000000000000000000000000000000000000000000000000000000000 10r = inf 11 12# Point at infinity doubled. This form is the result of multiplying 13# n * G (affine), which is more interesting than the above case 14# because only the Z coordinate is zero. 15a = 2b11cb945c8cf152ffa4c9c2b1c965b019b35d0b7626919ef0ae6cb9d232f8af, 6d333da42e30f7011245b6281015ded14e0f100968e758a1b6c3c083afc14ea0, 0000000000000000000000000000000000000000000000000000000000000000 16r = inf 17 18# (n - 1) * G doubled. 19a = 2b11cb945c8cf152ffa4c9c2b1c965b019b35d0b7626919ef0ae6cb9d232f8af, 6d333da42e30f7011245b6281015ded14e0f100968e758a1b6c3c083afc14ea0, 3c396f06c1dc69e4f4b2dce51cd660f761064a4ab098ef61ba3868961f0ef178 20r = f6bb32e43dcf3a3b732205038d1490d9aa6ae3c1a433827d850046d410ddd64d, 873a88adf5a475c5e65704f16dfbd241ead3283514dc9007d0c9b72c9e411e5a 21