1 /* 2 Copyright (c) Microsoft Corporation 3 4 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 5 associated documentation files (the "Software"), to deal in the Software without restriction, 6 including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, 7 and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, 8 subject to the following conditions: 9 10 The above copyright notice and this permission notice shall be included in all copies or substantial 11 portions of the Software. 12 13 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 14 NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 15 IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 16 WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 17 SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 18 */ 19 20 #pragma once 21 //================================================================================================================================= 22 // Microsoft D3D11 Fixed Function Tessellator Reference - May 7, 2012 23 // amar.patel@microsoft.com 24 // 25 // CHWTessellator demonstrates what is expected of hardware in the D3D11 fixed function Tessellator stage. Hardware 26 // implementers need only look at this class. 27 // 28 // CHLSLTessellator is a wrapper for CHWTessellator, representing the effect of shader code that will 29 // be autogenerated by HLSL in the Hull Shader, both for plumbing data around, and to precondition TessFactor values before they 30 // are passed to the hardware (such as deriving inside TessFactors from edge TessFactors). The algorithms used 31 // in CHLSLTessellator are subject to change, but since they represent shader code auto-generated by the HLSL compiler, 32 // CHLSLTessellator has no effect on hardware design at all. Note the HLSL compiler will expose all the raw hardware 33 // control illustrated by CHWTessellator for those who don't need the helper functionality illustrated by CHLSLTessellator. 34 // 35 // Usage: (1) Create either a CHLSLTessellator or CHWTessellator object, depending on which you want to verify. 36 // (2) Call C*Tessellator::Init() 37 // (3) Call C*Tessellator::Tessellate[IsoLine|Tri|Quad]Domain() 38 // - Here you pass in TessFactors (how much to tessellate) 39 // (4) Call C*Tessellator::GetPointCount(), C*Tessellator::GetIndexCount() to see how much data was generated. 40 // (5) Call C*Tessellator::GetPoints() and C*Tessellator::GetIndices() to get pointers to the data. 41 // The pointers are fixed for the lifetime of the object (storage for max tessellation), 42 // so if you ::Tessellate again, the data in the buffers is overwritten. 43 // (6) There are various other Get() methods to retrieve TessFactors that have been processed from 44 // what you passed in at step 3. You can retrieve separate TessFactors that the tessellator 45 // produced after clamping but before rounding, and also after rounding (say in pow2 mode). 46 // These numbers can be useful information if you are geomorphing displacement maps. 47 // (7) Goto Step 2 or 3 if you want to animate TessFactors or tessellate a different patch 48 // 49 // Code implementation details: 50 // 51 // There is lots of headroom to make this code run faster on CPUs. It was written merely as a reference for 52 // what results hardware should produce, with CPU performance not a consideration. It is nice that this implementation 53 // only generates the exact number of vertices needed (no duplicates) in the output vertex buffer. Also, the number 54 // of calculations done for each U/V domain coordinate is minimized by doing some precalculation of some patch or edge 55 // invariant numbers (see TESS_FACTOR_CONTEXT). All the vertex coordinate calculations could be computed with as much 56 // parallelism as you like. Similarly the calculation of connectivity itself is highly parallelizable, and can also 57 // be done independent of the vertex calculations. 58 // 59 //================================================================================================================================= 60 61 #define D3D11_TESSELLATOR_MIN_ODD_TESSELLATION_FACTOR 1 62 #define D3D11_TESSELLATOR_MAX_ODD_TESSELLATION_FACTOR 63 63 #define D3D11_TESSELLATOR_MIN_EVEN_TESSELLATION_FACTOR 2 64 #define D3D11_TESSELLATOR_MAX_EVEN_TESSELLATION_FACTOR 64 65 66 #define D3D11_TESSELLATOR_MIN_ISOLINE_DENSITY_TESSELLATION_FACTOR 1 67 #define D3D11_TESSELLATOR_MAX_ISOLINE_DENSITY_TESSELLATION_FACTOR 64 68 69 #define D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR 64 // max of even and odd tessFactors 70 71 #define MAX_POINT_COUNT ((D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR+1)*(D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR+1)) 72 #define MAX_INDEX_COUNT (D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR*D3D11_TESSELLATOR_MAX_TESSELLATION_FACTOR*2*3) 73 74 //================================================================================================================================= 75 // Data types for the caller 76 //================================================================================================================================= 77 enum D3D11_TESSELLATOR_PARTITIONING 78 { 79 D3D11_TESSELLATOR_PARTITIONING_INTEGER, 80 D3D11_TESSELLATOR_PARTITIONING_POW2, 81 D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_ODD, 82 D3D11_TESSELLATOR_PARTITIONING_FRACTIONAL_EVEN 83 }; 84 85 enum D3D11_TESSELLATOR_REDUCTION 86 { 87 D3D11_TESSELLATOR_REDUCTION_MIN, 88 D3D11_TESSELLATOR_REDUCTION_MAX, 89 D3D11_TESSELLATOR_REDUCTION_AVERAGE 90 }; 91 92 enum D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS 93 { 94 D3D11_TESSELLATOR_QUAD_REDUCTION_1_AXIS, 95 D3D11_TESSELLATOR_QUAD_REDUCTION_2_AXIS 96 }; 97 98 enum D3D11_TESSELLATOR_OUTPUT_PRIMITIVE 99 { 100 D3D11_TESSELLATOR_OUTPUT_POINT, 101 D3D11_TESSELLATOR_OUTPUT_LINE, 102 D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CW, 103 D3D11_TESSELLATOR_OUTPUT_TRIANGLE_CCW, 104 }; 105 106 typedef struct DOMAIN_POINT 107 { 108 float u; 109 float v; // for tri, w = 1 - u - v; 110 } DOMAIN_POINT; 111 112 //================================================================================================================================= 113 // CHWTessellator: D3D11 Tessellation Fixed Function Hardware Reference 114 //================================================================================================================================= 115 typedef unsigned int FXP; // fixed point number 116 117 class CHWTessellator 118 { 119 120 //--------------------------------------------------------------------------------------------------------------------------------- 121 public: 122 void Init( D3D11_TESSELLATOR_PARTITIONING partitioning, 123 D3D11_TESSELLATOR_OUTPUT_PRIMITIVE outputPrimitive); 124 125 void TessellateIsoLineDomain( float TessFactor_V_LineDensity, 126 float TessFactor_U_LineDetail ); 127 128 void TessellateTriDomain( float TessFactor_Ueq0, 129 float TessFactor_Veq0, 130 float TessFactor_Weq0, 131 float TessFactor_Inside ); 132 133 void TessellateQuadDomain( float TessFactor_Ueq0, 134 float TessFactor_Veq0, 135 float TessFactor_Ueq1, 136 float TessFactor_Veq1, 137 float TessFactor_InsideU, 138 float TessFactor_InsideV ); 139 140 int GetPointCount(); 141 int GetIndexCount(); 142 143 DOMAIN_POINT* GetPoints(); // Get CHWTessellator owned pointer to vertices (UV values). 144 // Pointer is fixed for lifetime of CHWTessellator object. 145 int* GetIndices(); // Get CHWTessellator owned pointer to vertex indices. 146 // Pointer is fixed for lifetime of CHWTessellator object. 147 148 #define ALLOW_XBOX_360_COMPARISON // Different vertex splitting order. This is NOT D3D11 behavior, just available here for comparison. 149 // Setting this define true just allows the XBox split style to be enabled via 150 // SetXBox360Mode() below, but by default this XBox360 mode still always starts off DISABLED. 151 // The XBox360 always splits from the center of an edge (D3D11 uses ruler function). Splitting 152 // from the center causes sliver triangles in transition areas, which cause numerous problems. 153 // Note the XBox360 only supports adaptive tessellation via fractional_even partitioning, 154 // though this #define lets you try the XBox vertex splitting order with any of the 155 // partitioning modes: even, odd, integer or pow2. 156 #ifdef ALLOW_XBOX_360_COMPARISON SetXBox360Mode(bool bXboxMode)157 void SetXBox360Mode(bool bXboxMode) {m_bXBox360Mode = bXboxMode;} 158 #endif 159 CHWTessellator(); 160 ~CHWTessellator(); 161 //--------------------------------------------------------------------------------------------------------------------------------- 162 //============================================================================================================================= 163 // Some defines so that numbers are usually self commenting 164 //============================================================================================================================= 165 static const int U = 0; // points on a tri patch 166 static const int V = 1; 167 static const int W = 2; 168 static const int Ueq0 = 0; // edges on a tri patch 169 static const int Veq0 = 1; 170 static const int Weq0 = 2; 171 172 static const int Ueq1 = 2; // edges on a quad patch: Ueq0, Veq0, Ueq1, Veq1 173 static const int Veq1 = 3; 174 175 static const int QUAD_AXES = 2; 176 static const int QUAD_EDGES = 4; 177 static const int TRI_EDGES = 3; 178 //============================================================================================================================= 179 180 enum TESSELLATOR_PARITY // derived from D3D11_TESSELLATOR_PARTITIONING 181 { // (note: for integer tessellation, both parities are used) 182 TESSELLATOR_PARITY_EVEN, 183 TESSELLATOR_PARITY_ODD 184 }; 185 private: 186 TESSELLATOR_PARITY m_originalParity; // user chosen parity 187 TESSELLATOR_PARITY m_parity; // current parity: if allowing mix of even/odd during discrete 188 // tessellation, this can vary from the user defined parity 189 D3D11_TESSELLATOR_PARTITIONING m_originalPartitioning; // user chosen partitioning 190 D3D11_TESSELLATOR_PARTITIONING m_partitioning; // current partitioning. IsoLines overrides for line density 191 D3D11_TESSELLATOR_OUTPUT_PRIMITIVE m_outputPrimitive; 192 DOMAIN_POINT* m_Point; // array where we will store u/v's for the points we generate 193 int* m_Index; // array where we will store index topology 194 int m_NumPoints; 195 int m_NumIndices; 196 #ifdef ALLOW_XBOX_360_COMPARISON 197 bool m_bXBox360Mode; 198 #endif 199 // PlacePointIn1D below is the workhorse for all position placement. 200 // It is code that could run as preamble in a Domain Shader, so the tessellator itself 201 // doesn't necessarily need to have floating point. 202 // Some per-TessFactor fixed context is needed, and that can be computed wherever 203 // the TessFactor reduction is done, perhaps as Hull Shader postamble - this is shared 204 // for all point evaluation. 205 typedef struct TESS_FACTOR_CONTEXT 206 { 207 FXP fxpInvNumSegmentsOnFloorTessFactor; 208 FXP fxpInvNumSegmentsOnCeilTessFactor; 209 FXP fxpHalfTessFactorFraction; 210 int numHalfTessFactorPoints; 211 int splitPointOnFloorHalfTessFactor; 212 } TESS_FACTOR_CONTEXT; 213 void ComputeTessFactorContext( FXP fxpTessFactor, TESS_FACTOR_CONTEXT& TessFactorCtx ); 214 void PlacePointIn1D( const TESS_FACTOR_CONTEXT& TessFactorCtx, int point, FXP& fxpLocation ); 215 216 int NumPointsForTessFactor(FXP fxpTessFactor); 217 218 // Tessellation parity control Odd()219 bool Odd() {return (m_parity == TESSELLATOR_PARITY_ODD) ? true : false;} SetTessellationParity(TESSELLATOR_PARITY parity)220 void SetTessellationParity(TESSELLATOR_PARITY parity) {m_parity = parity;} 221 222 // HWIntegerPartitioning() - hardware doesn't care about what pow2 partitioning is - the query below is true for 223 // both integer and pow2. HWIntegerPartitioning()224 bool HWIntegerPartitioning() {return ((m_partitioning == D3D11_TESSELLATOR_PARTITIONING_INTEGER)|| 225 (m_partitioning == D3D11_TESSELLATOR_PARTITIONING_POW2)) ? true : false;} 226 227 // Tesselation Partitioning control RestorePartitioning()228 void RestorePartitioning() {m_partitioning = m_originalPartitioning;}; OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING partitioning)229 void OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING partitioning) {m_partitioning = partitioning;} //isoline uses this for density 230 231 // Call these to generate new points and indices. Max TessFactor storage is already allocated. 232 int DefinePoint(FXP u, FXP v, int pointStorageOffset); 233 void DefineIndex(int index, int indexStorageOffset); 234 void DefineClockwiseTriangle(int index0, int index1, int index2, int indexStorageBaseOffset); 235 236 // Couple of trivial ways to generate index data just given points and no other connectivity. 237 void DumpAllPoints(); // Make point indices for point rendering mode - 238 // redundant, but just here for orthogonality. 239 void DumpAllPointsAsInOrderLineList(); // A debug visualization of all the points connected 240 // in the order they were generated. 241 // Asking to draw line topology on a tri or quad patch will do this 242 243 244 // The structures below define the data that is derived given input TessFactors and which 245 // is used by point generation and connectivity generation steps (each of which are independent) 246 typedef struct PROCESSED_TESS_FACTORS_ISOLINE 247 { 248 TESSELLATOR_PARITY lineDensityParity; 249 TESSELLATOR_PARITY lineDetailParity; 250 TESS_FACTOR_CONTEXT lineDensityTessFactorCtx; 251 TESS_FACTOR_CONTEXT lineDetailTessFactorCtx; 252 bool bPatchCulled; 253 int numPointsPerLine; 254 int numLines; 255 } PROCESSED_TESS_FACTORS_ISOLINE; 256 typedef struct PROCESSED_TESS_FACTORS_TRI 257 { 258 FXP outsideTessFactor[TRI_EDGES]; 259 FXP insideTessFactor; 260 TESSELLATOR_PARITY outsideTessFactorParity[TRI_EDGES]; 261 TESSELLATOR_PARITY insideTessFactorParity; 262 TESS_FACTOR_CONTEXT outsideTessFactorCtx[TRI_EDGES]; 263 TESS_FACTOR_CONTEXT insideTessFactorCtx; 264 bool bJustDoMinimumTessFactor; 265 bool bPatchCulled; 266 // Stuff below is just specific to the traversal order 267 // this code happens to use to generate points/lines 268 int numPointsForOutsideEdge[TRI_EDGES]; 269 int numPointsForInsideTessFactor; 270 int insideEdgePointBaseOffset; 271 } PROCESSED_TESS_FACTORS_TRI; 272 typedef struct PROCESSED_TESS_FACTORS_QUAD 273 { 274 FXP outsideTessFactor[QUAD_EDGES]; 275 FXP insideTessFactor[QUAD_AXES]; 276 TESSELLATOR_PARITY outsideTessFactorParity[QUAD_EDGES]; 277 TESSELLATOR_PARITY insideTessFactorParity[QUAD_AXES]; 278 TESS_FACTOR_CONTEXT outsideTessFactorCtx[QUAD_EDGES]; 279 TESS_FACTOR_CONTEXT insideTessFactorCtx[QUAD_AXES]; 280 bool bJustDoMinimumTessFactor; 281 bool bPatchCulled; 282 // Stuff below is just specific to the traversal order 283 // this code happens to use to generate points/lines 284 int numPointsForOutsideEdge[QUAD_EDGES]; 285 int numPointsForInsideTessFactor[QUAD_AXES]; 286 int insideEdgePointBaseOffset; 287 } PROCESSED_TESS_FACTORS_QUAD; 288 289 // These are the workhorse functions for tessellation: 290 // (1) Process input TessFactors 291 // (2) Generate points 292 // (3) Generate connectivity (can be done in parallel to (2)) 293 void IsoLineProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail, PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors ); 294 void IsoLineGeneratePoints( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors ); 295 void IsoLineGenerateConnectivity( const PROCESSED_TESS_FACTORS_ISOLINE& processedTessFactors ); 296 void TriProcessTessFactors( float tessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Weq0, float insideTessFactor, PROCESSED_TESS_FACTORS_TRI& processedTessFactors ); 297 void TriGeneratePoints( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors ); 298 void TriGenerateConnectivity( const PROCESSED_TESS_FACTORS_TRI& processedTessFactors ); 299 void QuadProcessTessFactors( float tessFactor_Ueq0, float tessFactor_Veq0, float tessFactor_Ueq1, float tessFactor_Veq1, 300 float insideTessFactor_U, float insideTessFactor_V, PROCESSED_TESS_FACTORS_QUAD& processedTessFactors ); 301 void QuadGeneratePoints( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors ); 302 void QuadGenerateConnectivity( const PROCESSED_TESS_FACTORS_QUAD& processedTessFactors ); 303 304 // Stitching 305 // --------- 306 // Given pointers to the beginning of 2 parallel rows of points, and TessFactors for each, stitch them. 307 // The assumption is the stitch is symmetric. 308 void StitchTransition(int baseIndexOffset, int insideEdgePointBaseOffset, int insideNumHalfTessFactorPoints, 309 TESSELLATOR_PARITY insideEdgeTessFactorParity, 310 int outsideEdgePointBaseOffset, int outsideNumHalfTessFactorPoints, 311 TESSELLATOR_PARITY outsideEdgeTessFactorParity ); 312 // The interior can just use a simpler stitch. 313 enum DIAGONALS 314 { 315 DIAGONALS_INSIDE_TO_OUTSIDE, 316 DIAGONALS_INSIDE_TO_OUTSIDE_EXCEPT_MIDDLE, 317 DIAGONALS_MIRRORED 318 }; 319 320 void StitchRegular(bool bTrapezoid, DIAGONALS diagonals, int baseIndexOffset, int numInsideEdgePoints, 321 int insideEdgePointBaseOffset, int outsideEdgePointBaseOffset); 322 323 //--------------------------------------------------------------------------------------------------------------------------------- 324 // Index Patching 325 // -------------- 326 // The code below patches index values produces during triangulation, so triangulation doesn't have to know 327 // where points should go. I happened to never produce duplicate vertices, but the patching would 328 // be simpler if some duplicate vertices were introduced in practice. During point rendering mode however, 329 // it is not permitted for duplicate points to show up. 330 331 // Since the points are generated in concentric rings, most of the time, the point locations are 332 // sequentially increasing in memory for each side of a ring, which the stitch can take advantage of. 333 // However, there are exceptions where the points are not sequentially increasing, such as 334 // the 4th row in a given ring, where the last point on the outside of each row is actually the beginning 335 // point. 336 // So we let the stitching code think it sees sequential vertices, and when it emits a vertex index, 337 // we patch it to be the real location. 338 int PatchIndexValue(int index); 339 typedef struct INDEX_PATCH_CONTEXT 340 { 341 int insidePointIndexDeltaToRealValue; 342 int insidePointIndexBadValue; 343 int insidePointIndexReplacementValue; 344 int outsidePointIndexPatchBase; 345 int outsidePointIndexDeltaToRealValue; 346 int outsidePointIndexBadValue; 347 int outsidePointIndexReplacementValue; 348 } INDEX_PATCH_CONTEXT; SetUsingPatchedIndices(bool bUsingPatchedIndices)349 void SetUsingPatchedIndices(bool bUsingPatchedIndices) {m_bUsingPatchedIndices = bUsingPatchedIndices;} 350 351 // A second index patch we have to do handles the leftover strip of quads in the middle of an odd quad patch after 352 // finishing all the concentric rings. 353 // This also handles the leftover strip of points in the middle of an even quad 354 // patch, when stitching the row of triangles up the left side (V major quad) or bottom (U major quad) of the 355 // inner ring 356 typedef struct INDEX_PATCH_CONTEXT2 357 { 358 int baseIndexToInvert; 359 int indexInversionEndPoint; 360 int cornerCaseBadValue; 361 int cornerCaseReplacementValue; 362 } INDEX_PATCH_CONTEXT2; SetUsingPatchedIndices2(bool bUsingPatchedIndices)363 void SetUsingPatchedIndices2(bool bUsingPatchedIndices) {m_bUsingPatchedIndices2 = bUsingPatchedIndices;} 364 bool m_bUsingPatchedIndices; 365 bool m_bUsingPatchedIndices2; 366 INDEX_PATCH_CONTEXT m_IndexPatchContext; 367 INDEX_PATCH_CONTEXT2 m_IndexPatchContext2; 368 369 }; 370 371 //================================================================================================================================= 372 // CHLSLTessellator: D3D11 Tessellation HLSL Tessellator Interface 373 // Demonstrates TessFactor preconditioning code auto-generated by HLSL. Subject to change, but this 374 // just represents the effect of shader code the HLSL compiler will generate in the Hull Shader, 375 // so it does not affect hardware design at all. 376 //================================================================================================================================= 377 class CHLSLTessellator : public CHWTessellator 378 { 379 public: 380 void Init( D3D11_TESSELLATOR_PARTITIONING partitioning, 381 D3D11_TESSELLATOR_REDUCTION insideTessFactorReduction, 382 D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS quadInsideTessFactorReductionAxis, 383 D3D11_TESSELLATOR_OUTPUT_PRIMITIVE outputPrimitive); 384 385 void TessellateIsoLineDomain( float TessFactor_V_LineDensity, 386 float TessFactor_U_LineDetail ); 387 388 void TessellateTriDomain( float tessFactor_Ueq0, 389 float TessFactor_Veq0, 390 float TessFactor_Weq0, 391 float insideTessFactorScale /*[0..1]*/ ); 392 393 void TessellateQuadDomain( float TessFactorUeq0, 394 float TessFactorVeq0, 395 float TessFactorUeq1, 396 float TessFactorVeq1, 397 float insideTessFactorScaleU /*[0..1]*/, 398 float insideTessFactorScaleV /*[0..1]*/ ); 399 GetPointCount()400 int GetPointCount() {return CHWTessellator::GetPointCount();}; GetIndexCount()401 int GetIndexCount() {return CHWTessellator::GetIndexCount();} 402 GetPoints()403 DOMAIN_POINT* GetPoints() {return CHWTessellator::GetPoints();} // Get CHLSLTessellator owned pointer to vertices (UV values). 404 // Pointer is fixed for lifetime of CHLSLTessellator object. GetIndices()405 int* GetIndices() {return CHWTessellator::GetIndices();} // Get CHLSLTessellator owned pointer to vertex indices. 406 // Pointer is fixed for lifetime of CHLSLTessellator object. 407 408 // Retrieve TessFactors actually used by the "hardware" 409 // This includes clamping to valid range, and more interestingly 410 // if integer or pow2 partitioning is being done, the rounded TessFactors can be retrieved. 411 // Getting the rounded TessFactors can be useful for geomorphing of displacement maps. GetIsoLineDensityTessFactor()412 float GetIsoLineDensityTessFactor() {return m_LastComputedTessFactors[0];} GetIsoLineDetailTessFactor()413 float GetIsoLineDetailTessFactor() {return m_LastComputedTessFactors[1];} GetTriUeq0TessFactor()414 float GetTriUeq0TessFactor() {return m_LastComputedTessFactors[0];} GetTriVeq0TessFactor()415 float GetTriVeq0TessFactor() {return m_LastComputedTessFactors[1];} GetTriWeq0TessFactor()416 float GetTriWeq0TessFactor() {return m_LastComputedTessFactors[2];} GetTriInsideTessFactor()417 float GetTriInsideTessFactor() {return m_LastComputedTessFactors[3];} GetQuadUeq0TessFactor()418 float GetQuadUeq0TessFactor() {return m_LastComputedTessFactors[0];} GetQuadVeq0TessFactor()419 float GetQuadVeq0TessFactor() {return m_LastComputedTessFactors[1];} GetQuadUeq1TessFactor()420 float GetQuadUeq1TessFactor() {return m_LastComputedTessFactors[2];} GetQuadVeq1TessFactor()421 float GetQuadVeq1TessFactor() {return m_LastComputedTessFactors[3];} GetQuadInsideUTessFactor()422 float GetQuadInsideUTessFactor() {return m_LastComputedTessFactors[4];} GetQuadInsideVTessFactor()423 float GetQuadInsideVTessFactor() {return m_LastComputedTessFactors[5];} GetUnRoundedIsoLineDensityTessFactor()424 float GetUnRoundedIsoLineDensityTessFactor() {return m_LastUnRoundedComputedTessFactors[0];} GetUnRoundedIsoLineDetailTessFactor()425 float GetUnRoundedIsoLineDetailTessFactor() {return m_LastUnRoundedComputedTessFactors[1];} GetUnRoundedTriUeq0TessFactor()426 float GetUnRoundedTriUeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[0];} GetUnRoundedTriVeq0TessFactor()427 float GetUnRoundedTriVeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[1];} GetUnRoundedTriWeq0TessFactor()428 float GetUnRoundedTriWeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[2];} GetUnRoundedTriInsideTessFactor()429 float GetUnRoundedTriInsideTessFactor() {return m_LastUnRoundedComputedTessFactors[3];} GetUnRoundedQuadUeq0TessFactor()430 float GetUnRoundedQuadUeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[0];} GetUnRoundedQuadVeq0TessFactor()431 float GetUnRoundedQuadVeq0TessFactor() {return m_LastUnRoundedComputedTessFactors[1];} GetUnRoundedQuadUeq1TessFactor()432 float GetUnRoundedQuadUeq1TessFactor() {return m_LastUnRoundedComputedTessFactors[2];} GetUnRoundedQuadVeq1TessFactor()433 float GetUnRoundedQuadVeq1TessFactor() {return m_LastUnRoundedComputedTessFactors[3];} GetUnRoundedQuadInsideUTessFactor()434 float GetUnRoundedQuadInsideUTessFactor() {return m_LastUnRoundedComputedTessFactors[4];} GetUnRoundedQuadInsideVTessFactor()435 float GetUnRoundedQuadInsideVTessFactor() {return m_LastUnRoundedComputedTessFactors[5];} 436 437 CHLSLTessellator(); 438 //--------------------------------------------------------------------------------------------------------------------------------- 439 private: 440 TESSELLATOR_PARITY m_originalParity; // user chosen parity 441 TESSELLATOR_PARITY m_parity; // current parity: if allowing mix of even/odd during discrete 442 // tessellation, this can vary from the user defined parity 443 D3D11_TESSELLATOR_PARTITIONING m_originalPartitioning; // user chosen partitioning 444 D3D11_TESSELLATOR_PARTITIONING m_partitioning; // current partitioning. IsoLines overrides for line density 445 D3D11_TESSELLATOR_OUTPUT_PRIMITIVE m_outputPrimitive; 446 D3D11_TESSELLATOR_REDUCTION m_insideTessFactorReduction; 447 D3D11_TESSELLATOR_QUAD_REDUCTION_AXIS m_quadInsideTessFactorReductionAxis; 448 float m_LastComputedTessFactors[6]; // TessFactors used for last tessellation 449 float m_LastUnRoundedComputedTessFactors[6]; // TessFactors used for last tessellation (before they were rounded) IntegerPartitioning()450 bool IntegerPartitioning() {return (m_partitioning == D3D11_TESSELLATOR_PARTITIONING_INTEGER) ? true : false;} Pow2Partitioning()451 bool Pow2Partitioning() {return (m_partitioning == D3D11_TESSELLATOR_PARTITIONING_POW2)? true : false;} 452 void ClampTessFactor(float& TessFactor); 453 void RoundUpTessFactor(float& TessFactor); 454 void CleanupFloatTessFactor(float& input); // clamp float to [1.0f... +INF] (incl NaN->1.0f) 455 void ClampFloatTessFactorScale(float& input); // clamp float to [0.0f... +INF] (incl NaN->0.0f) 456 457 // Tessellation parity control Odd()458 bool Odd() {return (m_parity == TESSELLATOR_PARITY_ODD) ? true : false;} SetTessellationParity(TESSELLATOR_PARITY parity)459 void SetTessellationParity(TESSELLATOR_PARITY parity) {m_parity = parity;} 460 461 // Tesselation Partitioning control RestorePartitioning()462 void RestorePartitioning() {m_partitioning = m_originalPartitioning;}; OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING partitioning)463 void OverridePartitioning(D3D11_TESSELLATOR_PARTITIONING partitioning) {m_partitioning = partitioning;} //isoline uses this for density 464 465 void IsoLineHLSLProcessTessFactors( float TessFactor_V_LineDensity, float TessFactor_U_LineDetail ); 466 void TriHLSLProcessTessFactors( float tessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Weq0, float insideTessFactor ); 467 void QuadHLSLProcessTessFactors( float TessFactor_Ueq0, float TessFactor_Veq0, float TessFactor_Ueq1, float TessFactor_Veq1, 468 float insideTessFactor_U, float insideTessFactor_V ); 469 470 }; 471 472