1# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Various classes representing distributed values for PS."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21import copy
22import weakref
23
24from tensorflow.python.distribute import distribute_lib
25from tensorflow.python.distribute import distribution_strategy_context as ds_context
26from tensorflow.python.distribute import values
27from tensorflow.python.distribute import values_util
28from tensorflow.python.framework import ops
29from tensorflow.python.ops import variable_scope as vs
30from tensorflow.python.ops import variables as variables_lib
31from tensorflow.python.training.tracking import base as trackable
32from tensorflow.python.types import core
33
34
35# Variable used in PSStrategy TF 1 and CentralStorageStrategy.
36class AggregatingVariable(variables_lib.Variable, core.Tensor):
37  """A wrapper around a variable that aggregates updates across replicas."""
38
39  def __init__(self, strategy, v, aggregation):
40    self._distribute_strategy = strategy
41    self._v = v
42    # NOTE: We don't use "_distributed_container" here because we don't want
43    # to trigger that code path in regroup().
44    v._aggregating_container = weakref.ref(self)  # pylint: disable=protected-access
45    self._aggregation = aggregation
46
47  def __deepcopy__(self, memo):
48    """Perform a deepcopy of the `AggregatingVariable`.
49
50    Unlike the deepcopy of a regular tf.Variable, this keeps the original
51    strategy and devices of the `AggregatingVariable`.  To avoid confusion
52    with the behavior of deepcopy on a regular `Variable` (which does
53    copy into new devices), we only allow a deepcopy of a `AggregatingVariable`
54    within its originating strategy scope.
55
56    Args:
57      memo: The memoization object for `deepcopy`.
58
59    Returns:
60      A deep copy of the current `AggregatingVariable`.
61
62    Raises:
63      RuntimeError: If trying to deepcopy into a different strategy.
64    """
65    with ds_context.enter_or_assert_strategy(self._distribute_strategy):
66      v = copy.deepcopy(self._v, memo)
67
68    copied_variable = type(self)(
69        strategy=self._distribute_strategy,
70        v=v,
71        aggregation=self._aggregation)
72
73    memo[id(self)] = copied_variable
74
75    return copied_variable
76
77  def get(self):
78    return self._v
79
80  @property
81  def distribute_strategy(self):
82    return self._distribute_strategy
83
84  def __getattr__(self, name):
85    return getattr(self._v, name)
86
87  def _assign_func(self, *args, **kwargs):
88    with ds_context.enter_or_assert_strategy(self._distribute_strategy):
89      f = kwargs.pop("f")
90      if ds_context.in_cross_replica_context():
91        if distribute_lib.get_update_replica_id() is not None:
92          # We are calling an assign function in an update context.
93          return f(self._v, *args, **kwargs)
94
95        # We are calling an assign function in cross replica context, wrap it in
96        # an update call.
97        return self._distribute_strategy.extended.update(
98            self, f, args=args, kwargs=kwargs)
99      else:
100        replica_context = ds_context.get_replica_context()
101        assert replica_context
102        # We are calling an assign function in replica context.
103        # We reduce the value we want to assign/add/sub. More details about how
104        # we handle the different use cases can be found in the _reduce method.
105        # We call the function with the reduced value.
106        if self._aggregation == vs.VariableAggregation.NONE:
107          raise ValueError(
108              values_util.aggregation_error_msg.format(
109                  variable_type="AggregatingVariable"))
110
111        def merge_fn(strategy,
112                     value,
113                     use_locking=False,
114                     name=None,
115                     read_value=True):
116          v = values_util.apply_aggregation(strategy, value, self._aggregation,
117                                            self)
118          if name and isinstance(name, values.PerReplica):
119            name = name.values[0]
120          return strategy.extended.update(
121              self,
122              f,
123              args=(v,),
124              kwargs={
125                  "use_locking": use_locking,
126                  "name": name,
127                  "read_value": read_value
128              })
129        return replica_context.merge_call(merge_fn, args=args, kwargs=kwargs)
130
131  def assign_sub(self, *args, **kwargs):
132    assign_sub_fn = lambda var, *a, **kw: var.assign_sub(*a, **kw)
133    return self._assign_func(f=assign_sub_fn, *args, **kwargs)
134
135  def assign_add(self, *args, **kwargs):
136    assign_add_fn = lambda var, *a, **kw: var.assign_add(*a, **kw)
137    return self._assign_func(f=assign_add_fn, *args, **kwargs)
138
139  def assign(self, *args, **kwargs):
140    assign_fn = lambda var, *a, **kw: var.assign(*a, **kw)
141    return self._assign_func(f=assign_fn, *args, **kwargs)
142
143  @property
144  def initializer(self):
145    return self._v.initializer
146
147  def initialized_value(self):
148    return self._v.initialized_value()
149
150  @property
151  def initial_value(self):
152    return self._v.initial_value
153
154  @property
155  def op(self):
156    return self._v.op
157
158  def read_value(self):
159    return self._v.read_value()
160
161  def eval(self, session=None):
162    return self._v.eval(session)
163
164  @property
165  def graph(self):
166    return self._v.graph
167
168  @property
169  def device(self):
170    return self._v.device
171
172  @property
173  def shape(self):
174    return self._v.shape
175
176  @property
177  def aggregation(self):
178    return self._aggregation
179
180  @property
181  def synchronization(self):
182    return self._v.synchronization
183
184  @property
185  def name(self):
186    return self._v.name
187
188  @property
189  def trainable(self):
190    return self._v.trainable
191
192  @property
193  def dtype(self):
194    return self._v.dtype
195
196  # TODO(josh11b): Test saving & restoring.
197  def _gather_saveables_for_checkpoint(self):
198    return {trackable.VARIABLE_VALUE_KEY: self._v}
199
200  def _map_resources(self, save_options):
201    """For implementing `Trackable`."""
202    # By delegating this method to the wrapped variable, SavedModel with
203    # AggregatingVariable are identical to SavedModel with normal variables.
204    obj_map, resource_map = self._v._map_resources(save_options)  # pylint:disable=protected-access
205    obj_map[self] = obj_map[self._v]
206    return obj_map, resource_map
207
208  # pylint: disable=multiple-statements
209  def __add__(self, o):
210    return self._v + o
211
212  def __radd__(self, o):
213    return o + self._v
214
215  def __sub__(self, o):
216    return self._v - o
217
218  def __rsub__(self, o):
219    return o - self._v
220
221  def __mul__(self, o):
222    return self._v * o
223
224  def __rmul__(self, o):
225    return o * self._v
226
227  def __truediv__(self, o):
228    return self._v / o
229
230  def __rtruediv__(self, o):
231    return o / self._v
232
233  def __floordiv__(self, o):
234    return self._v // o
235
236  def __rfloordiv__(self, o):
237    return o // self._v
238
239  def __mod__(self, o):
240    return self._v % o
241
242  def __rmod__(self, o):
243    return o % self._v
244
245  def __lt__(self, o):
246    return self._v < o
247
248  def __le__(self, o):
249    return self._v <= o
250
251  def __gt__(self, o):
252    return self._v > o
253
254  def __ge__(self, o):
255    return self._v >= o
256
257  def __and__(self, o):
258    return self._v & o
259
260  def __rand__(self, o):
261    return o & self._v
262
263  def __or__(self, o):
264    return self._v | o
265
266  def __ror__(self, o):
267    return o | self._v
268
269  def __xor__(self, o):
270    return self._v ^ o
271
272  def __rxor__(self, o):
273    return o ^ self._v
274
275  def __getitem__(self, o):
276    return self._v[o]
277
278  def __pow__(self, o, modulo=None):
279    return pow(self._v, o, modulo)
280
281  def __rpow__(self, o):
282    return pow(o, self._v)
283
284  def __invert__(self):
285    return ~self._v
286
287  def __neg__(self):
288    return -self._v
289
290  def __abs__(self):
291    return abs(self._v)
292
293  def __div__(self, o):
294    try:
295      return self._v.__div__(o)
296    except AttributeError:
297      # See https://docs.python.org/3/library/constants.html#NotImplemented
298      return NotImplemented
299
300  def __rdiv__(self, o):
301    try:
302      return self._v.__rdiv__(o)
303    except AttributeError:
304      # See https://docs.python.org/3/library/constants.html#NotImplemented
305      return NotImplemented
306
307  def __matmul__(self, o):
308    try:
309      return self._v.__matmul__(o)
310    except AttributeError:
311      # See https://docs.python.org/3/library/constants.html#NotImplemented
312      return NotImplemented
313
314  def __rmatmul__(self, o):
315    try:
316      return self._v.__rmatmul__(o)
317    except AttributeError:
318      # See https://docs.python.org/3/library/constants.html#NotImplemented
319      return NotImplemented
320
321  def __str__(self):
322    return str(self._v)
323
324  def __repr__(self):
325    return repr(self._v)
326
327  def _should_act_as_resource_variable(self):
328    """Pass resource_variable_ops.is_resource_variable check."""
329    pass
330
331  def _dense_var_to_tensor(self, dtype=None, name=None, as_ref=False):
332    return ops.convert_to_tensor(self.get(), dtype=dtype, name=name,
333                                 as_ref=as_ref)
334
335
336# Register a conversion function which reads the value of the variable,
337# allowing instances of the class to be used as tensors.
338def _tensor_conversion_aggregate(var, dtype=None, name=None, as_ref=False):
339  return var._dense_var_to_tensor(dtype, name, as_ref)  # pylint: disable=protected-access
340
341
342ops.register_tensor_conversion_function(AggregatingVariable,
343                                        _tensor_conversion_aggregate)
344