1# Quickstart: SQL-based analysis and trace-based metrics
2
3_This quickstart explains how to use `trace_processor` as well as its Python API to
4programmatically query the trace contents through SQL and compute trace-based metrics._
5
6## Trace Processor
7
8TraceProcessor is a multi-format trace importing and query engine based on
9SQLite. It comes both as a C++ library and as a standalone executable:
10`trace_processor_shell` (or just `trace_processor`).
11
12### Setup
13
14```bash
15# Download prebuilts (Linux and Mac only)
16curl -LO https://get.perfetto.dev/trace_processor
17chmod +x ./trace_processor
18
19# Start the interactive shell
20./trace_processor trace.perfetto-trace
21
22# Start a local trace processor instance to replace wasm module in the UI
23./trace_processor trace.perfetto-trace --http
24```
25
26NOTE: In HTTP mode the trace will be loaded into the `trace_processor` and
27      the UI will connect and issue queries over TCP. This can allow
28      arbitrary sized traces to be loaded since there are no memory
29      constraints, unlike the WASM module. In addition, this can improve
30      performance in the UI as it issues SQL queries.
31
32See [Trace Processor docs](/docs/analysis/trace-processor.md) for the full
33TraceProcessor guide.
34
35### Sample queries
36
37For more exhaustive examples see the _SQL_ section of the various _Data sources_
38docs.
39
40#### Slices
41
42Slices are stackable events which have name and span some duration of time.
43
44![](/docs/images/slices.png "Example of slices in the UI")
45
46```
47> SELECT ts, dur, name FROM slice
48ts                   dur                  name
49-------------------- -------------------- ---------------------------
50     261187017446933               358594 eglSwapBuffersWithDamageKHR
51     261187017518340                  357 onMessageReceived
52     261187020825163                 9948 queueBuffer
53     261187021345235                  642 bufferLoad
54     261187121345235                  153 query
55     ...
56```
57
58#### Counters
59
60Counters are events with a value which changes over time.
61
62![](/docs/images/counters.png "Example of counters in the UI")
63
64```
65> SELECT ts, value FROM counter
66ts                   value
67-------------------- --------------------
68     261187012149954          1454.000000
69     261187012399172          4232.000000
70     261187012447402         14304.000000
71     261187012535839         15490.000000
72     261187012590890         17490.000000
73     261187012590890         16590.000000
74...
75```
76
77#### Scheduler slices
78
79Scheduler slices indicate which thread was scheduled on which CPU at which time.
80
81![](/docs/images/sched-slices.png "Example of scheduler slices in the UI")
82
83```
84> SELECT ts, dur, cpu, utid FROM sched
85ts                   dur                  cpu                  utid
86-------------------- -------------------- -------------------- --------------------
87     261187012170489               267188                    0                  390
88     261187012170995               247153                    1                  767
89     261187012418183                12812                    2                 2790
90     261187012421099               220000                    6                  683
91     261187012430995                72396                    7                 2791
92...
93```
94
95### Trace-based metrics
96
97Trace Processor offers also a higher-level query interface that allows to run
98pre-baked queries, herein called "metrics". Metrics are generally curated by
99domain experts, often the same people who add the instrumentation points in the
100first place, and output structured JSON/Protobuf/text.
101Metrics allow to get a summarized view of the trace without having to type any
102SQL or having to load the trace in the UI.
103
104The metrics` schema files live in the
105[/protos/perfetto/metrics](/protos/perfetto/metrics/) directory.
106The corresponding SQL queries live in
107[/src/trace_processor/metrics](/src/trace_processor/metrics/).
108
109#### Run a single metric
110
111Let's run the [`android_cpu`](/protos/perfetto/metrics/android/cpu_metric.proto)
112metric. This metrics computes the total CPU time and the total cycles
113(CPU frequency * time spent running at that frequency) for each process in the
114trace, breaking it down by CPU (_core_) number.
115
116```protobuf
117./trace_processor --run-metrics android_cpu trace.perfetto-trace
118
119android_cpu {
120  process_info {
121    name: "/system/bin/init"
122    threads {
123      name: "init"
124      core {
125        id: 1
126        metrics {
127          mcycles: 1
128          runtime_ns: 570365
129          min_freq_khz: 1900800
130          max_freq_khz: 1900800
131          avg_freq_khz: 1902017
132        }
133      }
134      core {
135        id: 3
136        metrics {
137          mcycles: 0
138          runtime_ns: 366406
139          min_freq_khz: 1900800
140          max_freq_khz: 1900800
141          avg_freq_khz: 1902908
142        }
143      }
144      ...
145    }
146    ...
147  }
148  process_info {
149    name: "/system/bin/logd"
150    threads {
151      name: "logd.writer"
152      core {
153        id: 0
154        metrics {
155          mcycles: 8
156          runtime_ns: 33842357
157          min_freq_khz: 595200
158          max_freq_khz: 1900800
159          avg_freq_khz: 1891825
160        }
161      }
162      core {
163        id: 1
164        metrics {
165          mcycles: 9
166          runtime_ns: 36019300
167          min_freq_khz: 1171200
168          max_freq_khz: 1900800
169          avg_freq_khz: 1887969
170        }
171      }
172      ...
173    }
174    ...
175  }
176  ...
177}
178```
179
180#### Running multiple metrics
181
182Multiple metrics can be flagged using comma separators to the `--run-metrics`
183flag. This will output a text proto with the combined result of running both
184metrics.
185
186```protobuf
187$ ./trace_processor --run-metrics android_mem,android_cpu trace.perfetto-trace
188
189android_mem {
190  process_metrics {
191    process_name: ".dataservices"
192    total_counters {
193      anon_rss {
194        min: 19451904
195        max: 19890176
196        avg: 19837548.157829277
197      }
198      file_rss {
199        min: 25804800
200        max: 25829376
201        avg: 25827909.957489081
202      }
203      swap {
204        min: 9289728
205        max: 9728000
206        avg: 9342355.8421707246
207      }
208      anon_and_swap {
209        min: 29179904
210        max: 29179904
211        avg: 29179904
212      }
213    }
214    ...
215  }
216  ...
217}
218android_cpu {
219  process_info {
220    name: "/system/bin/init"
221    threads {
222      name: "init"
223      core {
224        id: 1
225        metrics {
226          mcycles: 1
227          runtime_ns: 570365
228          min_freq_khz: 1900800
229          max_freq_khz: 1900800
230          avg_freq_khz: 1902017
231        }
232      }
233      ...
234    }
235    ...
236  }
237  ...
238}
239```
240
241#### JSON and binary output
242
243The trace processor also supports binary protobuf and JSON as alternative output
244formats. This is useful when the intended reader is an offline tool.
245
246Both single and multiple metrics are supported as with proto text output.
247
248```
249./trace_processor --run-metrics android_mem --metrics-output=binary trace.perfetto-trace
250<binary protobuf output>
251
252./trace_processor --run-metrics android_mem,android_cpu --metrics-output=json trace.perfetto-trace
253{
254  "android_mem": {
255    "process_metrics": [
256      {
257        "process_name": ".dataservices",
258        "total_counters": {
259          "anon_rss": {
260            "min": 19451904.000000,
261            "max": 19890176.000000,
262            "avg": 19837548.157829
263          },
264          "file_rss": {
265            "min": 25804800.000000,
266            "max": 25829376.000000,
267            "avg": 25827909.957489
268          },
269          "swap": {
270            "min": 9289728.000000,
271            "max": 9728000.000000,
272            "avg": 9342355.842171
273          },
274          "anon_and_swap": {
275            "min": 29179904.000000,
276            "max": 29179904.000000,
277            "avg": 29179904.000000
278          }
279        },
280        ...
281      },
282      ...
283    ]
284  }
285  "android_cpu": {
286    "process_info": [
287      {
288        "name": "\/system\/bin\/init",
289        "threads": [
290          {
291            "name": "init",
292            "core": [
293              {
294                "id": 1,
295                "metrics": {
296                  "mcycles": 1,
297                  "runtime_ns": 570365,
298                  "min_freq_khz": 1900800,
299                  "max_freq_khz": 1900800,
300                  "avg_freq_khz": 1902017
301                }
302              },
303              ...
304            ]
305            ...
306          }
307          ...
308        ]
309        ...
310      },
311      ...
312    ]
313    ...
314  }
315}
316```
317
318## Python API
319
320The API can be run without requiring the `trace_processor` binary to be
321downloaded or installed.
322
323### Setup
324```
325$ pip install perfetto
326```
327NOTE: The API is only compatible with Python3.
328
329### Example functions
330See the Python API section of
331[Trace Processor (SQL)](/docs/analysis/trace-processor.md) to get
332more details on all available functions.
333
334#### Query
335```python
336from perfetto.trace_processor import TraceProcessor
337tp = TraceProcessor(file_path='trace.perfetto-trace')
338
339qr_it = tp.query('SELECT name FROM slice')
340for row in qr_it:
341  print(row.name)
342```
343**Output**
344```
345eglSwapBuffersWithDamageKHR
346onMessageReceived
347queueBuffer
348bufferLoad
349query
350...
351```
352#### Query as Pandas DataFrame
353```python
354from perfetto.trace_processor import TraceProcessor
355tp = TraceProcessor(file_path='trace.perfetto-trace')
356
357qr_it = tp.query('SELECT ts, name FROM slice')
358qr_df = qr_it.as_pandas_dataframe()
359print(qr_df.to_string())
360```
361**Output**
362```
363ts                   name
364-------------------- ---------------------------
365     261187017446933 eglSwapBuffersWithDamageKHR
366     261187017518340 onMessageReceived
367     261187020825163 queueBuffer
368     261187021345235 bufferLoad
369     261187121345235 query
370     ...
371```
372#### Metric
373```python
374from perfetto.trace_processor import TraceProcessor
375tp = TraceProcessor(file_path='trace.perfetto-trace')
376
377cpu_metrics = tp.metric(['android_cpu'])
378print(cpu_metrics)
379```
380**Output**
381```
382metrics {
383  android_cpu {
384    process_info {
385      name: "/system/bin/init"
386      threads {
387        name: "init"
388        core {
389          id: 1
390          metrics {
391            mcycles: 1
392            runtime_ns: 570365
393            min_freq_khz: 1900800
394            max_freq_khz: 1900800
395            avg_freq_khz: 1902017
396          }
397        }
398        core {
399          id: 3
400          metrics {
401            mcycles: 0
402            runtime_ns: 366406
403            min_freq_khz: 1900800
404            max_freq_khz: 1900800
405            avg_freq_khz: 1902908
406          }
407        }
408        ...
409      }
410      ...
411    }
412    ...
413  }
414}
415```
416
417## Next steps
418
419There are several options for exploring more of the trace analysis features
420Perfetto provides:
421
422* The [trace conversion quickstart](/docs/quickstart/traceconv.md) gives an
423  overview on how to convert Perfetto traces to legacy formats to integrate with
424  existing tooling.
425* The [Trace Processor documentation](/docs/analysis/trace-processor.md) gives
426  more information about how to work with trace processor including details on
427  how to write queries and how tables in trace processor are organized.
428* The [metrics documentation](/docs/analysis/metrics.md) gives a more in-depth
429  look into metrics including a short walkthrough on how to build an
430  experimental metric from scratch.
431* The [SQL table reference](/docs/analysis/sql-tables.autogen) gives a
432  comprehensive guide to the all the available tables in trace processor.
433* The [common tasks](/docs/contributing/common-tasks.md) page gives a list of
434  steps on how new metrics can be added to the trace processor.
435