1// This file is generated from a similarly-named Perl script in the BoringSSL
2// source tree. Do not edit by hand.
3
4#if !defined(__has_feature)
5#define __has_feature(x) 0
6#endif
7#if __has_feature(memory_sanitizer) && !defined(OPENSSL_NO_ASM)
8#define OPENSSL_NO_ASM
9#endif
10
11#if !defined(OPENSSL_NO_ASM)
12#if defined(__arm__)
13.syntax	unified
14
15.arch	armv7-a
16.fpu	neon
17
18#if defined(__thumb2__)
19.thumb
20#else
21.code	32
22#endif
23
24.text
25
26.type	_vpaes_consts,%object
27.align	7	@ totally strategic alignment
28_vpaes_consts:
29.Lk_mc_forward:@ mc_forward
30.quad	0x0407060500030201, 0x0C0F0E0D080B0A09
31.quad	0x080B0A0904070605, 0x000302010C0F0E0D
32.quad	0x0C0F0E0D080B0A09, 0x0407060500030201
33.quad	0x000302010C0F0E0D, 0x080B0A0904070605
34.Lk_mc_backward:@ mc_backward
35.quad	0x0605040702010003, 0x0E0D0C0F0A09080B
36.quad	0x020100030E0D0C0F, 0x0A09080B06050407
37.quad	0x0E0D0C0F0A09080B, 0x0605040702010003
38.quad	0x0A09080B06050407, 0x020100030E0D0C0F
39.Lk_sr:@ sr
40.quad	0x0706050403020100, 0x0F0E0D0C0B0A0908
41.quad	0x030E09040F0A0500, 0x0B06010C07020D08
42.quad	0x0F060D040B020900, 0x070E050C030A0108
43.quad	0x0B0E0104070A0D00, 0x0306090C0F020508
44
45@
46@ "Hot" constants
47@
48.Lk_inv:@ inv, inva
49.quad	0x0E05060F0D080180, 0x040703090A0B0C02
50.quad	0x01040A060F0B0780, 0x030D0E0C02050809
51.Lk_ipt:@ input transform (lo, hi)
52.quad	0xC2B2E8985A2A7000, 0xCABAE09052227808
53.quad	0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81
54.Lk_sbo:@ sbou, sbot
55.quad	0xD0D26D176FBDC700, 0x15AABF7AC502A878
56.quad	0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA
57.Lk_sb1:@ sb1u, sb1t
58.quad	0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF
59.quad	0xB19BE18FCB503E00, 0xA5DF7A6E142AF544
60.Lk_sb2:@ sb2u, sb2t
61.quad	0x69EB88400AE12900, 0xC2A163C8AB82234A
62.quad	0xE27A93C60B712400, 0x5EB7E955BC982FCD
63
64.byte	86,101,99,116,111,114,32,80,101,114,109,117,116,97,116,105,111,110,32,65,69,83,32,102,111,114,32,65,82,77,118,55,32,78,69,79,78,44,32,77,105,107,101,32,72,97,109,98,117,114,103,32,40,83,116,97,110,102,111,114,100,32,85,110,105,118,101,114,115,105,116,121,41,0
65.align	2
66.size	_vpaes_consts,.-_vpaes_consts
67.align	6
68@@
69@@  _aes_preheat
70@@
71@@  Fills q9-q15 as specified below.
72@@
73.type	_vpaes_preheat,%function
74.align	4
75_vpaes_preheat:
76	adr	r10, .Lk_inv
77	vmov.i8	q9, #0x0f		@ .Lk_s0F
78	vld1.64	{q10,q11}, [r10]!	@ .Lk_inv
79	add	r10, r10, #64		@ Skip .Lk_ipt, .Lk_sbo
80	vld1.64	{q12,q13}, [r10]!	@ .Lk_sb1
81	vld1.64	{q14,q15}, [r10]	@ .Lk_sb2
82	bx	lr
83
84@@
85@@  _aes_encrypt_core
86@@
87@@  AES-encrypt q0.
88@@
89@@  Inputs:
90@@     q0 = input
91@@     q9-q15 as in _vpaes_preheat
92@@    [r2] = scheduled keys
93@@
94@@  Output in q0
95@@  Clobbers  q1-q5, r8-r11
96@@  Preserves q6-q8 so you get some local vectors
97@@
98@@
99.type	_vpaes_encrypt_core,%function
100.align	4
101_vpaes_encrypt_core:
102	mov	r9, r2
103	ldr	r8, [r2,#240]		@ pull rounds
104	adr	r11, .Lk_ipt
105	@ vmovdqa	.Lk_ipt(%rip),	%xmm2	# iptlo
106	@ vmovdqa	.Lk_ipt+16(%rip), %xmm3	# ipthi
107	vld1.64	{q2, q3}, [r11]
108	adr	r11, .Lk_mc_forward+16
109	vld1.64	{q5}, [r9]!		@ vmovdqu	(%r9),	%xmm5		# round0 key
110	vand	q1, q0, q9		@ vpand	%xmm9,	%xmm0,	%xmm1
111	vshr.u8	q0, q0, #4		@ vpsrlb	$4,	%xmm0,	%xmm0
112	vtbl.8	d2, {q2}, d2	@ vpshufb	%xmm1,	%xmm2,	%xmm1
113	vtbl.8	d3, {q2}, d3
114	vtbl.8	d4, {q3}, d0	@ vpshufb	%xmm0,	%xmm3,	%xmm2
115	vtbl.8	d5, {q3}, d1
116	veor	q0, q1, q5		@ vpxor	%xmm5,	%xmm1,	%xmm0
117	veor	q0, q0, q2		@ vpxor	%xmm2,	%xmm0,	%xmm0
118
119	@ .Lenc_entry ends with a bnz instruction which is normally paired with
120	@ subs in .Lenc_loop.
121	tst	r8, r8
122	b	.Lenc_entry
123
124.align	4
125.Lenc_loop:
126	@ middle of middle round
127	add	r10, r11, #0x40
128	vtbl.8	d8, {q13}, d4	@ vpshufb	%xmm2,	%xmm13,	%xmm4	# 4 = sb1u
129	vtbl.8	d9, {q13}, d5
130	vld1.64	{q1}, [r11]!		@ vmovdqa	-0x40(%r11,%r10), %xmm1	# .Lk_mc_forward[]
131	vtbl.8	d0, {q12}, d6	@ vpshufb	%xmm3,	%xmm12,	%xmm0	# 0 = sb1t
132	vtbl.8	d1, {q12}, d7
133	veor	q4, q4, q5		@ vpxor		%xmm5,	%xmm4,	%xmm4	# 4 = sb1u + k
134	vtbl.8	d10, {q15}, d4	@ vpshufb	%xmm2,	%xmm15,	%xmm5	# 4 = sb2u
135	vtbl.8	d11, {q15}, d5
136	veor	q0, q0, q4		@ vpxor		%xmm4,	%xmm0,	%xmm0	# 0 = A
137	vtbl.8	d4, {q14}, d6	@ vpshufb	%xmm3,	%xmm14,	%xmm2	# 2 = sb2t
138	vtbl.8	d5, {q14}, d7
139	vld1.64	{q4}, [r10]		@ vmovdqa	(%r11,%r10), %xmm4	# .Lk_mc_backward[]
140	vtbl.8	d6, {q0}, d2	@ vpshufb	%xmm1,	%xmm0,	%xmm3	# 0 = B
141	vtbl.8	d7, {q0}, d3
142	veor	q2, q2, q5		@ vpxor		%xmm5,	%xmm2,	%xmm2	# 2 = 2A
143	@ Write to q5 instead of q0, so the table and destination registers do
144	@ not overlap.
145	vtbl.8	d10, {q0}, d8	@ vpshufb	%xmm4,	%xmm0,	%xmm0	# 3 = D
146	vtbl.8	d11, {q0}, d9
147	veor	q3, q3, q2		@ vpxor		%xmm2,	%xmm3,	%xmm3	# 0 = 2A+B
148	vtbl.8	d8, {q3}, d2	@ vpshufb	%xmm1,	%xmm3,	%xmm4	# 0 = 2B+C
149	vtbl.8	d9, {q3}, d3
150	@ Here we restore the original q0/q5 usage.
151	veor	q0, q5, q3		@ vpxor		%xmm3,	%xmm0,	%xmm0	# 3 = 2A+B+D
152	and	r11, r11, #~(1<<6)	@ and		$0x30,	%r11		# ... mod 4
153	veor	q0, q0, q4		@ vpxor		%xmm4,	%xmm0, %xmm0	# 0 = 2A+3B+C+D
154	subs	r8, r8, #1		@ nr--
155
156.Lenc_entry:
157	@ top of round
158	vand	q1, q0, q9		@ vpand		%xmm0,	%xmm9,	%xmm1   # 0 = k
159	vshr.u8	q0, q0, #4		@ vpsrlb	$4,	%xmm0,	%xmm0	# 1 = i
160	vtbl.8	d10, {q11}, d2	@ vpshufb	%xmm1,	%xmm11,	%xmm5	# 2 = a/k
161	vtbl.8	d11, {q11}, d3
162	veor	q1, q1, q0		@ vpxor		%xmm0,	%xmm1,	%xmm1	# 0 = j
163	vtbl.8	d6, {q10}, d0	@ vpshufb	%xmm0, 	%xmm10,	%xmm3  	# 3 = 1/i
164	vtbl.8	d7, {q10}, d1
165	vtbl.8	d8, {q10}, d2	@ vpshufb	%xmm1, 	%xmm10,	%xmm4  	# 4 = 1/j
166	vtbl.8	d9, {q10}, d3
167	veor	q3, q3, q5		@ vpxor		%xmm5,	%xmm3,	%xmm3	# 3 = iak = 1/i + a/k
168	veor	q4, q4, q5		@ vpxor		%xmm5,	%xmm4,	%xmm4  	# 4 = jak = 1/j + a/k
169	vtbl.8	d4, {q10}, d6	@ vpshufb	%xmm3,	%xmm10,	%xmm2  	# 2 = 1/iak
170	vtbl.8	d5, {q10}, d7
171	vtbl.8	d6, {q10}, d8	@ vpshufb	%xmm4,	%xmm10,	%xmm3	# 3 = 1/jak
172	vtbl.8	d7, {q10}, d9
173	veor	q2, q2, q1		@ vpxor		%xmm1,	%xmm2,	%xmm2  	# 2 = io
174	veor	q3, q3, q0		@ vpxor		%xmm0,	%xmm3,	%xmm3	# 3 = jo
175	vld1.64	{q5}, [r9]!		@ vmovdqu	(%r9),	%xmm5
176	bne	.Lenc_loop
177
178	@ middle of last round
179	add	r10, r11, #0x80
180
181	adr	r11, .Lk_sbo
182	@ Read to q1 instead of q4, so the vtbl.8 instruction below does not
183	@ overlap table and destination registers.
184	vld1.64	{q1}, [r11]!		@ vmovdqa	-0x60(%r10), %xmm4	# 3 : sbou
185	vld1.64	{q0}, [r11]		@ vmovdqa	-0x50(%r10), %xmm0	# 0 : sbot	.Lk_sbo+16
186	vtbl.8	d8, {q1}, d4	@ vpshufb	%xmm2,	%xmm4,	%xmm4	# 4 = sbou
187	vtbl.8	d9, {q1}, d5
188	vld1.64	{q1}, [r10]		@ vmovdqa	0x40(%r11,%r10), %xmm1	# .Lk_sr[]
189	@ Write to q2 instead of q0 below, to avoid overlapping table and
190	@ destination registers.
191	vtbl.8	d4, {q0}, d6	@ vpshufb	%xmm3,	%xmm0,	%xmm0	# 0 = sb1t
192	vtbl.8	d5, {q0}, d7
193	veor	q4, q4, q5		@ vpxor	%xmm5,	%xmm4,	%xmm4	# 4 = sb1u + k
194	veor	q2, q2, q4		@ vpxor	%xmm4,	%xmm0,	%xmm0	# 0 = A
195	@ Here we restore the original q0/q2 usage.
196	vtbl.8	d0, {q2}, d2	@ vpshufb	%xmm1,	%xmm0,	%xmm0
197	vtbl.8	d1, {q2}, d3
198	bx	lr
199.size	_vpaes_encrypt_core,.-_vpaes_encrypt_core
200
201.globl	GFp_vpaes_encrypt
202.hidden	GFp_vpaes_encrypt
203.type	GFp_vpaes_encrypt,%function
204.align	4
205GFp_vpaes_encrypt:
206	@ _vpaes_encrypt_core uses r8-r11. Round up to r7-r11 to maintain stack
207	@ alignment.
208	stmdb	sp!, {r7,r8,r9,r10,r11,lr}
209	@ _vpaes_encrypt_core uses q4-q5 (d8-d11), which are callee-saved.
210	vstmdb	sp!, {d8,d9,d10,d11}
211
212	vld1.64	{q0}, [r0]
213	bl	_vpaes_preheat
214	bl	_vpaes_encrypt_core
215	vst1.64	{q0}, [r1]
216
217	vldmia	sp!, {d8,d9,d10,d11}
218	ldmia	sp!, {r7,r8,r9,r10,r11, pc}	@ return
219.size	GFp_vpaes_encrypt,.-GFp_vpaes_encrypt
220@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
221@@                                                    @@
222@@                  AES key schedule                  @@
223@@                                                    @@
224@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
225
226@ This function diverges from both x86_64 and armv7 in which constants are
227@ pinned. x86_64 has a common preheat function for all operations. aarch64
228@ separates them because it has enough registers to pin nearly all constants.
229@ armv7 does not have enough registers, but needing explicit loads and stores
230@ also complicates using x86_64's register allocation directly.
231@
232@ We pin some constants for convenience and leave q14 and q15 free to load
233@ others on demand.
234
235@
236@  Key schedule constants
237@
238.type	_vpaes_key_consts,%object
239.align	4
240_vpaes_key_consts:
241.Lk_rcon:@ rcon
242.quad	0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81
243
244.Lk_opt:@ output transform
245.quad	0xFF9F4929D6B66000, 0xF7974121DEBE6808
246.quad	0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0
247.Lk_deskew:@ deskew tables: inverts the sbox's "skew"
248.quad	0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A
249.quad	0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77
250.size	_vpaes_key_consts,.-_vpaes_key_consts
251
252.type	_vpaes_key_preheat,%function
253.align	4
254_vpaes_key_preheat:
255	adr	r11, .Lk_rcon
256	vmov.i8	q12, #0x5b			@ .Lk_s63
257	adr	r10, .Lk_inv			@ Must be aligned to 8 mod 16.
258	vmov.i8	q9, #0x0f			@ .Lk_s0F
259	vld1.64	{q10,q11}, [r10]		@ .Lk_inv
260	vld1.64	{q8}, [r11]			@ .Lk_rcon
261	bx	lr
262.size	_vpaes_key_preheat,.-_vpaes_key_preheat
263
264.type	_vpaes_schedule_core,%function
265.align	4
266_vpaes_schedule_core:
267	@ We only need to save lr, but ARM requires an 8-byte stack alignment,
268	@ so save an extra register.
269	stmdb	sp!, {r3,lr}
270
271	bl	_vpaes_key_preheat	@ load the tables
272
273	adr	r11, .Lk_ipt		@ Must be aligned to 8 mod 16.
274	vld1.64	{q0}, [r0]!		@ vmovdqu	(%rdi),	%xmm0		# load key (unaligned)
275
276	@ input transform
277	@ Use q4 here rather than q3 so .Lschedule_am_decrypting does not
278	@ overlap table and destination.
279	vmov	q4, q0			@ vmovdqa	%xmm0,	%xmm3
280	bl	_vpaes_schedule_transform
281	adr	r10, .Lk_sr		@ Must be aligned to 8 mod 16.
282	vmov	q7, q0			@ vmovdqa	%xmm0,	%xmm7
283
284	add	r8, r8, r10
285
286	@ encrypting, output zeroth round key after transform
287	vst1.64	{q0}, [r2]		@ vmovdqu	%xmm0,	(%rdx)
288
289	@ *ring*: Decryption removed.
290
291.Lschedule_go:
292	cmp	r1, #192		@ cmp	$192,	%esi
293	bhi	.Lschedule_256
294	@ 128: fall though
295
296@@
297@@  .schedule_128
298@@
299@@  128-bit specific part of key schedule.
300@@
301@@  This schedule is really simple, because all its parts
302@@  are accomplished by the subroutines.
303@@
304.Lschedule_128:
305	mov	r0, #10		@ mov	$10, %esi
306
307.Loop_schedule_128:
308	bl	_vpaes_schedule_round
309	subs	r0, r0, #1		@ dec	%esi
310	beq	.Lschedule_mangle_last
311	bl	_vpaes_schedule_mangle	@ write output
312	b	.Loop_schedule_128
313
314@@
315@@  .aes_schedule_256
316@@
317@@  256-bit specific part of key schedule.
318@@
319@@  The structure here is very similar to the 128-bit
320@@  schedule, but with an additional "low side" in
321@@  q6.  The low side's rounds are the same as the
322@@  high side's, except no rcon and no rotation.
323@@
324.align	4
325.Lschedule_256:
326	vld1.64	{q0}, [r0]			@ vmovdqu	16(%rdi),%xmm0		# load key part 2 (unaligned)
327	bl	_vpaes_schedule_transform	@ input transform
328	mov	r0, #7			@ mov	$7, %esi
329
330.Loop_schedule_256:
331	bl	_vpaes_schedule_mangle		@ output low result
332	vmov	q6, q0				@ vmovdqa	%xmm0,	%xmm6		# save cur_lo in xmm6
333
334	@ high round
335	bl	_vpaes_schedule_round
336	subs	r0, r0, #1			@ dec	%esi
337	beq	.Lschedule_mangle_last
338	bl	_vpaes_schedule_mangle
339
340	@ low round. swap xmm7 and xmm6
341	vdup.32	q0, d1[1]		@ vpshufd	$0xFF,	%xmm0,	%xmm0
342	vmov.i8	q4, #0
343	vmov	q5, q7			@ vmovdqa	%xmm7,	%xmm5
344	vmov	q7, q6			@ vmovdqa	%xmm6,	%xmm7
345	bl	_vpaes_schedule_low_round
346	vmov	q7, q5			@ vmovdqa	%xmm5,	%xmm7
347
348	b	.Loop_schedule_256
349
350@@
351@@  .aes_schedule_mangle_last
352@@
353@@  Mangler for last round of key schedule
354@@  Mangles q0
355@@    when encrypting, outputs out(q0) ^ 63
356@@    when decrypting, outputs unskew(q0)
357@@
358@@  Always called right before return... jumps to cleanup and exits
359@@
360.align	4
361.Lschedule_mangle_last:
362	@ schedule last round key from xmm0
363	adr	r11, .Lk_deskew			@ lea	.Lk_deskew(%rip),%r11	# prepare to deskew
364
365	@ encrypting
366	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),%xmm1
367	adr	r11, .Lk_opt		@ lea		.Lk_opt(%rip),	%r11		# prepare to output transform
368	add	r2, r2, #32		@ add		$32,	%rdx
369	vmov	q2, q0
370	vtbl.8	d0, {q2}, d2	@ vpshufb	%xmm1,	%xmm0,	%xmm0		# output permute
371	vtbl.8	d1, {q2}, d3
372
373.Lschedule_mangle_last_dec:
374	sub	r2, r2, #16			@ add	$-16,	%rdx
375	veor	q0, q0, q12			@ vpxor	.Lk_s63(%rip),	%xmm0,	%xmm0
376	bl	_vpaes_schedule_transform	@ output transform
377	vst1.64	{q0}, [r2]			@ vmovdqu	%xmm0,	(%rdx)		# save last key
378
379	@ cleanup
380	veor	q0, q0, q0		@ vpxor	%xmm0,	%xmm0,	%xmm0
381	veor	q1, q1, q1		@ vpxor	%xmm1,	%xmm1,	%xmm1
382	veor	q2, q2, q2		@ vpxor	%xmm2,	%xmm2,	%xmm2
383	veor	q3, q3, q3		@ vpxor	%xmm3,	%xmm3,	%xmm3
384	veor	q4, q4, q4		@ vpxor	%xmm4,	%xmm4,	%xmm4
385	veor	q5, q5, q5		@ vpxor	%xmm5,	%xmm5,	%xmm5
386	veor	q6, q6, q6		@ vpxor	%xmm6,	%xmm6,	%xmm6
387	veor	q7, q7, q7		@ vpxor	%xmm7,	%xmm7,	%xmm7
388	ldmia	sp!, {r3,pc}		@ return
389.size	_vpaes_schedule_core,.-_vpaes_schedule_core
390
391@@
392@@  .aes_schedule_round
393@@
394@@  Runs one main round of the key schedule on q0, q7
395@@
396@@  Specifically, runs subbytes on the high dword of q0
397@@  then rotates it by one byte and xors into the low dword of
398@@  q7.
399@@
400@@  Adds rcon from low byte of q8, then rotates q8 for
401@@  next rcon.
402@@
403@@  Smears the dwords of q7 by xoring the low into the
404@@  second low, result into third, result into highest.
405@@
406@@  Returns results in q7 = q0.
407@@  Clobbers q1-q4, r11.
408@@
409.type	_vpaes_schedule_round,%function
410.align	4
411_vpaes_schedule_round:
412	@ extract rcon from xmm8
413	vmov.i8	q4, #0				@ vpxor		%xmm4,	%xmm4,	%xmm4
414	vext.8	q1, q8, q4, #15		@ vpalignr	$15,	%xmm8,	%xmm4,	%xmm1
415	vext.8	q8, q8, q8, #15	@ vpalignr	$15,	%xmm8,	%xmm8,	%xmm8
416	veor	q7, q7, q1			@ vpxor		%xmm1,	%xmm7,	%xmm7
417
418	@ rotate
419	vdup.32	q0, d1[1]			@ vpshufd	$0xFF,	%xmm0,	%xmm0
420	vext.8	q0, q0, q0, #1			@ vpalignr	$1,	%xmm0,	%xmm0,	%xmm0
421
422	@ fall through...
423
424	@ low round: same as high round, but no rotation and no rcon.
425_vpaes_schedule_low_round:
426	@ The x86_64 version pins .Lk_sb1 in %xmm13 and .Lk_sb1+16 in %xmm12.
427	@ We pin other values in _vpaes_key_preheat, so load them now.
428	adr	r11, .Lk_sb1
429	vld1.64	{q14,q15}, [r11]
430
431	@ smear xmm7
432	vext.8	q1, q4, q7, #12			@ vpslldq	$4,	%xmm7,	%xmm1
433	veor	q7, q7, q1			@ vpxor	%xmm1,	%xmm7,	%xmm7
434	vext.8	q4, q4, q7, #8			@ vpslldq	$8,	%xmm7,	%xmm4
435
436	@ subbytes
437	vand	q1, q0, q9			@ vpand		%xmm9,	%xmm0,	%xmm1		# 0 = k
438	vshr.u8	q0, q0, #4			@ vpsrlb	$4,	%xmm0,	%xmm0		# 1 = i
439	veor	q7, q7, q4			@ vpxor		%xmm4,	%xmm7,	%xmm7
440	vtbl.8	d4, {q11}, d2		@ vpshufb	%xmm1,	%xmm11,	%xmm2		# 2 = a/k
441	vtbl.8	d5, {q11}, d3
442	veor	q1, q1, q0			@ vpxor		%xmm0,	%xmm1,	%xmm1		# 0 = j
443	vtbl.8	d6, {q10}, d0		@ vpshufb	%xmm0, 	%xmm10,	%xmm3		# 3 = 1/i
444	vtbl.8	d7, {q10}, d1
445	veor	q3, q3, q2			@ vpxor		%xmm2,	%xmm3,	%xmm3		# 3 = iak = 1/i + a/k
446	vtbl.8	d8, {q10}, d2		@ vpshufb	%xmm1,	%xmm10,	%xmm4		# 4 = 1/j
447	vtbl.8	d9, {q10}, d3
448	veor	q7, q7, q12			@ vpxor		.Lk_s63(%rip),	%xmm7,	%xmm7
449	vtbl.8	d6, {q10}, d6		@ vpshufb	%xmm3,	%xmm10,	%xmm3		# 2 = 1/iak
450	vtbl.8	d7, {q10}, d7
451	veor	q4, q4, q2			@ vpxor		%xmm2,	%xmm4,	%xmm4		# 4 = jak = 1/j + a/k
452	vtbl.8	d4, {q10}, d8		@ vpshufb	%xmm4,	%xmm10,	%xmm2		# 3 = 1/jak
453	vtbl.8	d5, {q10}, d9
454	veor	q3, q3, q1			@ vpxor		%xmm1,	%xmm3,	%xmm3		# 2 = io
455	veor	q2, q2, q0			@ vpxor		%xmm0,	%xmm2,	%xmm2		# 3 = jo
456	vtbl.8	d8, {q15}, d6		@ vpshufb	%xmm3,	%xmm13,	%xmm4		# 4 = sbou
457	vtbl.8	d9, {q15}, d7
458	vtbl.8	d2, {q14}, d4		@ vpshufb	%xmm2,	%xmm12,	%xmm1		# 0 = sb1t
459	vtbl.8	d3, {q14}, d5
460	veor	q1, q1, q4			@ vpxor		%xmm4,	%xmm1,	%xmm1		# 0 = sbox output
461
462	@ add in smeared stuff
463	veor	q0, q1, q7			@ vpxor	%xmm7,	%xmm1,	%xmm0
464	veor	q7, q1, q7			@ vmovdqa	%xmm0,	%xmm7
465	bx	lr
466.size	_vpaes_schedule_round,.-_vpaes_schedule_round
467
468@@
469@@  .aes_schedule_transform
470@@
471@@  Linear-transform q0 according to tables at [r11]
472@@
473@@  Requires that q9 = 0x0F0F... as in preheat
474@@  Output in q0
475@@  Clobbers q1, q2, q14, q15
476@@
477.type	_vpaes_schedule_transform,%function
478.align	4
479_vpaes_schedule_transform:
480	vld1.64	{q14,q15}, [r11]	@ vmovdqa	(%r11),	%xmm2 	# lo
481					@ vmovdqa	16(%r11),	%xmm1 # hi
482	vand	q1, q0, q9		@ vpand	%xmm9,	%xmm0,	%xmm1
483	vshr.u8	q0, q0, #4		@ vpsrlb	$4,	%xmm0,	%xmm0
484	vtbl.8	d4, {q14}, d2	@ vpshufb	%xmm1,	%xmm2,	%xmm2
485	vtbl.8	d5, {q14}, d3
486	vtbl.8	d0, {q15}, d0	@ vpshufb	%xmm0,	%xmm1,	%xmm0
487	vtbl.8	d1, {q15}, d1
488	veor	q0, q0, q2		@ vpxor	%xmm2,	%xmm0,	%xmm0
489	bx	lr
490.size	_vpaes_schedule_transform,.-_vpaes_schedule_transform
491
492@@
493@@  .aes_schedule_mangle
494@@
495@@  Mangles q0 from (basis-transformed) standard version
496@@  to our version.
497@@
498@@  On encrypt,
499@@    xor with 0x63
500@@    multiply by circulant 0,1,1,1
501@@    apply shiftrows transform
502@@
503@@  On decrypt,
504@@    xor with 0x63
505@@    multiply by "inverse mixcolumns" circulant E,B,D,9
506@@    deskew
507@@    apply shiftrows transform
508@@
509@@
510@@  Writes out to [r2], and increments or decrements it
511@@  Keeps track of round number mod 4 in r8
512@@  Preserves q0
513@@  Clobbers q1-q5
514@@
515.type	_vpaes_schedule_mangle,%function
516.align	4
517_vpaes_schedule_mangle:
518	tst	r3, r3
519	vmov	q4, q0			@ vmovdqa	%xmm0,	%xmm4	# save xmm0 for later
520	adr	r11, .Lk_mc_forward	@ Must be aligned to 8 mod 16.
521	vld1.64	{q5}, [r11]		@ vmovdqa	.Lk_mc_forward(%rip),%xmm5
522
523	@ encrypting
524	@ Write to q2 so we do not overlap table and destination below.
525	veor	q2, q0, q12		@ vpxor		.Lk_s63(%rip),	%xmm0,	%xmm4
526	add	r2, r2, #16		@ add		$16,	%rdx
527	vtbl.8	d8, {q2}, d10	@ vpshufb	%xmm5,	%xmm4,	%xmm4
528	vtbl.8	d9, {q2}, d11
529	vtbl.8	d2, {q4}, d10	@ vpshufb	%xmm5,	%xmm4,	%xmm1
530	vtbl.8	d3, {q4}, d11
531	vtbl.8	d6, {q1}, d10	@ vpshufb	%xmm5,	%xmm1,	%xmm3
532	vtbl.8	d7, {q1}, d11
533	veor	q4, q4, q1		@ vpxor		%xmm1,	%xmm4,	%xmm4
534	vld1.64	{q1}, [r8]		@ vmovdqa	(%r8,%r10),	%xmm1
535	veor	q3, q3, q4		@ vpxor		%xmm4,	%xmm3,	%xmm3
536
537.Lschedule_mangle_both:
538	@ Write to q2 so table and destination do not overlap.
539	vtbl.8	d4, {q3}, d2	@ vpshufb	%xmm1,	%xmm3,	%xmm3
540	vtbl.8	d5, {q3}, d3
541	add	r8, r8, #64-16		@ add	$-16,	%r8
542	and	r8, r8, #~(1<<6)	@ and	$0x30,	%r8
543	vst1.64	{q2}, [r2]		@ vmovdqu	%xmm3,	(%rdx)
544	bx	lr
545.size	_vpaes_schedule_mangle,.-_vpaes_schedule_mangle
546
547.globl	GFp_vpaes_set_encrypt_key
548.hidden	GFp_vpaes_set_encrypt_key
549.type	GFp_vpaes_set_encrypt_key,%function
550.align	4
551GFp_vpaes_set_encrypt_key:
552	stmdb	sp!, {r7,r8,r9,r10,r11, lr}
553	vstmdb	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
554
555	lsr	r9, r1, #5		@ shr	$5,%eax
556	add	r9, r9, #5		@ $5,%eax
557	str	r9, [r2,#240]		@ mov	%eax,240(%rdx)	# AES_KEY->rounds = nbits/32+5;
558
559	mov	r3, #0		@ mov	$0,%ecx
560	mov	r8, #0x30		@ mov	$0x30,%r8d
561	bl	_vpaes_schedule_core
562	eor	r0, r0, r0
563
564	vldmia	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
565	ldmia	sp!, {r7,r8,r9,r10,r11, pc}	@ return
566.size	GFp_vpaes_set_encrypt_key,.-GFp_vpaes_set_encrypt_key
567
568@ Additional constants for converting to bsaes.
569.type	_vpaes_convert_consts,%object
570.align	4
571_vpaes_convert_consts:
572@ .Lk_opt_then_skew applies skew(opt(x)) XOR 0x63, where skew is the linear
573@ transform in the AES S-box. 0x63 is incorporated into the low half of the
574@ table. This was computed with the following script:
575@
576@   def u64s_to_u128(x, y):
577@       return x | (y << 64)
578@   def u128_to_u64s(w):
579@       return w & ((1<<64)-1), w >> 64
580@   def get_byte(w, i):
581@       return (w >> (i*8)) & 0xff
582@   def apply_table(table, b):
583@       lo = b & 0xf
584@       hi = b >> 4
585@       return get_byte(table[0], lo) ^ get_byte(table[1], hi)
586@   def opt(b):
587@       table = [
588@           u64s_to_u128(0xFF9F4929D6B66000, 0xF7974121DEBE6808),
589@           u64s_to_u128(0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0),
590@       ]
591@       return apply_table(table, b)
592@   def rot_byte(b, n):
593@       return 0xff & ((b << n) | (b >> (8-n)))
594@   def skew(x):
595@       return (x ^ rot_byte(x, 1) ^ rot_byte(x, 2) ^ rot_byte(x, 3) ^
596@               rot_byte(x, 4))
597@   table = [0, 0]
598@   for i in range(16):
599@       table[0] |= (skew(opt(i)) ^ 0x63) << (i*8)
600@       table[1] |= skew(opt(i<<4)) << (i*8)
601@   print("	.quad	0x%016x, 0x%016x" % u128_to_u64s(table[0]))
602@   print("	.quad	0x%016x, 0x%016x" % u128_to_u64s(table[1]))
603.Lk_opt_then_skew:
604.quad	0x9cb8436798bc4763, 0x6440bb9f6044bf9b
605.quad	0x1f30062936192f00, 0xb49bad829db284ab
606
607@ void GFp_vpaes_encrypt_key_to_bsaes(AES_KEY *bsaes, const AES_KEY *vpaes);
608.globl	GFp_vpaes_encrypt_key_to_bsaes
609.hidden	GFp_vpaes_encrypt_key_to_bsaes
610.type	GFp_vpaes_encrypt_key_to_bsaes,%function
611.align	4
612GFp_vpaes_encrypt_key_to_bsaes:
613	stmdb	sp!, {r11, lr}
614
615	@ See _vpaes_schedule_core for the key schedule logic. In particular,
616	@ _vpaes_schedule_transform(.Lk_ipt) (section 2.2 of the paper),
617	@ _vpaes_schedule_mangle (section 4.3), and .Lschedule_mangle_last
618	@ contain the transformations not in the bsaes representation. This
619	@ function inverts those transforms.
620	@
621	@ Note also that bsaes-armv7.pl expects aes-armv4.pl's key
622	@ representation, which does not match the other aes_nohw_*
623	@ implementations. The ARM aes_nohw_* stores each 32-bit word
624	@ byteswapped, as a convenience for (unsupported) big-endian ARM, at the
625	@ cost of extra REV and VREV32 operations in little-endian ARM.
626
627	vmov.i8	q9, #0x0f		@ Required by _vpaes_schedule_transform
628	adr	r2, .Lk_mc_forward	@ Must be aligned to 8 mod 16.
629	add	r3, r2, 0x90		@ .Lk_sr+0x10-.Lk_mc_forward = 0x90 (Apple's toolchain doesn't support the expression)
630
631	vld1.64	{q12}, [r2]
632	vmov.i8	q10, #0x5b		@ .Lk_s63 from vpaes-x86_64
633	adr	r11, .Lk_opt		@ Must be aligned to 8 mod 16.
634	vmov.i8	q11, #0x63		@ .LK_s63 without .Lk_ipt applied
635
636	@ vpaes stores one fewer round count than bsaes, but the number of keys
637	@ is the same.
638	ldr	r2, [r1,#240]
639	add	r2, r2, #1
640	str	r2, [r0,#240]
641
642	@ The first key is transformed with _vpaes_schedule_transform(.Lk_ipt).
643	@ Invert this with .Lk_opt.
644	vld1.64	{q0}, [r1]!
645	bl	_vpaes_schedule_transform
646	vrev32.8	q0, q0
647	vst1.64	{q0}, [r0]!
648
649	@ The middle keys have _vpaes_schedule_transform(.Lk_ipt) applied,
650	@ followed by _vpaes_schedule_mangle. _vpaes_schedule_mangle XORs 0x63,
651	@ multiplies by the circulant 0,1,1,1, then applies ShiftRows.
652.Loop_enc_key_to_bsaes:
653	vld1.64	{q0}, [r1]!
654
655	@ Invert the ShiftRows step (see .Lschedule_mangle_both). Note we cycle
656	@ r3 in the opposite direction and start at .Lk_sr+0x10 instead of 0x30.
657	@ We use r3 rather than r8 to avoid a callee-saved register.
658	vld1.64	{q1}, [r3]
659	vtbl.8	d4, {q0}, d2
660	vtbl.8	d5, {q0}, d3
661	add	r3, r3, #16
662	and	r3, r3, #~(1<<6)
663	vmov	q0, q2
664
665	@ Handle the last key differently.
666	subs	r2, r2, #1
667	beq	.Loop_enc_key_to_bsaes_last
668
669	@ Multiply by the circulant. This is its own inverse.
670	vtbl.8	d2, {q0}, d24
671	vtbl.8	d3, {q0}, d25
672	vmov	q0, q1
673	vtbl.8	d4, {q1}, d24
674	vtbl.8	d5, {q1}, d25
675	veor	q0, q0, q2
676	vtbl.8	d2, {q2}, d24
677	vtbl.8	d3, {q2}, d25
678	veor	q0, q0, q1
679
680	@ XOR and finish.
681	veor	q0, q0, q10
682	bl	_vpaes_schedule_transform
683	vrev32.8	q0, q0
684	vst1.64	{q0}, [r0]!
685	b	.Loop_enc_key_to_bsaes
686
687.Loop_enc_key_to_bsaes_last:
688	@ The final key does not have a basis transform (note
689	@ .Lschedule_mangle_last inverts the original transform). It only XORs
690	@ 0x63 and applies ShiftRows. The latter was already inverted in the
691	@ loop. Note that, because we act on the original representation, we use
692	@ q11, not q10.
693	veor	q0, q0, q11
694	vrev32.8	q0, q0
695	vst1.64	{q0}, [r0]
696
697	@ Wipe registers which contained key material.
698	veor	q0, q0, q0
699	veor	q1, q1, q1
700	veor	q2, q2, q2
701
702	ldmia	sp!, {r11, pc}	@ return
703.size	GFp_vpaes_encrypt_key_to_bsaes,.-GFp_vpaes_encrypt_key_to_bsaes
704.globl	GFp_vpaes_ctr32_encrypt_blocks
705.hidden	GFp_vpaes_ctr32_encrypt_blocks
706.type	GFp_vpaes_ctr32_encrypt_blocks,%function
707.align	4
708GFp_vpaes_ctr32_encrypt_blocks:
709	mov	ip, sp
710	stmdb	sp!, {r7,r8,r9,r10,r11, lr}
711	@ This function uses q4-q7 (d8-d15), which are callee-saved.
712	vstmdb	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
713
714	cmp	r2, #0
715	@ r8 is passed on the stack.
716	ldr	r8, [ip]
717	beq	.Lctr32_done
718
719	@ _vpaes_encrypt_core expects the key in r2, so swap r2 and r3.
720	mov	r9, r3
721	mov	r3, r2
722	mov	r2, r9
723
724	@ Load the IV and counter portion.
725	ldr	r7, [r8, #12]
726	vld1.8	{q7}, [r8]
727
728	bl	_vpaes_preheat
729	rev	r7, r7		@ The counter is big-endian.
730
731.Lctr32_loop:
732	vmov	q0, q7
733	vld1.8	{q6}, [r0]!		@ .Load input ahead of time
734	bl	_vpaes_encrypt_core
735	veor	q0, q0, q6		@ XOR input and result
736	vst1.8	{q0}, [r1]!
737	subs	r3, r3, #1
738	@ Update the counter.
739	add	r7, r7, #1
740	rev	r9, r7
741	vmov.32	d15[1], r9
742	bne	.Lctr32_loop
743
744.Lctr32_done:
745	vldmia	sp!, {d8,d9,d10,d11,d12,d13,d14,d15}
746	ldmia	sp!, {r7,r8,r9,r10,r11, pc}	@ return
747.size	GFp_vpaes_ctr32_encrypt_blocks,.-GFp_vpaes_ctr32_encrypt_blocks
748#endif
749#endif  // !OPENSSL_NO_ASM
750.section	.note.GNU-stack,"",%progbits
751