1 /*
2  * sfpdiag.c: Implements SFF-8472 optics diagnostics.
3  *
4  * Aurelien Guillaume <aurelien@iwi.me> (C) 2012
5  *   This implementation is loosely based on DOM patches
6  *   from Robert Olsson <robert@herjulf.se> (C) 2009
7  *   and SFF-8472 specs (ftp://ftp.seagate.com/pub/sff/SFF-8472.PDF)
8  *   by SFF Committee.
9  */
10 
11 #include <stdio.h>
12 #include <math.h>
13 #include <arpa/inet.h>
14 #include "internal.h"
15 #include "sff-common.h"
16 
17 /* Offsets in decimal, for direct comparison with the SFF specs */
18 
19 /* A0-based EEPROM offsets for DOM support checks */
20 #define SFF_A0_DOM                        92
21 #define SFF_A0_OPTIONS                    93
22 #define SFF_A0_COMP                       94
23 
24 /* EEPROM bit values for various registers */
25 #define SFF_A0_DOM_EXTCAL                 (1 << 4)
26 #define SFF_A0_DOM_INTCAL                 (1 << 5)
27 #define SFF_A0_DOM_IMPL                   (1 << 6)
28 #define SFF_A0_DOM_PWRT                   (1 << 3)
29 
30 #define SFF_A0_OPTIONS_AW                 (1 << 7)
31 
32 /*
33  * See ethtool.c comments about SFF-8472, this is the offset
34  * at which the A2 page is in the EEPROM blob returned by the
35  * kernel.
36  */
37 #define SFF_A2_BASE                       0x100
38 
39 /* A2-based offsets for DOM */
40 #define SFF_A2_TEMP                       96
41 #define SFF_A2_TEMP_HALRM                 0
42 #define SFF_A2_TEMP_LALRM                 2
43 #define SFF_A2_TEMP_HWARN                 4
44 #define SFF_A2_TEMP_LWARN                 6
45 
46 #define SFF_A2_VCC                        98
47 #define SFF_A2_VCC_HALRM                  8
48 #define SFF_A2_VCC_LALRM                  10
49 #define SFF_A2_VCC_HWARN                  12
50 #define SFF_A2_VCC_LWARN                  14
51 
52 #define SFF_A2_BIAS                       100
53 #define SFF_A2_BIAS_HALRM                 16
54 #define SFF_A2_BIAS_LALRM                 18
55 #define SFF_A2_BIAS_HWARN                 20
56 #define SFF_A2_BIAS_LWARN                 22
57 
58 #define SFF_A2_TX_PWR                     102
59 #define SFF_A2_TX_PWR_HALRM               24
60 #define SFF_A2_TX_PWR_LALRM               26
61 #define SFF_A2_TX_PWR_HWARN               28
62 #define SFF_A2_TX_PWR_LWARN               30
63 
64 #define SFF_A2_RX_PWR                     104
65 #define SFF_A2_RX_PWR_HALRM               32
66 #define SFF_A2_RX_PWR_LALRM               34
67 #define SFF_A2_RX_PWR_HWARN               36
68 #define SFF_A2_RX_PWR_LWARN               38
69 
70 #define SFF_A2_ALRM_FLG                   112
71 #define SFF_A2_WARN_FLG                   116
72 
73 /* 32-bit little-endian calibration constants */
74 #define SFF_A2_CAL_RXPWR4                 56
75 #define SFF_A2_CAL_RXPWR3                 60
76 #define SFF_A2_CAL_RXPWR2                 64
77 #define SFF_A2_CAL_RXPWR1                 68
78 #define SFF_A2_CAL_RXPWR0                 72
79 
80 /* 16-bit little endian calibration constants */
81 #define SFF_A2_CAL_TXI_SLP                76
82 #define SFF_A2_CAL_TXI_OFF                78
83 #define SFF_A2_CAL_TXPWR_SLP              80
84 #define SFF_A2_CAL_TXPWR_OFF              82
85 #define SFF_A2_CAL_T_SLP                  84
86 #define SFF_A2_CAL_T_OFF                  86
87 #define SFF_A2_CAL_V_SLP                  88
88 #define SFF_A2_CAL_V_OFF                  90
89 
90 static struct sff8472_aw_flags {
91 	const char *str;        /* Human-readable string, null at the end */
92 	int offset;             /* A2-relative address offset */
93 	__u8 value;             /* Alarm is on if (offset & value) != 0. */
94 } sff8472_aw_flags[] = {
95 	{ "Laser bias current high alarm",   SFF_A2_ALRM_FLG, (1 << 3) },
96 	{ "Laser bias current low alarm",    SFF_A2_ALRM_FLG, (1 << 2) },
97 	{ "Laser bias current high warning", SFF_A2_WARN_FLG, (1 << 3) },
98 	{ "Laser bias current low warning",  SFF_A2_WARN_FLG, (1 << 2) },
99 
100 	{ "Laser output power high alarm",   SFF_A2_ALRM_FLG, (1 << 1) },
101 	{ "Laser output power low alarm",    SFF_A2_ALRM_FLG, (1 << 0) },
102 	{ "Laser output power high warning", SFF_A2_WARN_FLG, (1 << 1) },
103 	{ "Laser output power low warning",  SFF_A2_WARN_FLG, (1 << 0) },
104 
105 	{ "Module temperature high alarm",   SFF_A2_ALRM_FLG, (1 << 7) },
106 	{ "Module temperature low alarm",    SFF_A2_ALRM_FLG, (1 << 6) },
107 	{ "Module temperature high warning", SFF_A2_WARN_FLG, (1 << 7) },
108 	{ "Module temperature low warning",  SFF_A2_WARN_FLG, (1 << 6) },
109 
110 	{ "Module voltage high alarm",   SFF_A2_ALRM_FLG, (1 << 5) },
111 	{ "Module voltage low alarm",    SFF_A2_ALRM_FLG, (1 << 4) },
112 	{ "Module voltage high warning", SFF_A2_WARN_FLG, (1 << 5) },
113 	{ "Module voltage low warning",  SFF_A2_WARN_FLG, (1 << 4) },
114 
115 	{ "Laser rx power high alarm",   SFF_A2_ALRM_FLG + 1, (1 << 7) },
116 	{ "Laser rx power low alarm",    SFF_A2_ALRM_FLG + 1, (1 << 6) },
117 	{ "Laser rx power high warning", SFF_A2_WARN_FLG + 1, (1 << 7) },
118 	{ "Laser rx power low warning",  SFF_A2_WARN_FLG + 1, (1 << 6) },
119 
120 	{ NULL, 0, 0 },
121 };
122 
123 /* Most common case: 16-bit unsigned integer in a certain unit */
124 #define A2_OFFSET_TO_U16(offset) \
125 	(id[SFF_A2_BASE + (offset)] << 8 | id[SFF_A2_BASE + (offset) + 1])
126 
127 /* Calibration slope is a number between 0.0 included and 256.0 excluded. */
128 #define A2_OFFSET_TO_SLP(offset) \
129 	(id[SFF_A2_BASE + (offset)] + id[SFF_A2_BASE + (offset) + 1] / 256.)
130 
131 /* Calibration offset is an integer from -32768 to 32767 */
132 #define A2_OFFSET_TO_OFF(offset) \
133 	((__s16)A2_OFFSET_TO_U16(offset))
134 
135 /* RXPWR(x) are IEEE-754 floating point numbers in big-endian format */
136 #define A2_OFFSET_TO_RXPWRx(offset) \
137 	(befloattoh((__u32 *)(id + SFF_A2_BASE + (offset))))
138 
139 /*
140  * 2-byte internal temperature conversions:
141  * First byte is a signed 8-bit integer, which is the temp decimal part
142  * Second byte are 1/256th of degree, which are added to the dec part.
143  */
144 #define A2_OFFSET_TO_TEMP(offset) ((__s16)A2_OFFSET_TO_U16(offset))
145 
sff8472_dom_parse(const __u8 * id,struct sff_diags * sd)146 static void sff8472_dom_parse(const __u8 *id, struct sff_diags *sd)
147 {
148 	sd->bias_cur[MCURR] = A2_OFFSET_TO_U16(SFF_A2_BIAS);
149 	sd->bias_cur[HALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HALRM);
150 	sd->bias_cur[LALRM] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LALRM);
151 	sd->bias_cur[HWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_HWARN);
152 	sd->bias_cur[LWARN] = A2_OFFSET_TO_U16(SFF_A2_BIAS_LWARN);
153 
154 	sd->sfp_voltage[MCURR] = A2_OFFSET_TO_U16(SFF_A2_VCC);
155 	sd->sfp_voltage[HALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_HALRM);
156 	sd->sfp_voltage[LALRM] = A2_OFFSET_TO_U16(SFF_A2_VCC_LALRM);
157 	sd->sfp_voltage[HWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_HWARN);
158 	sd->sfp_voltage[LWARN] = A2_OFFSET_TO_U16(SFF_A2_VCC_LWARN);
159 
160 	sd->tx_power[MCURR] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR);
161 	sd->tx_power[HALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HALRM);
162 	sd->tx_power[LALRM] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LALRM);
163 	sd->tx_power[HWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_HWARN);
164 	sd->tx_power[LWARN] = A2_OFFSET_TO_U16(SFF_A2_TX_PWR_LWARN);
165 
166 	sd->rx_power[MCURR] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR);
167 	sd->rx_power[HALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HALRM);
168 	sd->rx_power[LALRM] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LALRM);
169 	sd->rx_power[HWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_HWARN);
170 	sd->rx_power[LWARN] = A2_OFFSET_TO_U16(SFF_A2_RX_PWR_LWARN);
171 
172 	sd->sfp_temp[MCURR] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP);
173 	sd->sfp_temp[HALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HALRM);
174 	sd->sfp_temp[LALRM] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LALRM);
175 	sd->sfp_temp[HWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_HWARN);
176 	sd->sfp_temp[LWARN] = A2_OFFSET_TO_TEMP(SFF_A2_TEMP_LWARN);
177 }
178 
179 /* Converts to a float from a big-endian 4-byte source buffer. */
befloattoh(const __u32 * source)180 static float befloattoh(const __u32 *source)
181 {
182 	union {
183 		__u32 src;
184 		float dst;
185 	} converter;
186 
187 	converter.src = ntohl(*source);
188 	return converter.dst;
189 }
190 
sff8472_calibration(const __u8 * id,struct sff_diags * sd)191 static void sff8472_calibration(const __u8 *id, struct sff_diags *sd)
192 {
193 	int i;
194 	__u16 rx_reading;
195 
196 	/* Calibration should occur for all values (threshold and current) */
197 	for (i = 0; i < ARRAY_SIZE(sd->bias_cur); ++i) {
198 		/*
199 		 * Apply calibration formula 1 (Temp., Voltage, Bias, Tx Power)
200 		 */
201 		sd->bias_cur[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXI_SLP);
202 		sd->tx_power[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_TXPWR_SLP);
203 		sd->sfp_voltage[i] *= A2_OFFSET_TO_SLP(SFF_A2_CAL_V_SLP);
204 		sd->sfp_temp[i]    *= A2_OFFSET_TO_SLP(SFF_A2_CAL_T_SLP);
205 
206 		sd->bias_cur[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXI_OFF);
207 		sd->tx_power[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_TXPWR_OFF);
208 		sd->sfp_voltage[i] += A2_OFFSET_TO_OFF(SFF_A2_CAL_V_OFF);
209 		sd->sfp_temp[i]    += A2_OFFSET_TO_OFF(SFF_A2_CAL_T_OFF);
210 
211 		/*
212 		 * Apply calibration formula 2 (Rx Power only)
213 		 */
214 		rx_reading = sd->rx_power[i];
215 		sd->rx_power[i]    = A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR0);
216 		sd->rx_power[i]    += rx_reading *
217 			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR1);
218 		sd->rx_power[i]    += rx_reading *
219 			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR2);
220 		sd->rx_power[i]    += rx_reading *
221 			A2_OFFSET_TO_RXPWRx(SFF_A2_CAL_RXPWR3);
222 	}
223 }
224 
sff8472_parse_eeprom(const __u8 * id,struct sff_diags * sd)225 static void sff8472_parse_eeprom(const __u8 *id, struct sff_diags *sd)
226 {
227 	sd->supports_dom = id[SFF_A0_DOM] & SFF_A0_DOM_IMPL;
228 	sd->supports_alarms = id[SFF_A0_OPTIONS] & SFF_A0_OPTIONS_AW;
229 	sd->calibrated_ext = id[SFF_A0_DOM] & SFF_A0_DOM_EXTCAL;
230 	sd->rx_power_type = id[SFF_A0_DOM] & SFF_A0_DOM_PWRT;
231 
232 	sff8472_dom_parse(id, sd);
233 
234 	/*
235 	 * If the SFP is externally calibrated, we need to read calibration data
236 	 * and compensate the already stored readings.
237 	 */
238 	if (sd->calibrated_ext)
239 		sff8472_calibration(id, sd);
240 }
241 
sff8472_show_all(const __u8 * id)242 void sff8472_show_all(const __u8 *id)
243 {
244 	struct sff_diags sd = {0};
245 	char *rx_power_string = NULL;
246 	int i;
247 
248 	sff8472_parse_eeprom(id, &sd);
249 
250 	if (!sd.supports_dom) {
251 		printf("\t%-41s : No\n", "Optical diagnostics support");
252 		return;
253 	}
254 	printf("\t%-41s : Yes\n", "Optical diagnostics support");
255 
256 	PRINT_BIAS("Laser bias current", sd.bias_cur[MCURR]);
257 	PRINT_xX_PWR("Laser output power", sd.tx_power[MCURR]);
258 
259 	if (!sd.rx_power_type)
260 		rx_power_string = "Receiver signal OMA";
261 	else
262 		rx_power_string = "Receiver signal average optical power";
263 
264 	PRINT_xX_PWR(rx_power_string, sd.rx_power[MCURR]);
265 
266 	PRINT_TEMP("Module temperature", sd.sfp_temp[MCURR]);
267 	PRINT_VCC("Module voltage", sd.sfp_voltage[MCURR]);
268 
269 	printf("\t%-41s : %s\n", "Alarm/warning flags implemented",
270 	       (sd.supports_alarms ? "Yes" : "No"));
271 	if (sd.supports_alarms) {
272 
273 		for (i = 0; sff8472_aw_flags[i].str; ++i) {
274 			printf("\t%-41s : %s\n", sff8472_aw_flags[i].str,
275 			       id[SFF_A2_BASE + sff8472_aw_flags[i].offset]
276 			       & sff8472_aw_flags[i].value ? "On" : "Off");
277 		}
278 		sff_show_thresholds(sd);
279 	}
280 }
281 
282