1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 
8 /*******************************************************************************
9  * This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
10  * plug-in component to the Secure Monitor, registered as a runtime service. The
11  * SPD is expected to be a functional extension of the Secure Payload (SP) that
12  * executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
13  * the Trusted OS/Applications range to the dispatcher. The SPD will either
14  * handle the request locally or delegate it to the Secure Payload. It is also
15  * responsible for initialising and maintaining communication with the SP.
16  ******************************************************************************/
17 #include <assert.h>
18 #include <errno.h>
19 #include <stddef.h>
20 #include <string.h>
21 
22 #include <arch_helpers.h>
23 #include <bl31/bl31.h>
24 #include <bl31/ehf.h>
25 #include <bl32/tsp/tsp.h>
26 #include <common/bl_common.h>
27 #include <common/debug.h>
28 #include <common/runtime_svc.h>
29 #include <lib/el3_runtime/context_mgmt.h>
30 #include <plat/common/platform.h>
31 #include <tools_share/uuid.h>
32 
33 #include "tspd_private.h"
34 
35 /*******************************************************************************
36  * Address of the entrypoint vector table in the Secure Payload. It is
37  * initialised once on the primary core after a cold boot.
38  ******************************************************************************/
39 tsp_vectors_t *tsp_vectors;
40 
41 /*******************************************************************************
42  * Array to keep track of per-cpu Secure Payload state
43  ******************************************************************************/
44 tsp_context_t tspd_sp_context[TSPD_CORE_COUNT];
45 
46 
47 /* TSP UID */
48 DEFINE_SVC_UUID2(tsp_uuid,
49 	0xa056305b, 0x9132, 0x7b42, 0x98, 0x11,
50 	0x71, 0x68, 0xca, 0x50, 0xf3, 0xfa);
51 
52 int32_t tspd_init(void);
53 
54 /*
55  * This helper function handles Secure EL1 preemption. The preemption could be
56  * due Non Secure interrupts or EL3 interrupts. In both the cases we context
57  * switch to the normal world and in case of EL3 interrupts, it will again be
58  * routed to EL3 which will get handled at the exception vectors.
59  */
tspd_handle_sp_preemption(void * handle)60 uint64_t tspd_handle_sp_preemption(void *handle)
61 {
62 	cpu_context_t *ns_cpu_context;
63 
64 	assert(handle == cm_get_context(SECURE));
65 	cm_el1_sysregs_context_save(SECURE);
66 	/* Get a reference to the non-secure context */
67 	ns_cpu_context = cm_get_context(NON_SECURE);
68 	assert(ns_cpu_context);
69 
70 	/*
71 	 * To allow Secure EL1 interrupt handler to re-enter TSP while TSP
72 	 * is preempted, the secure system register context which will get
73 	 * overwritten must be additionally saved. This is currently done
74 	 * by the TSPD S-EL1 interrupt handler.
75 	 */
76 
77 	/*
78 	 * Restore non-secure state.
79 	 */
80 	cm_el1_sysregs_context_restore(NON_SECURE);
81 	cm_set_next_eret_context(NON_SECURE);
82 
83 	/*
84 	 * The TSP was preempted during execution of a Yielding SMC Call.
85 	 * Return back to the normal world with SMC_PREEMPTED as error
86 	 * code in x0.
87 	 */
88 	SMC_RET1(ns_cpu_context, SMC_PREEMPTED);
89 }
90 
91 /*******************************************************************************
92  * This function is the handler registered for S-EL1 interrupts by the TSPD. It
93  * validates the interrupt and upon success arranges entry into the TSP at
94  * 'tsp_sel1_intr_entry()' for handling the interrupt.
95  ******************************************************************************/
tspd_sel1_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)96 static uint64_t tspd_sel1_interrupt_handler(uint32_t id,
97 					    uint32_t flags,
98 					    void *handle,
99 					    void *cookie)
100 {
101 	uint32_t linear_id;
102 	tsp_context_t *tsp_ctx;
103 
104 	/* Check the security state when the exception was generated */
105 	assert(get_interrupt_src_ss(flags) == NON_SECURE);
106 
107 	/* Sanity check the pointer to this cpu's context */
108 	assert(handle == cm_get_context(NON_SECURE));
109 
110 	/* Save the non-secure context before entering the TSP */
111 	cm_el1_sysregs_context_save(NON_SECURE);
112 
113 	/* Get a reference to this cpu's TSP context */
114 	linear_id = plat_my_core_pos();
115 	tsp_ctx = &tspd_sp_context[linear_id];
116 	assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
117 
118 	/*
119 	 * Determine if the TSP was previously preempted. Its last known
120 	 * context has to be preserved in this case.
121 	 * The TSP should return control to the TSPD after handling this
122 	 * S-EL1 interrupt. Preserve essential EL3 context to allow entry into
123 	 * the TSP at the S-EL1 interrupt entry point using the 'cpu_context'
124 	 * structure. There is no need to save the secure system register
125 	 * context since the TSP is supposed to preserve it during S-EL1
126 	 * interrupt handling.
127 	 */
128 	if (get_yield_smc_active_flag(tsp_ctx->state)) {
129 		tsp_ctx->saved_spsr_el3 = (uint32_t)SMC_GET_EL3(&tsp_ctx->cpu_ctx,
130 						      CTX_SPSR_EL3);
131 		tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx,
132 						     CTX_ELR_EL3);
133 #if TSP_NS_INTR_ASYNC_PREEMPT
134 		/*Need to save the previously interrupted secure context */
135 		memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE);
136 #endif
137 	}
138 
139 	cm_el1_sysregs_context_restore(SECURE);
140 	cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry,
141 		    SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS));
142 
143 	cm_set_next_eret_context(SECURE);
144 
145 	/*
146 	 * Tell the TSP that it has to handle a S-EL1 interrupt synchronously.
147 	 * Also the instruction in normal world where the interrupt was
148 	 * generated is passed for debugging purposes. It is safe to retrieve
149 	 * this address from ELR_EL3 as the secure context will not take effect
150 	 * until el3_exit().
151 	 */
152 	SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3());
153 }
154 
155 #if TSP_NS_INTR_ASYNC_PREEMPT
156 /*******************************************************************************
157  * This function is the handler registered for Non secure interrupts by the
158  * TSPD. It validates the interrupt and upon success arranges entry into the
159  * normal world for handling the interrupt.
160  ******************************************************************************/
tspd_ns_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)161 static uint64_t tspd_ns_interrupt_handler(uint32_t id,
162 					    uint32_t flags,
163 					    void *handle,
164 					    void *cookie)
165 {
166 	/* Check the security state when the exception was generated */
167 	assert(get_interrupt_src_ss(flags) == SECURE);
168 
169 	/*
170 	 * Disable the routing of NS interrupts from secure world to EL3 while
171 	 * interrupted on this core.
172 	 */
173 	disable_intr_rm_local(INTR_TYPE_NS, SECURE);
174 
175 	return tspd_handle_sp_preemption(handle);
176 }
177 #endif
178 
179 /*******************************************************************************
180  * Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
181  * (aarch32/aarch64) if not already known and initialises the context for entry
182  * into the SP for its initialisation.
183  ******************************************************************************/
tspd_setup(void)184 static int32_t tspd_setup(void)
185 {
186 	entry_point_info_t *tsp_ep_info;
187 	uint32_t linear_id;
188 
189 	linear_id = plat_my_core_pos();
190 
191 	/*
192 	 * Get information about the Secure Payload (BL32) image. Its
193 	 * absence is a critical failure.  TODO: Add support to
194 	 * conditionally include the SPD service
195 	 */
196 	tsp_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
197 	if (!tsp_ep_info) {
198 		WARN("No TSP provided by BL2 boot loader, Booting device"
199 			" without TSP initialization. SMC`s destined for TSP"
200 			" will return SMC_UNK\n");
201 		return 1;
202 	}
203 
204 	/*
205 	 * If there's no valid entry point for SP, we return a non-zero value
206 	 * signalling failure initializing the service. We bail out without
207 	 * registering any handlers
208 	 */
209 	if (!tsp_ep_info->pc)
210 		return 1;
211 
212 	/*
213 	 * We could inspect the SP image and determine its execution
214 	 * state i.e whether AArch32 or AArch64. Assuming it's AArch64
215 	 * for the time being.
216 	 */
217 	tspd_init_tsp_ep_state(tsp_ep_info,
218 				TSP_AARCH64,
219 				tsp_ep_info->pc,
220 				&tspd_sp_context[linear_id]);
221 
222 #if TSP_INIT_ASYNC
223 	bl31_set_next_image_type(SECURE);
224 #else
225 	/*
226 	 * All TSPD initialization done. Now register our init function with
227 	 * BL31 for deferred invocation
228 	 */
229 	bl31_register_bl32_init(&tspd_init);
230 #endif
231 	return 0;
232 }
233 
234 /*******************************************************************************
235  * This function passes control to the Secure Payload image (BL32) for the first
236  * time on the primary cpu after a cold boot. It assumes that a valid secure
237  * context has already been created by tspd_setup() which can be directly used.
238  * It also assumes that a valid non-secure context has been initialised by PSCI
239  * so it does not need to save and restore any non-secure state. This function
240  * performs a synchronous entry into the Secure payload. The SP passes control
241  * back to this routine through a SMC.
242  ******************************************************************************/
tspd_init(void)243 int32_t tspd_init(void)
244 {
245 	uint32_t linear_id = plat_my_core_pos();
246 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
247 	entry_point_info_t *tsp_entry_point;
248 	uint64_t rc;
249 
250 	/*
251 	 * Get information about the Secure Payload (BL32) image. Its
252 	 * absence is a critical failure.
253 	 */
254 	tsp_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
255 	assert(tsp_entry_point);
256 
257 	cm_init_my_context(tsp_entry_point);
258 
259 	/*
260 	 * Arrange for an entry into the test secure payload. It will be
261 	 * returned via TSP_ENTRY_DONE case
262 	 */
263 	rc = tspd_synchronous_sp_entry(tsp_ctx);
264 	assert(rc != 0);
265 
266 	return rc;
267 }
268 
269 
270 /*******************************************************************************
271  * This function is responsible for handling all SMCs in the Trusted OS/App
272  * range from the non-secure state as defined in the SMC Calling Convention
273  * Document. It is also responsible for communicating with the Secure payload
274  * to delegate work and return results back to the non-secure state. Lastly it
275  * will also return any information that the secure payload needs to do the
276  * work assigned to it.
277  ******************************************************************************/
tspd_smc_handler(uint32_t smc_fid,u_register_t x1,u_register_t x2,u_register_t x3,u_register_t x4,void * cookie,void * handle,u_register_t flags)278 static uintptr_t tspd_smc_handler(uint32_t smc_fid,
279 			 u_register_t x1,
280 			 u_register_t x2,
281 			 u_register_t x3,
282 			 u_register_t x4,
283 			 void *cookie,
284 			 void *handle,
285 			 u_register_t flags)
286 {
287 	cpu_context_t *ns_cpu_context;
288 	uint32_t linear_id = plat_my_core_pos(), ns;
289 	tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id];
290 	uint64_t rc;
291 #if TSP_INIT_ASYNC
292 	entry_point_info_t *next_image_info;
293 #endif
294 
295 	/* Determine which security state this SMC originated from */
296 	ns = is_caller_non_secure(flags);
297 
298 	switch (smc_fid) {
299 
300 	/*
301 	 * This function ID is used by TSP to indicate that it was
302 	 * preempted by a normal world IRQ.
303 	 *
304 	 */
305 	case TSP_PREEMPTED:
306 		if (ns)
307 			SMC_RET1(handle, SMC_UNK);
308 
309 		return tspd_handle_sp_preemption(handle);
310 
311 	/*
312 	 * This function ID is used only by the TSP to indicate that it has
313 	 * finished handling a S-EL1 interrupt or was preempted by a higher
314 	 * priority pending EL3 interrupt. Execution should resume
315 	 * in the normal world.
316 	 */
317 	case TSP_HANDLED_S_EL1_INTR:
318 		if (ns)
319 			SMC_RET1(handle, SMC_UNK);
320 
321 		assert(handle == cm_get_context(SECURE));
322 
323 		/*
324 		 * Restore the relevant EL3 state which saved to service
325 		 * this SMC.
326 		 */
327 		if (get_yield_smc_active_flag(tsp_ctx->state)) {
328 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
329 				    CTX_SPSR_EL3,
330 				    tsp_ctx->saved_spsr_el3);
331 			SMC_SET_EL3(&tsp_ctx->cpu_ctx,
332 				    CTX_ELR_EL3,
333 				    tsp_ctx->saved_elr_el3);
334 #if TSP_NS_INTR_ASYNC_PREEMPT
335 			/*
336 			 * Need to restore the previously interrupted
337 			 * secure context.
338 			 */
339 			memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx,
340 				TSPD_SP_CTX_SIZE);
341 #endif
342 		}
343 
344 		/* Get a reference to the non-secure context */
345 		ns_cpu_context = cm_get_context(NON_SECURE);
346 		assert(ns_cpu_context);
347 
348 		/*
349 		 * Restore non-secure state. There is no need to save the
350 		 * secure system register context since the TSP was supposed
351 		 * to preserve it during S-EL1 interrupt handling.
352 		 */
353 		cm_el1_sysregs_context_restore(NON_SECURE);
354 		cm_set_next_eret_context(NON_SECURE);
355 
356 		SMC_RET0((uint64_t) ns_cpu_context);
357 
358 	/*
359 	 * This function ID is used only by the SP to indicate it has
360 	 * finished initialising itself after a cold boot
361 	 */
362 	case TSP_ENTRY_DONE:
363 		if (ns)
364 			SMC_RET1(handle, SMC_UNK);
365 
366 		/*
367 		 * Stash the SP entry points information. This is done
368 		 * only once on the primary cpu
369 		 */
370 		assert(tsp_vectors == NULL);
371 		tsp_vectors = (tsp_vectors_t *) x1;
372 
373 		if (tsp_vectors) {
374 			set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON);
375 
376 			/*
377 			 * TSP has been successfully initialized. Register power
378 			 * management hooks with PSCI
379 			 */
380 			psci_register_spd_pm_hook(&tspd_pm);
381 
382 			/*
383 			 * Register an interrupt handler for S-EL1 interrupts
384 			 * when generated during code executing in the
385 			 * non-secure state.
386 			 */
387 			flags = 0;
388 			set_interrupt_rm_flag(flags, NON_SECURE);
389 			rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
390 						tspd_sel1_interrupt_handler,
391 						flags);
392 			if (rc)
393 				panic();
394 
395 #if TSP_NS_INTR_ASYNC_PREEMPT
396 			/*
397 			 * Register an interrupt handler for NS interrupts when
398 			 * generated during code executing in secure state are
399 			 * routed to EL3.
400 			 */
401 			flags = 0;
402 			set_interrupt_rm_flag(flags, SECURE);
403 
404 			rc = register_interrupt_type_handler(INTR_TYPE_NS,
405 						tspd_ns_interrupt_handler,
406 						flags);
407 			if (rc)
408 				panic();
409 
410 			/*
411 			 * Disable the NS interrupt locally.
412 			 */
413 			disable_intr_rm_local(INTR_TYPE_NS, SECURE);
414 #endif
415 		}
416 
417 
418 #if TSP_INIT_ASYNC
419 		/* Save the Secure EL1 system register context */
420 		assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx);
421 		cm_el1_sysregs_context_save(SECURE);
422 
423 		/* Program EL3 registers to enable entry into the next EL */
424 		next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE);
425 		assert(next_image_info);
426 		assert(NON_SECURE ==
427 				GET_SECURITY_STATE(next_image_info->h.attr));
428 
429 		cm_init_my_context(next_image_info);
430 		cm_prepare_el3_exit(NON_SECURE);
431 		SMC_RET0(cm_get_context(NON_SECURE));
432 #else
433 		/*
434 		 * SP reports completion. The SPD must have initiated
435 		 * the original request through a synchronous entry
436 		 * into the SP. Jump back to the original C runtime
437 		 * context.
438 		 */
439 		tspd_synchronous_sp_exit(tsp_ctx, x1);
440 		break;
441 #endif
442 	/*
443 	 * This function ID is used only by the SP to indicate it has finished
444 	 * aborting a preempted Yielding SMC Call.
445 	 */
446 	case TSP_ABORT_DONE:
447 
448 	/*
449 	 * These function IDs are used only by the SP to indicate it has
450 	 * finished:
451 	 * 1. turning itself on in response to an earlier psci
452 	 *    cpu_on request
453 	 * 2. resuming itself after an earlier psci cpu_suspend
454 	 *    request.
455 	 */
456 	case TSP_ON_DONE:
457 	case TSP_RESUME_DONE:
458 
459 	/*
460 	 * These function IDs are used only by the SP to indicate it has
461 	 * finished:
462 	 * 1. suspending itself after an earlier psci cpu_suspend
463 	 *    request.
464 	 * 2. turning itself off in response to an earlier psci
465 	 *    cpu_off request.
466 	 */
467 	case TSP_OFF_DONE:
468 	case TSP_SUSPEND_DONE:
469 	case TSP_SYSTEM_OFF_DONE:
470 	case TSP_SYSTEM_RESET_DONE:
471 		if (ns)
472 			SMC_RET1(handle, SMC_UNK);
473 
474 		/*
475 		 * SP reports completion. The SPD must have initiated the
476 		 * original request through a synchronous entry into the SP.
477 		 * Jump back to the original C runtime context, and pass x1 as
478 		 * return value to the caller
479 		 */
480 		tspd_synchronous_sp_exit(tsp_ctx, x1);
481 		break;
482 
483 		/*
484 		 * Request from non-secure client to perform an
485 		 * arithmetic operation or response from secure
486 		 * payload to an earlier request.
487 		 */
488 	case TSP_FAST_FID(TSP_ADD):
489 	case TSP_FAST_FID(TSP_SUB):
490 	case TSP_FAST_FID(TSP_MUL):
491 	case TSP_FAST_FID(TSP_DIV):
492 
493 	case TSP_YIELD_FID(TSP_ADD):
494 	case TSP_YIELD_FID(TSP_SUB):
495 	case TSP_YIELD_FID(TSP_MUL):
496 	case TSP_YIELD_FID(TSP_DIV):
497 		if (ns) {
498 			/*
499 			 * This is a fresh request from the non-secure client.
500 			 * The parameters are in x1 and x2. Figure out which
501 			 * registers need to be preserved, save the non-secure
502 			 * state and send the request to the secure payload.
503 			 */
504 			assert(handle == cm_get_context(NON_SECURE));
505 
506 			/* Check if we are already preempted */
507 			if (get_yield_smc_active_flag(tsp_ctx->state))
508 				SMC_RET1(handle, SMC_UNK);
509 
510 			cm_el1_sysregs_context_save(NON_SECURE);
511 
512 			/* Save x1 and x2 for use by TSP_GET_ARGS call below */
513 			store_tsp_args(tsp_ctx, x1, x2);
514 
515 			/*
516 			 * We are done stashing the non-secure context. Ask the
517 			 * secure payload to do the work now.
518 			 */
519 
520 			/*
521 			 * Verify if there is a valid context to use, copy the
522 			 * operation type and parameters to the secure context
523 			 * and jump to the fast smc entry point in the secure
524 			 * payload. Entry into S-EL1 will take place upon exit
525 			 * from this function.
526 			 */
527 			assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE));
528 
529 			/* Set appropriate entry for SMC.
530 			 * We expect the TSP to manage the PSTATE.I and PSTATE.F
531 			 * flags as appropriate.
532 			 */
533 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
534 				cm_set_elr_el3(SECURE, (uint64_t)
535 						&tsp_vectors->fast_smc_entry);
536 			} else {
537 				set_yield_smc_active_flag(tsp_ctx->state);
538 				cm_set_elr_el3(SECURE, (uint64_t)
539 						&tsp_vectors->yield_smc_entry);
540 #if TSP_NS_INTR_ASYNC_PREEMPT
541 				/*
542 				 * Enable the routing of NS interrupts to EL3
543 				 * during processing of a Yielding SMC Call on
544 				 * this core.
545 				 */
546 				enable_intr_rm_local(INTR_TYPE_NS, SECURE);
547 #endif
548 
549 #if EL3_EXCEPTION_HANDLING
550 				/*
551 				 * With EL3 exception handling, while an SMC is
552 				 * being processed, Non-secure interrupts can't
553 				 * preempt Secure execution. However, for
554 				 * yielding SMCs, we want preemption to happen;
555 				 * so explicitly allow NS preemption in this
556 				 * case, and supply the preemption return code
557 				 * for TSP.
558 				 */
559 				ehf_allow_ns_preemption(TSP_PREEMPTED);
560 #endif
561 			}
562 
563 			cm_el1_sysregs_context_restore(SECURE);
564 			cm_set_next_eret_context(SECURE);
565 			SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2);
566 		} else {
567 			/*
568 			 * This is the result from the secure client of an
569 			 * earlier request. The results are in x1-x3. Copy it
570 			 * into the non-secure context, save the secure state
571 			 * and return to the non-secure state.
572 			 */
573 			assert(handle == cm_get_context(SECURE));
574 			cm_el1_sysregs_context_save(SECURE);
575 
576 			/* Get a reference to the non-secure context */
577 			ns_cpu_context = cm_get_context(NON_SECURE);
578 			assert(ns_cpu_context);
579 
580 			/* Restore non-secure state */
581 			cm_el1_sysregs_context_restore(NON_SECURE);
582 			cm_set_next_eret_context(NON_SECURE);
583 			if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_YIELD) {
584 				clr_yield_smc_active_flag(tsp_ctx->state);
585 #if TSP_NS_INTR_ASYNC_PREEMPT
586 				/*
587 				 * Disable the routing of NS interrupts to EL3
588 				 * after processing of a Yielding SMC Call on
589 				 * this core is finished.
590 				 */
591 				disable_intr_rm_local(INTR_TYPE_NS, SECURE);
592 #endif
593 			}
594 
595 			SMC_RET3(ns_cpu_context, x1, x2, x3);
596 		}
597 		assert(0); /* Unreachable */
598 
599 	/*
600 	 * Request from the non-secure world to abort a preempted Yielding SMC
601 	 * Call.
602 	 */
603 	case TSP_FID_ABORT:
604 		/* ABORT should only be invoked by normal world */
605 		if (!ns) {
606 			assert(0);
607 			break;
608 		}
609 
610 		assert(handle == cm_get_context(NON_SECURE));
611 		cm_el1_sysregs_context_save(NON_SECURE);
612 
613 		/* Abort the preempted SMC request */
614 		if (!tspd_abort_preempted_smc(tsp_ctx)) {
615 			/*
616 			 * If there was no preempted SMC to abort, return
617 			 * SMC_UNK.
618 			 *
619 			 * Restoring the NON_SECURE context is not necessary as
620 			 * the synchronous entry did not take place if the
621 			 * return code of tspd_abort_preempted_smc is zero.
622 			 */
623 			cm_set_next_eret_context(NON_SECURE);
624 			break;
625 		}
626 
627 		cm_el1_sysregs_context_restore(NON_SECURE);
628 		cm_set_next_eret_context(NON_SECURE);
629 		SMC_RET1(handle, SMC_OK);
630 
631 		/*
632 		 * Request from non secure world to resume the preempted
633 		 * Yielding SMC Call.
634 		 */
635 	case TSP_FID_RESUME:
636 		/* RESUME should be invoked only by normal world */
637 		if (!ns) {
638 			assert(0);
639 			break;
640 		}
641 
642 		/*
643 		 * This is a resume request from the non-secure client.
644 		 * save the non-secure state and send the request to
645 		 * the secure payload.
646 		 */
647 		assert(handle == cm_get_context(NON_SECURE));
648 
649 		/* Check if we are already preempted before resume */
650 		if (!get_yield_smc_active_flag(tsp_ctx->state))
651 			SMC_RET1(handle, SMC_UNK);
652 
653 		cm_el1_sysregs_context_save(NON_SECURE);
654 
655 		/*
656 		 * We are done stashing the non-secure context. Ask the
657 		 * secure payload to do the work now.
658 		 */
659 #if TSP_NS_INTR_ASYNC_PREEMPT
660 		/*
661 		 * Enable the routing of NS interrupts to EL3 during resumption
662 		 * of a Yielding SMC Call on this core.
663 		 */
664 		enable_intr_rm_local(INTR_TYPE_NS, SECURE);
665 #endif
666 
667 #if EL3_EXCEPTION_HANDLING
668 		/*
669 		 * Allow the resumed yielding SMC processing to be preempted by
670 		 * Non-secure interrupts. Also, supply the preemption return
671 		 * code for TSP.
672 		 */
673 		ehf_allow_ns_preemption(TSP_PREEMPTED);
674 #endif
675 
676 		/* We just need to return to the preempted point in
677 		 * TSP and the execution will resume as normal.
678 		 */
679 		cm_el1_sysregs_context_restore(SECURE);
680 		cm_set_next_eret_context(SECURE);
681 		SMC_RET0(&tsp_ctx->cpu_ctx);
682 
683 		/*
684 		 * This is a request from the secure payload for more arguments
685 		 * for an ongoing arithmetic operation requested by the
686 		 * non-secure world. Simply return the arguments from the non-
687 		 * secure client in the original call.
688 		 */
689 	case TSP_GET_ARGS:
690 		if (ns)
691 			SMC_RET1(handle, SMC_UNK);
692 
693 		get_tsp_args(tsp_ctx, x1, x2);
694 		SMC_RET2(handle, x1, x2);
695 
696 	case TOS_CALL_COUNT:
697 		/*
698 		 * Return the number of service function IDs implemented to
699 		 * provide service to non-secure
700 		 */
701 		SMC_RET1(handle, TSP_NUM_FID);
702 
703 	case TOS_UID:
704 		/* Return TSP UID to the caller */
705 		SMC_UUID_RET(handle, tsp_uuid);
706 
707 	case TOS_CALL_VERSION:
708 		/* Return the version of current implementation */
709 		SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR);
710 
711 	default:
712 		break;
713 	}
714 
715 	SMC_RET1(handle, SMC_UNK);
716 }
717 
718 /* Define a SPD runtime service descriptor for fast SMC calls */
719 DECLARE_RT_SVC(
720 	tspd_fast,
721 
722 	OEN_TOS_START,
723 	OEN_TOS_END,
724 	SMC_TYPE_FAST,
725 	tspd_setup,
726 	tspd_smc_handler
727 );
728 
729 /* Define a SPD runtime service descriptor for Yielding SMC Calls */
730 DECLARE_RT_SVC(
731 	tspd_std,
732 
733 	OEN_TOS_START,
734 	OEN_TOS_END,
735 	SMC_TYPE_YIELD,
736 	NULL,
737 	tspd_smc_handler
738 );
739