1
2# G doubled once.
3a = 4d3aadc2299e1513812ff723614ede2b6454868459a30eff879c3afc541b4d6e20e378e2a0d6ce383dd0756649c0b528, 2b78abc25a15c5e9dd8002263969a840c6c3521968f4ffd98bade7562e83b050a1bfa8bf7bb4a9ac23043dad4b03a4fe, 000000000000000000000000000000000000000000000000000000000000000100000000ffffffffffffffff00000001
4r = db93b776427460c39c90a4fd2de4b506da821495f0687f503504e6f0ff9d48a18e6c8f2e022b53f0c8229e55783dde91, e34947f7123df0c2070d430900b0e68409f1fe415172bad915e4f18bdc588258e8e8e4a8c2aaccd842ea84633140bfda
5
6# Point at infinity doubled. This uses the (0, 0, 0) representation of
7# the point at infinity instead of the classic (1, 1, 0)
8# representation.
9a = 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000, 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
10r = inf
11
12# Point at infinity doubled. This form is the result of multiplying
13# n * G (affine), which is more interesting than the above case
14# because only the Z coordinate is zero.
15a = 4a0fd63f894499928e4b2b72aced45cfc589976f4ff86f78c904d59da9379a62b702d968c1184834c11db28c7356ceb6, be113b04484cd4bc215a9f2a33a674c3764c38ca4de135dd50ce8dcf3c85d55a5aad0e171860bdb6c58201e6212d9ac5, 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
16r = inf
17
18# (n - 1) * G doubled.
19a = f3ee335326d22614d01b5d7cd0be73f1bfdd75982c9c273f72d0abfeecbca0431601a1bcafcdeb07e21ecf4d91c7b520, 57b82ca1527c5a01b78bc8ccb9febe74178b04b7c6fde1c1c4ef9a220c4320bb560cb078542256a3900df61c107de6c5, 53b3adc887551c0e17c07ecb42d1a5ec105aeec6b0f040a936ed4f756e83939226232b4e11191b3eb1d841c650682ca0
20r = db93b776427460c39c90a4fd2de4b506da821495f0687f503504e6f0ff9d48a18e6c8f2e022b53f0c8229e55783dde91, 1cb6b808edc20f3df8f2bcf6ff4f197bf60e01beae8d4526ea1b0e7423a77da617171b563d553327bd157b9dcebf4025
21