1 /*
2  * Copyright © 2016 Red Hat.
3  * Copyright © 2016 Bas Nieuwenhuizen
4  *
5  * based on si_state.c
6  * Copyright © 2015 Advanced Micro Devices, Inc.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the next
16  * paragraph) shall be included in all copies or substantial portions of the
17  * Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
24  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
25  * IN THE SOFTWARE.
26  */
27 
28 /* command buffer handling for AMD GCN */
29 
30 #include "radv_private.h"
31 #include "radv_shader.h"
32 #include "radv_cs.h"
33 #include "sid.h"
34 #include "radv_util.h"
35 
36 static void
si_write_harvested_raster_configs(struct radv_physical_device * physical_device,struct radeon_cmdbuf * cs,unsigned raster_config,unsigned raster_config_1)37 si_write_harvested_raster_configs(struct radv_physical_device *physical_device,
38                                   struct radeon_cmdbuf *cs,
39 				  unsigned raster_config,
40 				  unsigned raster_config_1)
41 {
42 	unsigned num_se = MAX2(physical_device->rad_info.max_se, 1);
43 	unsigned raster_config_se[4];
44 	unsigned se;
45 
46 	ac_get_harvested_configs(&physical_device->rad_info,
47 				 raster_config,
48 				 &raster_config_1,
49 				 raster_config_se);
50 
51 	for (se = 0; se < num_se; se++) {
52 		/* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
53 		if (physical_device->rad_info.chip_class < GFX7)
54 			radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
55 					      S_00802C_SE_INDEX(se) |
56 					      S_00802C_SH_BROADCAST_WRITES(1) |
57 					      S_00802C_INSTANCE_BROADCAST_WRITES(1));
58 		else
59 			radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
60 					       S_030800_SE_INDEX(se) | S_030800_SH_BROADCAST_WRITES(1) |
61 					       S_030800_INSTANCE_BROADCAST_WRITES(1));
62 		radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG, raster_config_se[se]);
63 	}
64 
65 	/* GRBM_GFX_INDEX has a different offset on GFX6 and GFX7+ */
66 	if (physical_device->rad_info.chip_class < GFX7)
67 		radeon_set_config_reg(cs, R_00802C_GRBM_GFX_INDEX,
68 				      S_00802C_SE_BROADCAST_WRITES(1) |
69 				      S_00802C_SH_BROADCAST_WRITES(1) |
70 				      S_00802C_INSTANCE_BROADCAST_WRITES(1));
71 	else
72 		radeon_set_uconfig_reg(cs, R_030800_GRBM_GFX_INDEX,
73 				       S_030800_SE_BROADCAST_WRITES(1) | S_030800_SH_BROADCAST_WRITES(1) |
74 				       S_030800_INSTANCE_BROADCAST_WRITES(1));
75 
76 	if (physical_device->rad_info.chip_class >= GFX7)
77 		radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1, raster_config_1);
78 }
79 
80 void
si_emit_compute(struct radv_device * device,struct radeon_cmdbuf * cs)81 si_emit_compute(struct radv_device *device,
82                 struct radeon_cmdbuf *cs)
83 {
84 	radeon_set_sh_reg_seq(cs, R_00B810_COMPUTE_START_X, 3);
85 	radeon_emit(cs, 0);
86 	radeon_emit(cs, 0);
87 	radeon_emit(cs, 0);
88 
89 	radeon_set_sh_reg_seq(cs, R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0, 2);
90 	/* R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE0 / SE1,
91 	 * renamed COMPUTE_DESTINATION_EN_SEn on gfx10. */
92 	radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
93 	radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) | S_00B858_SH1_CU_EN(0xffff));
94 
95 	if (device->physical_device->rad_info.chip_class >= GFX7) {
96 		/* Also set R_00B858_COMPUTE_STATIC_THREAD_MGMT_SE2 / SE3 */
97 		radeon_set_sh_reg_seq(cs,
98 				      R_00B864_COMPUTE_STATIC_THREAD_MGMT_SE2, 2);
99 		radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
100 			    S_00B858_SH1_CU_EN(0xffff));
101 		radeon_emit(cs, S_00B858_SH0_CU_EN(0xffff) |
102 			    S_00B858_SH1_CU_EN(0xffff));
103 
104 		if (device->border_color_data.bo) {
105 			uint64_t bc_va = radv_buffer_get_va(device->border_color_data.bo);
106 
107 			radeon_set_uconfig_reg_seq(cs, R_030E00_TA_CS_BC_BASE_ADDR, 2);
108 			radeon_emit(cs, bc_va >> 8);
109 			radeon_emit(cs, S_030E04_ADDRESS(bc_va >> 40));
110 		}
111 	}
112 
113 	if (device->physical_device->rad_info.chip_class >= GFX9) {
114 		radeon_set_uconfig_reg(cs, R_0301EC_CP_COHER_START_DELAY,
115 				       device->physical_device->rad_info.chip_class >= GFX10 ? 0x20 : 0);
116 	}
117 
118 	if (device->physical_device->rad_info.chip_class >= GFX10) {
119 		radeon_set_sh_reg(cs, R_00B890_COMPUTE_USER_ACCUM_0, 0);
120 		radeon_set_sh_reg(cs, R_00B894_COMPUTE_USER_ACCUM_1, 0);
121 		radeon_set_sh_reg(cs, R_00B898_COMPUTE_USER_ACCUM_2, 0);
122 		radeon_set_sh_reg(cs, R_00B89C_COMPUTE_USER_ACCUM_3, 0);
123 		radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, 0);
124 		radeon_set_sh_reg(cs, R_00B9F4_COMPUTE_DISPATCH_TUNNEL, 0);
125 	}
126 
127 	/* This register has been moved to R_00CD20_COMPUTE_MAX_WAVE_ID
128 	 * and is now per pipe, so it should be handled in the
129 	 * kernel if we want to use something other than the default value,
130 	 * which is now 0x22f.
131 	 */
132 	if (device->physical_device->rad_info.chip_class <= GFX6) {
133 		/* XXX: This should be:
134 		 * (number of compute units) * 4 * (waves per simd) - 1 */
135 
136 		radeon_set_sh_reg(cs, R_00B82C_COMPUTE_MAX_WAVE_ID,
137 		                  0x190 /* Default value */);
138 
139 		if (device->border_color_data.bo) {
140 			uint64_t bc_va = radv_buffer_get_va(device->border_color_data.bo);
141 			radeon_set_config_reg(cs, R_00950C_TA_CS_BC_BASE_ADDR, bc_va >> 8);
142 		}
143 	}
144 }
145 
146 /* 12.4 fixed-point */
radv_pack_float_12p4(float x)147 static unsigned radv_pack_float_12p4(float x)
148 {
149 	return x <= 0    ? 0 :
150 	       x >= 4096 ? 0xffff : x * 16;
151 }
152 
153 static void
si_set_raster_config(struct radv_physical_device * physical_device,struct radeon_cmdbuf * cs)154 si_set_raster_config(struct radv_physical_device *physical_device,
155 		     struct radeon_cmdbuf *cs)
156 {
157 	unsigned num_rb = MIN2(physical_device->rad_info.num_render_backends, 16);
158 	unsigned rb_mask = physical_device->rad_info.enabled_rb_mask;
159 	unsigned raster_config, raster_config_1;
160 
161 	ac_get_raster_config(&physical_device->rad_info,
162 			     &raster_config,
163 			     &raster_config_1, NULL);
164 
165 	/* Always use the default config when all backends are enabled
166 	 * (or when we failed to determine the enabled backends).
167 	 */
168 	if (!rb_mask || util_bitcount(rb_mask) >= num_rb) {
169 		radeon_set_context_reg(cs, R_028350_PA_SC_RASTER_CONFIG,
170 				       raster_config);
171 		if (physical_device->rad_info.chip_class >= GFX7)
172 			radeon_set_context_reg(cs, R_028354_PA_SC_RASTER_CONFIG_1,
173 					       raster_config_1);
174 	} else {
175 		si_write_harvested_raster_configs(physical_device, cs,
176 						  raster_config,
177 						  raster_config_1);
178 	}
179 }
180 
181 void
si_emit_graphics(struct radv_device * device,struct radeon_cmdbuf * cs)182 si_emit_graphics(struct radv_device *device,
183 		 struct radeon_cmdbuf *cs)
184 {
185 	struct radv_physical_device *physical_device = device->physical_device;
186 
187 	bool has_clear_state = physical_device->rad_info.has_clear_state;
188 	int i;
189 
190 	radeon_emit(cs, PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
191 	radeon_emit(cs, CC0_UPDATE_LOAD_ENABLES(1));
192 	radeon_emit(cs, CC1_UPDATE_SHADOW_ENABLES(1));
193 
194 	if (has_clear_state) {
195 		radeon_emit(cs, PKT3(PKT3_CLEAR_STATE, 0, 0));
196 		radeon_emit(cs, 0);
197 	}
198 
199 	if (physical_device->rad_info.chip_class <= GFX8)
200 		si_set_raster_config(physical_device, cs);
201 
202 	radeon_set_context_reg(cs, R_028A18_VGT_HOS_MAX_TESS_LEVEL, fui(64));
203 	if (!has_clear_state)
204 		radeon_set_context_reg(cs, R_028A1C_VGT_HOS_MIN_TESS_LEVEL, fui(0));
205 
206 	/* FIXME calculate these values somehow ??? */
207 	if (physical_device->rad_info.chip_class <= GFX8) {
208 		radeon_set_context_reg(cs, R_028A54_VGT_GS_PER_ES, SI_GS_PER_ES);
209 		radeon_set_context_reg(cs, R_028A58_VGT_ES_PER_GS, 0x40);
210 	}
211 
212 	if (!has_clear_state) {
213 		radeon_set_context_reg(cs, R_028A5C_VGT_GS_PER_VS, 0x2);
214 		radeon_set_context_reg(cs, R_028A8C_VGT_PRIMITIVEID_RESET, 0x0);
215 		radeon_set_context_reg(cs, R_028B98_VGT_STRMOUT_BUFFER_CONFIG, 0x0);
216 	}
217 
218 	if (physical_device->rad_info.chip_class <= GFX9)
219 		radeon_set_context_reg(cs, R_028AA0_VGT_INSTANCE_STEP_RATE_0, 1);
220 	if (!has_clear_state)
221 		radeon_set_context_reg(cs, R_028AB8_VGT_VTX_CNT_EN, 0x0);
222 	if (physical_device->rad_info.chip_class < GFX7)
223 		radeon_set_config_reg(cs, R_008A14_PA_CL_ENHANCE, S_008A14_NUM_CLIP_SEQ(3) |
224 				      S_008A14_CLIP_VTX_REORDER_ENA(1));
225 
226 	if (!has_clear_state)
227 		radeon_set_context_reg(cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, 0);
228 
229 	/* CLEAR_STATE doesn't clear these correctly on certain generations.
230 	 * I don't know why. Deduced by trial and error.
231 	 */
232 	if (physical_device->rad_info.chip_class <= GFX7 || !has_clear_state) {
233 		radeon_set_context_reg(cs, R_028B28_VGT_STRMOUT_DRAW_OPAQUE_OFFSET, 0);
234 		radeon_set_context_reg(cs, R_028204_PA_SC_WINDOW_SCISSOR_TL,
235 				       S_028204_WINDOW_OFFSET_DISABLE(1));
236 		radeon_set_context_reg(cs, R_028240_PA_SC_GENERIC_SCISSOR_TL,
237 				       S_028240_WINDOW_OFFSET_DISABLE(1));
238 		radeon_set_context_reg(cs, R_028244_PA_SC_GENERIC_SCISSOR_BR,
239 				       S_028244_BR_X(16384) | S_028244_BR_Y(16384));
240 		radeon_set_context_reg(cs, R_028030_PA_SC_SCREEN_SCISSOR_TL, 0);
241 		radeon_set_context_reg(cs, R_028034_PA_SC_SCREEN_SCISSOR_BR,
242 				       S_028034_BR_X(16384) | S_028034_BR_Y(16384));
243 	}
244 
245 	if (!has_clear_state) {
246 		for (i = 0; i < 16; i++) {
247 			radeon_set_context_reg(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 + i*8, 0);
248 			radeon_set_context_reg(cs, R_0282D4_PA_SC_VPORT_ZMAX_0 + i*8, fui(1.0));
249 		}
250 	}
251 
252 	if (!has_clear_state) {
253 		radeon_set_context_reg(cs, R_02820C_PA_SC_CLIPRECT_RULE, 0xFFFF);
254 		radeon_set_context_reg(cs, R_028230_PA_SC_EDGERULE, 0xAAAAAAAA);
255 		/* PA_SU_HARDWARE_SCREEN_OFFSET must be 0 due to hw bug on GFX6 */
256 		radeon_set_context_reg(cs, R_028234_PA_SU_HARDWARE_SCREEN_OFFSET, 0);
257 		radeon_set_context_reg(cs, R_028820_PA_CL_NANINF_CNTL, 0);
258 		radeon_set_context_reg(cs, R_028AC0_DB_SRESULTS_COMPARE_STATE0, 0x0);
259 		radeon_set_context_reg(cs, R_028AC4_DB_SRESULTS_COMPARE_STATE1, 0x0);
260 		radeon_set_context_reg(cs, R_028AC8_DB_PRELOAD_CONTROL, 0x0);
261 	}
262 
263 	radeon_set_context_reg(cs, R_02800C_DB_RENDER_OVERRIDE,
264 			       S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) |
265 			       S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE));
266 
267 	if (physical_device->rad_info.chip_class >= GFX10) {
268 		radeon_set_context_reg(cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, 0);
269 		radeon_set_uconfig_reg(cs, R_030964_GE_MAX_VTX_INDX, ~0);
270 		radeon_set_uconfig_reg(cs, R_030924_GE_MIN_VTX_INDX, 0);
271 		radeon_set_uconfig_reg(cs, R_030928_GE_INDX_OFFSET, 0);
272 		radeon_set_uconfig_reg(cs, R_03097C_GE_STEREO_CNTL, 0);
273 		radeon_set_uconfig_reg(cs, R_030988_GE_USER_VGPR_EN, 0);
274 	} else if (physical_device->rad_info.chip_class == GFX9) {
275 		radeon_set_uconfig_reg(cs, R_030920_VGT_MAX_VTX_INDX, ~0);
276 		radeon_set_uconfig_reg(cs, R_030924_VGT_MIN_VTX_INDX, 0);
277 		radeon_set_uconfig_reg(cs, R_030928_VGT_INDX_OFFSET, 0);
278 	} else {
279 		/* These registers, when written, also overwrite the
280 		 * CLEAR_STATE context, so we can't rely on CLEAR_STATE setting
281 		 * them.  It would be an issue if there was another UMD
282 		 * changing them.
283 		 */
284 		radeon_set_context_reg(cs, R_028400_VGT_MAX_VTX_INDX, ~0);
285 		radeon_set_context_reg(cs, R_028404_VGT_MIN_VTX_INDX, 0);
286 		radeon_set_context_reg(cs, R_028408_VGT_INDX_OFFSET, 0);
287 	}
288 
289 	unsigned cu_mask_ps = 0xffffffff;
290 
291 	/* It's wasteful to enable all CUs for PS if shader arrays have a
292 	 * different number of CUs. The reason is that the hardware sends the
293 	 * same number of PS waves to each shader array, so the slowest shader
294 	 * array limits the performance.  Disable the extra CUs for PS in
295 	 * other shader arrays to save power and thus increase clocks for busy
296 	 * CUs. In the future, we might disable or enable this tweak only for
297 	 * certain apps.
298 	 */
299 	if (physical_device->rad_info.chip_class >= GFX10_3)
300 		cu_mask_ps = u_bit_consecutive(0, physical_device->rad_info.min_good_cu_per_sa);
301 
302 	if (physical_device->rad_info.chip_class >= GFX7) {
303 		if (physical_device->rad_info.chip_class >= GFX10) {
304 			/* Logical CUs 16 - 31 */
305 			radeon_set_sh_reg_idx(physical_device, cs, R_00B404_SPI_SHADER_PGM_RSRC4_HS,
306 					      3, S_00B404_CU_EN(0xffff));
307 			radeon_set_sh_reg_idx(physical_device, cs, R_00B104_SPI_SHADER_PGM_RSRC4_VS,
308 					      3, S_00B104_CU_EN(0xffff));
309 			radeon_set_sh_reg_idx(physical_device, cs, R_00B004_SPI_SHADER_PGM_RSRC4_PS,
310 					      3, S_00B004_CU_EN(cu_mask_ps >> 16));
311 		}
312 
313 		if (physical_device->rad_info.chip_class >= GFX9) {
314 			radeon_set_sh_reg_idx(physical_device, cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
315 					      3, S_00B41C_CU_EN(0xffff) | S_00B41C_WAVE_LIMIT(0x3F));
316 		} else {
317 			radeon_set_sh_reg(cs, R_00B51C_SPI_SHADER_PGM_RSRC3_LS,
318 					  S_00B51C_CU_EN(0xffff) | S_00B51C_WAVE_LIMIT(0x3F));
319 			radeon_set_sh_reg(cs, R_00B41C_SPI_SHADER_PGM_RSRC3_HS,
320 					  S_00B41C_WAVE_LIMIT(0x3F));
321 			radeon_set_sh_reg(cs, R_00B31C_SPI_SHADER_PGM_RSRC3_ES,
322 					  S_00B31C_CU_EN(0xffff) | S_00B31C_WAVE_LIMIT(0x3F));
323 			/* If this is 0, Bonaire can hang even if GS isn't being used.
324 			 * Other chips are unaffected. These are suboptimal values,
325 			 * but we don't use on-chip GS.
326 			 */
327 			radeon_set_context_reg(cs, R_028A44_VGT_GS_ONCHIP_CNTL,
328 					       S_028A44_ES_VERTS_PER_SUBGRP(64) |
329 					       S_028A44_GS_PRIMS_PER_SUBGRP(4));
330 		}
331 
332 		/* Compute LATE_ALLOC_VS.LIMIT. */
333 		unsigned num_cu_per_sh = physical_device->rad_info.min_good_cu_per_sa;
334 		unsigned late_alloc_wave64 = 0; /* The limit is per SA. */
335 		unsigned late_alloc_wave64_gs = 0;
336 		unsigned cu_mask_vs = 0xffff;
337 		unsigned cu_mask_gs = 0xffff;
338 
339 		if (physical_device->rad_info.chip_class >= GFX10) {
340 			/* For Wave32, the hw will launch twice the number of late
341 			 * alloc waves, so 1 == 2x wave32.
342 			 */
343 			if (!physical_device->rad_info.use_late_alloc) {
344 				late_alloc_wave64 = 0;
345 			} else if (num_cu_per_sh <= 6) {
346 				late_alloc_wave64 = num_cu_per_sh - 2;
347 			} else {
348 				late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
349 
350 				/* CU2 & CU3 disabled because of the dual CU design */
351 				cu_mask_vs = 0xfff3;
352 				cu_mask_gs = 0xfff3; /* NGG only */
353 			}
354 
355 			late_alloc_wave64_gs = late_alloc_wave64;
356 
357 			/* Don't use late alloc for NGG on Navi14 due to a hw
358 			 * bug. If NGG is never used, enable all CUs.
359 			 */
360 			if (!physical_device->use_ngg ||
361 			    physical_device->rad_info.family == CHIP_NAVI14) {
362 				late_alloc_wave64_gs = 0;
363 				cu_mask_gs = 0xffff;
364 			}
365 
366 			/* Limit LATE_ALLOC_GS for prevent a hang (hw bug). */
367 			if (physical_device->rad_info.chip_class == GFX10)
368 				late_alloc_wave64_gs = MIN2(late_alloc_wave64_gs, 64);
369 		} else {
370 			if (!physical_device->rad_info.use_late_alloc) {
371 				late_alloc_wave64 = 0;
372 			} else if (num_cu_per_sh <= 4) {
373 				/* Too few available compute units per SA.
374 				 * Disallowing VS to run on one CU could hurt
375 				 * us more than late VS allocation would help.
376 				 *
377 				 * 2 is the highest safe number that allows us
378 				 * to keep all CUs enabled.
379 				 */
380 				late_alloc_wave64 = 2;
381 			} else {
382 				/* This is a good initial value, allowing 1
383 				 * late_alloc wave per SIMD on num_cu - 2.
384 				 */
385 				late_alloc_wave64 = (num_cu_per_sh - 2) * 4;
386 			}
387 
388 			if (late_alloc_wave64 > 2)
389 				cu_mask_vs = 0xfffe; /* 1 CU disabled */
390 		}
391 
392 		radeon_set_sh_reg_idx(physical_device, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS,
393 				      3, S_00B118_CU_EN(cu_mask_vs) |
394 				      S_00B118_WAVE_LIMIT(0x3F));
395 		radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS,
396 				  S_00B11C_LIMIT(late_alloc_wave64));
397 
398 		radeon_set_sh_reg_idx(physical_device, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS,
399 				      3, S_00B21C_CU_EN(cu_mask_gs) | S_00B21C_WAVE_LIMIT(0x3F));
400 
401 		if (physical_device->rad_info.chip_class >= GFX10) {
402 			radeon_set_sh_reg_idx(physical_device, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS,
403 					      3, S_00B204_CU_EN(0xffff) |
404 					      S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64_gs));
405 		}
406 
407 		radeon_set_sh_reg_idx(physical_device, cs, R_00B01C_SPI_SHADER_PGM_RSRC3_PS,
408 				      3, S_00B01C_CU_EN(cu_mask_ps) | S_00B01C_WAVE_LIMIT(0x3F));
409 	}
410 
411 	if (physical_device->rad_info.chip_class >= GFX10) {
412 		/* Break up a pixel wave if it contains deallocs for more than
413 		 * half the parameter cache.
414 		 *
415 		 * To avoid a deadlock where pixel waves aren't launched
416 		 * because they're waiting for more pixels while the frontend
417 		 * is stuck waiting for PC space, the maximum allowed value is
418 		 * the size of the PC minus the largest possible allocation for
419 		 * a single primitive shader subgroup.
420 		 */
421 		radeon_set_context_reg(cs, R_028C50_PA_SC_NGG_MODE_CNTL,
422 				       S_028C50_MAX_DEALLOCS_IN_WAVE(512));
423 		radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
424 
425 		/* Enable CMASK/FMASK/HTILE/DCC caching in L2 for small chips. */
426 		unsigned meta_write_policy, meta_read_policy;
427 
428 		/* TODO: investigate whether LRU improves performance on other chips too */
429 		if (physical_device->rad_info.num_render_backends <= 4) {
430 			meta_write_policy = V_02807C_CACHE_LRU_WR; /* cache writes */
431 			meta_read_policy =  V_02807C_CACHE_LRU_RD; /* cache reads */
432 		} else {
433 			meta_write_policy = V_02807C_CACHE_STREAM; /* write combine */
434 			meta_read_policy =  V_02807C_CACHE_NOA;    /* don't cache reads */
435 		}
436 
437 		radeon_set_context_reg(cs, R_02807C_DB_RMI_L2_CACHE_CONTROL,
438 				       S_02807C_Z_WR_POLICY(V_02807C_CACHE_STREAM) |
439 				       S_02807C_S_WR_POLICY(V_02807C_CACHE_STREAM) |
440 				       S_02807C_HTILE_WR_POLICY(meta_write_policy) |
441 				       S_02807C_ZPCPSD_WR_POLICY(V_02807C_CACHE_STREAM) |
442 				       S_02807C_Z_RD_POLICY(V_02807C_CACHE_NOA) |
443 				       S_02807C_S_RD_POLICY(V_02807C_CACHE_NOA) |
444 				       S_02807C_HTILE_RD_POLICY(meta_read_policy));
445 
446 		radeon_set_context_reg(cs, R_028410_CB_RMI_GL2_CACHE_CONTROL,
447 				       S_028410_CMASK_WR_POLICY(meta_write_policy) |
448 				       S_028410_FMASK_WR_POLICY(meta_write_policy) |
449 				       S_028410_DCC_WR_POLICY(meta_write_policy) |
450 				       S_028410_COLOR_WR_POLICY(V_028410_CACHE_STREAM) |
451 				       S_028410_CMASK_RD_POLICY(meta_read_policy) |
452 				       S_028410_FMASK_RD_POLICY(meta_read_policy) |
453 				       S_028410_DCC_RD_POLICY(meta_read_policy) |
454 				       S_028410_COLOR_RD_POLICY(V_028410_CACHE_NOA));
455 		radeon_set_context_reg(cs, R_028428_CB_COVERAGE_OUT_CONTROL, 0);
456 
457 		radeon_set_sh_reg(cs, R_00B0C8_SPI_SHADER_USER_ACCUM_PS_0, 0);
458 		radeon_set_sh_reg(cs, R_00B0CC_SPI_SHADER_USER_ACCUM_PS_1, 0);
459 		radeon_set_sh_reg(cs, R_00B0D0_SPI_SHADER_USER_ACCUM_PS_2, 0);
460 		radeon_set_sh_reg(cs, R_00B0D4_SPI_SHADER_USER_ACCUM_PS_3, 0);
461 		radeon_set_sh_reg(cs, R_00B1C8_SPI_SHADER_USER_ACCUM_VS_0, 0);
462 		radeon_set_sh_reg(cs, R_00B1CC_SPI_SHADER_USER_ACCUM_VS_1, 0);
463 		radeon_set_sh_reg(cs, R_00B1D0_SPI_SHADER_USER_ACCUM_VS_2, 0);
464 		radeon_set_sh_reg(cs, R_00B1D4_SPI_SHADER_USER_ACCUM_VS_3, 0);
465 		radeon_set_sh_reg(cs, R_00B2C8_SPI_SHADER_USER_ACCUM_ESGS_0, 0);
466 		radeon_set_sh_reg(cs, R_00B2CC_SPI_SHADER_USER_ACCUM_ESGS_1, 0);
467 		radeon_set_sh_reg(cs, R_00B2D0_SPI_SHADER_USER_ACCUM_ESGS_2, 0);
468 		radeon_set_sh_reg(cs, R_00B2D4_SPI_SHADER_USER_ACCUM_ESGS_3, 0);
469 		radeon_set_sh_reg(cs, R_00B4C8_SPI_SHADER_USER_ACCUM_LSHS_0, 0);
470 		radeon_set_sh_reg(cs, R_00B4CC_SPI_SHADER_USER_ACCUM_LSHS_1, 0);
471 		radeon_set_sh_reg(cs, R_00B4D0_SPI_SHADER_USER_ACCUM_LSHS_2, 0);
472 		radeon_set_sh_reg(cs, R_00B4D4_SPI_SHADER_USER_ACCUM_LSHS_3, 0);
473 
474 		radeon_set_sh_reg(cs, R_00B0C0_SPI_SHADER_REQ_CTRL_PS,
475 				  S_00B0C0_SOFT_GROUPING_EN(1) |
476 				  S_00B0C0_NUMBER_OF_REQUESTS_PER_CU(4 - 1));
477 		radeon_set_sh_reg(cs, R_00B1C0_SPI_SHADER_REQ_CTRL_VS, 0);
478 
479 		if (physical_device->rad_info.chip_class >= GFX10_3) {
480 			radeon_set_context_reg(cs, R_028750_SX_PS_DOWNCONVERT_CONTROL, 0xff);
481                         /* This allows sample shading. */
482 			radeon_set_context_reg(cs, R_028848_PA_CL_VRS_CNTL,
483                                                S_028848_SAMPLE_ITER_COMBINER_MODE(1));
484 		}
485 
486 		if (physical_device->rad_info.chip_class == GFX10) {
487 			/* SQ_NON_EVENT must be emitted before GE_PC_ALLOC is written. */
488 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
489 			radeon_emit(cs, EVENT_TYPE(V_028A90_SQ_NON_EVENT) | EVENT_INDEX(0));
490 		}
491 
492 		/* TODO: For culling, replace 128 with 256. */
493 		radeon_set_uconfig_reg(cs, R_030980_GE_PC_ALLOC,
494 				       S_030980_OVERSUB_EN(physical_device->rad_info.use_late_alloc) |
495 				       S_030980_NUM_PC_LINES(128 * physical_device->rad_info.max_se - 1));
496 	}
497 
498 	if (physical_device->rad_info.chip_class >= GFX9) {
499 		radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
500 				       S_028B50_ACCUM_ISOLINE(40) |
501 				       S_028B50_ACCUM_TRI(30) |
502 				       S_028B50_ACCUM_QUAD(24) |
503 				       S_028B50_DONUT_SPLIT(24) |
504 				       S_028B50_TRAP_SPLIT(6));
505 	} else if (physical_device->rad_info.chip_class >= GFX8) {
506 		uint32_t vgt_tess_distribution;
507 
508 		vgt_tess_distribution = S_028B50_ACCUM_ISOLINE(32) |
509 			S_028B50_ACCUM_TRI(11) |
510 			S_028B50_ACCUM_QUAD(11) |
511 			S_028B50_DONUT_SPLIT(16);
512 
513 		if (physical_device->rad_info.family == CHIP_FIJI ||
514 		    physical_device->rad_info.family >= CHIP_POLARIS10)
515 			vgt_tess_distribution |= S_028B50_TRAP_SPLIT(3);
516 
517 		radeon_set_context_reg(cs, R_028B50_VGT_TESS_DISTRIBUTION,
518 				       vgt_tess_distribution);
519 	} else if (!has_clear_state) {
520 		radeon_set_context_reg(cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, 14);
521 		radeon_set_context_reg(cs, R_028C5C_VGT_OUT_DEALLOC_CNTL, 16);
522 	}
523 
524 	if (device->border_color_data.bo) {
525 		uint64_t border_color_va = radv_buffer_get_va(device->border_color_data.bo);
526 
527 		radeon_set_context_reg(cs, R_028080_TA_BC_BASE_ADDR, border_color_va >> 8);
528 		if (physical_device->rad_info.chip_class >= GFX7) {
529 			radeon_set_context_reg(cs, R_028084_TA_BC_BASE_ADDR_HI,
530 					       S_028084_ADDRESS(border_color_va >> 40));
531 		}
532 	}
533 
534 	if (physical_device->rad_info.chip_class >= GFX9) {
535 		radeon_set_context_reg(cs, R_028C48_PA_SC_BINNER_CNTL_1,
536 				       S_028C48_MAX_ALLOC_COUNT(physical_device->rad_info.pbb_max_alloc_count - 1) |
537 				       S_028C48_MAX_PRIM_PER_BATCH(1023));
538 		radeon_set_context_reg(cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL,
539 				       S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1));
540 		radeon_set_uconfig_reg(cs, R_030968_VGT_INSTANCE_BASE_ID, 0);
541 	}
542 
543 	unsigned tmp = (unsigned)(1.0 * 8.0);
544 	radeon_set_context_reg_seq(cs, R_028A00_PA_SU_POINT_SIZE, 1);
545 	radeon_emit(cs, S_028A00_HEIGHT(tmp) | S_028A00_WIDTH(tmp));
546 	radeon_set_context_reg_seq(cs, R_028A04_PA_SU_POINT_MINMAX, 1);
547 	radeon_emit(cs, S_028A04_MIN_SIZE(radv_pack_float_12p4(0)) |
548 		    S_028A04_MAX_SIZE(radv_pack_float_12p4(8191.875/2)));
549 
550 	if (!has_clear_state) {
551 		radeon_set_context_reg(cs, R_028004_DB_COUNT_CONTROL,
552 				       S_028004_ZPASS_INCREMENT_DISABLE(1));
553 	}
554 
555 	/* Enable the Polaris small primitive filter control.
556 	 * XXX: There is possibly an issue when MSAA is off (see RadeonSI
557 	 * has_msaa_sample_loc_bug). But this doesn't seem to regress anything,
558 	 * and AMDVLK doesn't have a workaround as well.
559 	 */
560 	if (physical_device->rad_info.family >= CHIP_POLARIS10) {
561 		unsigned small_prim_filter_cntl =
562 			S_028830_SMALL_PRIM_FILTER_ENABLE(1) |
563 			/* Workaround for a hw line bug. */
564 			S_028830_LINE_FILTER_DISABLE(physical_device->rad_info.family <= CHIP_POLARIS12);
565 
566 		radeon_set_context_reg(cs, R_028830_PA_SU_SMALL_PRIM_FILTER_CNTL,
567 				       small_prim_filter_cntl);
568 	}
569 
570 	radeon_set_context_reg(cs, R_0286D4_SPI_INTERP_CONTROL_0,
571 	                       S_0286D4_FLAT_SHADE_ENA(1) |
572 	                       S_0286D4_PNT_SPRITE_ENA(1) |
573 	                       S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
574 	                       S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
575 	                       S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
576 	                       S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
577 	                       S_0286D4_PNT_SPRITE_TOP_1(0)); /* vulkan is top to bottom - 1.0 at bottom */
578 
579 	radeon_set_context_reg(cs, R_028BE4_PA_SU_VTX_CNTL,
580 	                       S_028BE4_PIX_CENTER(1) |
581 	                       S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
582 	                       S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH));
583 
584 	radeon_set_context_reg(cs, R_028818_PA_CL_VTE_CNTL,
585 			       S_028818_VTX_W0_FMT(1) |
586 			       S_028818_VPORT_X_SCALE_ENA(1) | S_028818_VPORT_X_OFFSET_ENA(1) |
587 			       S_028818_VPORT_Y_SCALE_ENA(1) | S_028818_VPORT_Y_OFFSET_ENA(1) |
588 			       S_028818_VPORT_Z_SCALE_ENA(1) | S_028818_VPORT_Z_OFFSET_ENA(1));
589 
590 	si_emit_compute(device, cs);
591 }
592 
593 void
cik_create_gfx_config(struct radv_device * device)594 cik_create_gfx_config(struct radv_device *device)
595 {
596 	struct radeon_cmdbuf *cs = device->ws->cs_create(device->ws, RING_GFX);
597 	if (!cs)
598 		return;
599 
600 	si_emit_graphics(device, cs);
601 
602 	while (cs->cdw & 7) {
603 		if (device->physical_device->rad_info.gfx_ib_pad_with_type2)
604 			radeon_emit(cs, PKT2_NOP_PAD);
605 		else
606 			radeon_emit(cs, PKT3_NOP_PAD);
607 	}
608 
609 	device->gfx_init = device->ws->buffer_create(device->ws,
610 						     cs->cdw * 4, 4096,
611 						     RADEON_DOMAIN_GTT,
612 						     RADEON_FLAG_CPU_ACCESS|
613 						     RADEON_FLAG_NO_INTERPROCESS_SHARING |
614 						     RADEON_FLAG_READ_ONLY |
615 						     RADEON_FLAG_GTT_WC,
616 						     RADV_BO_PRIORITY_CS);
617 	if (!device->gfx_init)
618 		goto fail;
619 
620 	void *map = device->ws->buffer_map(device->gfx_init);
621 	if (!map) {
622 		device->ws->buffer_destroy(device->gfx_init);
623 		device->gfx_init = NULL;
624 		goto fail;
625 	}
626 	memcpy(map, cs->buf, cs->cdw * 4);
627 
628 	device->ws->buffer_unmap(device->gfx_init);
629 	device->gfx_init_size_dw = cs->cdw;
630 fail:
631 	device->ws->cs_destroy(cs);
632 }
633 
634 static void
get_viewport_xform(const VkViewport * viewport,float scale[3],float translate[3])635 get_viewport_xform(const VkViewport *viewport,
636                    float scale[3], float translate[3])
637 {
638 	float x = viewport->x;
639 	float y = viewport->y;
640 	float half_width = 0.5f * viewport->width;
641 	float half_height = 0.5f * viewport->height;
642 	double n = viewport->minDepth;
643 	double f = viewport->maxDepth;
644 
645 	scale[0] = half_width;
646 	translate[0] = half_width + x;
647 	scale[1] = half_height;
648 	translate[1] = half_height + y;
649 
650 	scale[2] = (f - n);
651 	translate[2] = n;
652 }
653 
654 void
si_write_viewport(struct radeon_cmdbuf * cs,int first_vp,int count,const VkViewport * viewports)655 si_write_viewport(struct radeon_cmdbuf *cs, int first_vp,
656                   int count, const VkViewport *viewports)
657 {
658 	int i;
659 
660 	assert(count);
661 	radeon_set_context_reg_seq(cs, R_02843C_PA_CL_VPORT_XSCALE +
662 				   first_vp * 4 * 6, count * 6);
663 
664 	for (i = 0; i < count; i++) {
665 		float scale[3], translate[3];
666 
667 
668 		get_viewport_xform(&viewports[i], scale, translate);
669 		radeon_emit(cs, fui(scale[0]));
670 		radeon_emit(cs, fui(translate[0]));
671 		radeon_emit(cs, fui(scale[1]));
672 		radeon_emit(cs, fui(translate[1]));
673 		radeon_emit(cs, fui(scale[2]));
674 		radeon_emit(cs, fui(translate[2]));
675 	}
676 
677 	radeon_set_context_reg_seq(cs, R_0282D0_PA_SC_VPORT_ZMIN_0 +
678 				   first_vp * 4 * 2, count * 2);
679 	for (i = 0; i < count; i++) {
680 		float zmin = MIN2(viewports[i].minDepth, viewports[i].maxDepth);
681 		float zmax = MAX2(viewports[i].minDepth, viewports[i].maxDepth);
682 		radeon_emit(cs, fui(zmin));
683 		radeon_emit(cs, fui(zmax));
684 	}
685 }
686 
si_scissor_from_viewport(const VkViewport * viewport)687 static VkRect2D si_scissor_from_viewport(const VkViewport *viewport)
688 {
689 	float scale[3], translate[3];
690 	VkRect2D rect;
691 
692 	get_viewport_xform(viewport, scale, translate);
693 
694 	rect.offset.x = translate[0] - fabsf(scale[0]);
695 	rect.offset.y = translate[1] - fabsf(scale[1]);
696 	rect.extent.width = ceilf(translate[0] + fabsf(scale[0])) - rect.offset.x;
697 	rect.extent.height = ceilf(translate[1] + fabsf(scale[1])) - rect.offset.y;
698 
699 	return rect;
700 }
701 
si_intersect_scissor(const VkRect2D * a,const VkRect2D * b)702 static VkRect2D si_intersect_scissor(const VkRect2D *a, const VkRect2D *b) {
703 	VkRect2D ret;
704 	ret.offset.x = MAX2(a->offset.x, b->offset.x);
705 	ret.offset.y = MAX2(a->offset.y, b->offset.y);
706 	ret.extent.width = MIN2(a->offset.x + a->extent.width,
707 	                        b->offset.x + b->extent.width) - ret.offset.x;
708 	ret.extent.height = MIN2(a->offset.y + a->extent.height,
709 	                         b->offset.y + b->extent.height) - ret.offset.y;
710 	return ret;
711 }
712 
713 void
si_write_scissors(struct radeon_cmdbuf * cs,int first,int count,const VkRect2D * scissors,const VkViewport * viewports,bool can_use_guardband)714 si_write_scissors(struct radeon_cmdbuf *cs, int first,
715                   int count, const VkRect2D *scissors,
716                   const VkViewport *viewports, bool can_use_guardband)
717 {
718 	int i;
719 	float scale[3], translate[3], guardband_x = INFINITY, guardband_y = INFINITY;
720 	const float max_range = 32767.0f;
721 	if (!count)
722 		return;
723 
724 	radeon_set_context_reg_seq(cs, R_028250_PA_SC_VPORT_SCISSOR_0_TL + first * 4 * 2, count * 2);
725 	for (i = 0; i < count; i++) {
726 		VkRect2D viewport_scissor = si_scissor_from_viewport(viewports + i);
727 		VkRect2D scissor = si_intersect_scissor(&scissors[i], &viewport_scissor);
728 
729 		get_viewport_xform(viewports + i, scale, translate);
730 		scale[0] = fabsf(scale[0]);
731 		scale[1] = fabsf(scale[1]);
732 
733 		if (scale[0] < 0.5)
734 			scale[0] = 0.5;
735 		if (scale[1] < 0.5)
736 			scale[1] = 0.5;
737 
738 		guardband_x = MIN2(guardband_x, (max_range - fabsf(translate[0])) / scale[0]);
739 		guardband_y = MIN2(guardband_y, (max_range - fabsf(translate[1])) / scale[1]);
740 
741 		radeon_emit(cs, S_028250_TL_X(scissor.offset.x) |
742 			    S_028250_TL_Y(scissor.offset.y) |
743 			    S_028250_WINDOW_OFFSET_DISABLE(1));
744 		radeon_emit(cs, S_028254_BR_X(scissor.offset.x + scissor.extent.width) |
745 			    S_028254_BR_Y(scissor.offset.y + scissor.extent.height));
746 	}
747 	if (!can_use_guardband) {
748 		guardband_x = 1.0;
749 		guardband_y = 1.0;
750 	}
751 
752 	radeon_set_context_reg_seq(cs, R_028BE8_PA_CL_GB_VERT_CLIP_ADJ, 4);
753 	radeon_emit(cs, fui(guardband_y));
754 	radeon_emit(cs, fui(1.0));
755 	radeon_emit(cs, fui(guardband_x));
756 	radeon_emit(cs, fui(1.0));
757 }
758 
759 static inline unsigned
radv_prims_for_vertices(struct radv_prim_vertex_count * info,unsigned num)760 radv_prims_for_vertices(struct radv_prim_vertex_count *info, unsigned num)
761 {
762 	if (num == 0)
763 		return 0;
764 
765 	if (info->incr == 0)
766 		return 0;
767 
768 	if (num < info->min)
769 		return 0;
770 
771 	return 1 + ((num - info->min) / info->incr);
772 }
773 
774 static const struct radv_prim_vertex_count prim_size_table[] = {
775 	[V_008958_DI_PT_NONE] = {0, 0},
776 	[V_008958_DI_PT_POINTLIST] = {1, 1},
777 	[V_008958_DI_PT_LINELIST] = {2, 2},
778 	[V_008958_DI_PT_LINESTRIP] = {2, 1},
779 	[V_008958_DI_PT_TRILIST] = {3, 3},
780 	[V_008958_DI_PT_TRIFAN] = {3, 1},
781 	[V_008958_DI_PT_TRISTRIP] = {3, 1},
782 	[V_008958_DI_PT_LINELIST_ADJ] = {4, 4},
783 	[V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1},
784 	[V_008958_DI_PT_TRILIST_ADJ] = {6, 6},
785 	[V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2},
786 	[V_008958_DI_PT_RECTLIST] = {3, 3},
787 	[V_008958_DI_PT_LINELOOP] = {2, 1},
788 	[V_008958_DI_PT_POLYGON] = {3, 1},
789 	[V_008958_DI_PT_2D_TRI_STRIP] = {0, 0},
790 };
791 
792 uint32_t
si_get_ia_multi_vgt_param(struct radv_cmd_buffer * cmd_buffer,bool instanced_draw,bool indirect_draw,bool count_from_stream_output,uint32_t draw_vertex_count,unsigned topology)793 si_get_ia_multi_vgt_param(struct radv_cmd_buffer *cmd_buffer,
794 			  bool instanced_draw, bool indirect_draw,
795 			  bool count_from_stream_output,
796 			  uint32_t draw_vertex_count,
797 			  unsigned topology)
798 {
799 	enum chip_class chip_class = cmd_buffer->device->physical_device->rad_info.chip_class;
800 	enum radeon_family family = cmd_buffer->device->physical_device->rad_info.family;
801 	struct radeon_info *info = &cmd_buffer->device->physical_device->rad_info;
802 	const unsigned max_primgroup_in_wave = 2;
803 	/* SWITCH_ON_EOP(0) is always preferable. */
804 	bool wd_switch_on_eop = false;
805 	bool ia_switch_on_eop = false;
806 	bool ia_switch_on_eoi = false;
807 	bool partial_vs_wave = false;
808 	bool partial_es_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_es_wave;
809 	bool multi_instances_smaller_than_primgroup;
810 	struct radv_prim_vertex_count prim_vertex_count = prim_size_table[topology];
811 
812 	if (radv_pipeline_has_tess(cmd_buffer->state.pipeline)) {
813 		if (topology == V_008958_DI_PT_PATCH) {
814 			prim_vertex_count.min = cmd_buffer->state.pipeline->graphics.tess_patch_control_points;
815 			prim_vertex_count.incr = 1;
816 		}
817 	}
818 
819 	multi_instances_smaller_than_primgroup = indirect_draw;
820 	if (!multi_instances_smaller_than_primgroup && instanced_draw) {
821 		uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
822 		if (num_prims < cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.primgroup_size)
823 			multi_instances_smaller_than_primgroup = true;
824 	}
825 
826 	ia_switch_on_eoi = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.ia_switch_on_eoi;
827 	partial_vs_wave = cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.partial_vs_wave;
828 
829 	if (chip_class >= GFX7) {
830 		/* WD_SWITCH_ON_EOP has no effect on GPUs with less than
831 		 * 4 shader engines. Set 1 to pass the assertion below.
832 		 * The other cases are hardware requirements. */
833 		if (cmd_buffer->device->physical_device->rad_info.max_se < 4 ||
834 		    topology == V_008958_DI_PT_POLYGON ||
835 		    topology == V_008958_DI_PT_LINELOOP ||
836 		    topology == V_008958_DI_PT_TRIFAN ||
837 		    topology == V_008958_DI_PT_TRISTRIP_ADJ ||
838 		    (cmd_buffer->state.pipeline->graphics.prim_restart_enable &&
839 		     (cmd_buffer->device->physical_device->rad_info.family < CHIP_POLARIS10 ||
840 		      (topology != V_008958_DI_PT_POINTLIST &&
841 		       topology != V_008958_DI_PT_LINESTRIP))))
842 			wd_switch_on_eop = true;
843 
844 		/* Hawaii hangs if instancing is enabled and WD_SWITCH_ON_EOP is 0.
845 		 * We don't know that for indirect drawing, so treat it as
846 		 * always problematic. */
847 		if (family == CHIP_HAWAII &&
848 		    (instanced_draw || indirect_draw))
849 			wd_switch_on_eop = true;
850 
851 		/* Performance recommendation for 4 SE Gfx7-8 parts if
852 		 * instances are smaller than a primgroup.
853 		 * Assume indirect draws always use small instances.
854 		 * This is needed for good VS wave utilization.
855 		 */
856 		if (chip_class <= GFX8 &&
857 		    info->max_se == 4 &&
858 		    multi_instances_smaller_than_primgroup)
859 			wd_switch_on_eop = true;
860 
861 		/* Required on GFX7 and later. */
862 		if (info->max_se > 2 && !wd_switch_on_eop)
863 			ia_switch_on_eoi = true;
864 
865 		/* Required by Hawaii and, for some special cases, by GFX8. */
866 		if (ia_switch_on_eoi &&
867 		    (family == CHIP_HAWAII ||
868 		     (chip_class == GFX8 &&
869 		      /* max primgroup in wave is always 2 - leave this for documentation */
870 		      (radv_pipeline_has_gs(cmd_buffer->state.pipeline) || max_primgroup_in_wave != 2))))
871 			partial_vs_wave = true;
872 
873 		/* Instancing bug on Bonaire. */
874 		if (family == CHIP_BONAIRE && ia_switch_on_eoi &&
875 		    (instanced_draw || indirect_draw))
876 			partial_vs_wave = true;
877 
878 		/* Hardware requirement when drawing primitives from a stream
879 		 * output buffer.
880 		 */
881 		if (count_from_stream_output)
882 			wd_switch_on_eop = true;
883 
884 		/* If the WD switch is false, the IA switch must be false too. */
885 		assert(wd_switch_on_eop || !ia_switch_on_eop);
886 	}
887 	/* If SWITCH_ON_EOI is set, PARTIAL_ES_WAVE must be set too. */
888 	if (chip_class <= GFX8 && ia_switch_on_eoi)
889 		partial_es_wave = true;
890 
891 	if (radv_pipeline_has_gs(cmd_buffer->state.pipeline)) {
892 		/* GS hw bug with single-primitive instances and SWITCH_ON_EOI.
893 		 * The hw doc says all multi-SE chips are affected, but amdgpu-pro Vulkan
894 		 * only applies it to Hawaii. Do what amdgpu-pro Vulkan does.
895 		 */
896 		if (family == CHIP_HAWAII && ia_switch_on_eoi) {
897 			bool set_vgt_flush = indirect_draw;
898 			if (!set_vgt_flush && instanced_draw) {
899 				uint32_t num_prims = radv_prims_for_vertices(&prim_vertex_count, draw_vertex_count);
900 				if (num_prims <= 1)
901 					set_vgt_flush = true;
902 			}
903 			if (set_vgt_flush)
904 				cmd_buffer->state.flush_bits |= RADV_CMD_FLAG_VGT_FLUSH;
905 		}
906 	}
907 
908 	/* Workaround for a VGT hang when strip primitive types are used with
909 	 * primitive restart.
910 	 */
911 	if (cmd_buffer->state.pipeline->graphics.prim_restart_enable &&
912 	    (topology == V_008958_DI_PT_LINESTRIP ||
913 	     topology == V_008958_DI_PT_TRISTRIP ||
914 	     topology == V_008958_DI_PT_LINESTRIP_ADJ ||
915 	     topology == V_008958_DI_PT_TRISTRIP_ADJ)) {
916 		partial_vs_wave = true;
917 	}
918 
919 	return cmd_buffer->state.pipeline->graphics.ia_multi_vgt_param.base |
920 		S_028AA8_SWITCH_ON_EOP(ia_switch_on_eop) |
921 		S_028AA8_SWITCH_ON_EOI(ia_switch_on_eoi) |
922 		S_028AA8_PARTIAL_VS_WAVE_ON(partial_vs_wave) |
923 		S_028AA8_PARTIAL_ES_WAVE_ON(partial_es_wave) |
924 		S_028AA8_WD_SWITCH_ON_EOP(chip_class >= GFX7 ? wd_switch_on_eop : 0);
925 
926 }
927 
si_cs_emit_write_event_eop(struct radeon_cmdbuf * cs,enum chip_class chip_class,bool is_mec,unsigned event,unsigned event_flags,unsigned dst_sel,unsigned data_sel,uint64_t va,uint32_t new_fence,uint64_t gfx9_eop_bug_va)928 void si_cs_emit_write_event_eop(struct radeon_cmdbuf *cs,
929 				enum chip_class chip_class,
930 				bool is_mec,
931 				unsigned event, unsigned event_flags,
932 				unsigned dst_sel, unsigned data_sel,
933 				uint64_t va,
934 				uint32_t new_fence,
935 				uint64_t gfx9_eop_bug_va)
936 {
937 	unsigned op = EVENT_TYPE(event) |
938 		EVENT_INDEX(event == V_028A90_CS_DONE ||
939 			    event == V_028A90_PS_DONE ? 6 : 5) |
940 		event_flags;
941 	unsigned is_gfx8_mec = is_mec && chip_class < GFX9;
942 	unsigned sel = EOP_DST_SEL(dst_sel) |
943 		       EOP_DATA_SEL(data_sel);
944 
945 	/* Wait for write confirmation before writing data, but don't send
946 	 * an interrupt. */
947 	if (data_sel != EOP_DATA_SEL_DISCARD)
948 		sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
949 
950 	if (chip_class >= GFX9 || is_gfx8_mec) {
951 		/* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
952 		 * counters) must immediately precede every timestamp event to
953 		 * prevent a GPU hang on GFX9.
954 		 */
955 		if (chip_class == GFX9 && !is_mec) {
956 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
957 			radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
958 			radeon_emit(cs, gfx9_eop_bug_va);
959 			radeon_emit(cs, gfx9_eop_bug_va >> 32);
960 		}
961 
962 		radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, is_gfx8_mec ? 5 : 6, false));
963 		radeon_emit(cs, op);
964 		radeon_emit(cs, sel);
965 		radeon_emit(cs, va);            /* address lo */
966 		radeon_emit(cs, va >> 32);      /* address hi */
967 		radeon_emit(cs, new_fence);     /* immediate data lo */
968 		radeon_emit(cs, 0); /* immediate data hi */
969 		if (!is_gfx8_mec)
970 			radeon_emit(cs, 0); /* unused */
971 	} else {
972 		if (chip_class == GFX7 ||
973 		    chip_class == GFX8) {
974 			/* Two EOP events are required to make all engines go idle
975 			 * (and optional cache flushes executed) before the timestamp
976 			 * is written.
977 			 */
978 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
979 			radeon_emit(cs, op);
980 			radeon_emit(cs, va);
981 			radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
982 			radeon_emit(cs, 0); /* immediate data */
983 			radeon_emit(cs, 0); /* unused */
984 		}
985 
986 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, false));
987 		radeon_emit(cs, op);
988 		radeon_emit(cs, va);
989 		radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
990 		radeon_emit(cs, new_fence); /* immediate data */
991 		radeon_emit(cs, 0); /* unused */
992 	}
993 }
994 
995 void
radv_cp_wait_mem(struct radeon_cmdbuf * cs,uint32_t op,uint64_t va,uint32_t ref,uint32_t mask)996 radv_cp_wait_mem(struct radeon_cmdbuf *cs, uint32_t op, uint64_t va,
997 		 uint32_t ref, uint32_t mask)
998 {
999 	assert(op == WAIT_REG_MEM_EQUAL ||
1000 	       op == WAIT_REG_MEM_NOT_EQUAL ||
1001 	       op == WAIT_REG_MEM_GREATER_OR_EQUAL);
1002 
1003 	radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, false));
1004 	radeon_emit(cs, op | WAIT_REG_MEM_MEM_SPACE(1));
1005 	radeon_emit(cs, va);
1006 	radeon_emit(cs, va >> 32);
1007 	radeon_emit(cs, ref); /* reference value */
1008 	radeon_emit(cs, mask); /* mask */
1009 	radeon_emit(cs, 4); /* poll interval */
1010 }
1011 
1012 static void
si_emit_acquire_mem(struct radeon_cmdbuf * cs,bool is_mec,bool is_gfx9,unsigned cp_coher_cntl)1013 si_emit_acquire_mem(struct radeon_cmdbuf *cs,
1014                     bool is_mec,
1015 		    bool is_gfx9,
1016                     unsigned cp_coher_cntl)
1017 {
1018 	if (is_mec || is_gfx9) {
1019 		uint32_t hi_val = is_gfx9 ? 0xffffff : 0xff;
1020 		radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 5, false) |
1021 		                            PKT3_SHADER_TYPE_S(is_mec));
1022 		radeon_emit(cs, cp_coher_cntl);   /* CP_COHER_CNTL */
1023 		radeon_emit(cs, 0xffffffff);      /* CP_COHER_SIZE */
1024 		radeon_emit(cs, hi_val);          /* CP_COHER_SIZE_HI */
1025 		radeon_emit(cs, 0);               /* CP_COHER_BASE */
1026 		radeon_emit(cs, 0);               /* CP_COHER_BASE_HI */
1027 		radeon_emit(cs, 0x0000000A);      /* POLL_INTERVAL */
1028 	} else {
1029 		/* ACQUIRE_MEM is only required on a compute ring. */
1030 		radeon_emit(cs, PKT3(PKT3_SURFACE_SYNC, 3, false));
1031 		radeon_emit(cs, cp_coher_cntl);   /* CP_COHER_CNTL */
1032 		radeon_emit(cs, 0xffffffff);      /* CP_COHER_SIZE */
1033 		radeon_emit(cs, 0);               /* CP_COHER_BASE */
1034 		radeon_emit(cs, 0x0000000A);      /* POLL_INTERVAL */
1035 	}
1036 }
1037 
1038 static void
gfx10_cs_emit_cache_flush(struct radeon_cmdbuf * cs,enum chip_class chip_class,uint32_t * flush_cnt,uint64_t flush_va,bool is_mec,enum radv_cmd_flush_bits flush_bits,enum rgp_flush_bits * sqtt_flush_bits,uint64_t gfx9_eop_bug_va)1039 gfx10_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1040 			  enum chip_class chip_class,
1041 			  uint32_t *flush_cnt,
1042 			  uint64_t flush_va,
1043 			  bool is_mec,
1044 			  enum radv_cmd_flush_bits flush_bits,
1045 			  enum rgp_flush_bits *sqtt_flush_bits,
1046 			  uint64_t gfx9_eop_bug_va)
1047 {
1048 	uint32_t gcr_cntl = 0;
1049 	unsigned cb_db_event = 0;
1050 
1051 	/* We don't need these. */
1052 	assert(!(flush_bits & (RADV_CMD_FLAG_VGT_STREAMOUT_SYNC)));
1053 
1054 	if (flush_bits & RADV_CMD_FLAG_INV_ICACHE) {
1055 		gcr_cntl |= S_586_GLI_INV(V_586_GLI_ALL);
1056 
1057 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_ICACHE;
1058 	}
1059 	if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
1060 		/* TODO: When writing to the SMEM L1 cache, we need to set SEQ
1061 		 * to FORWARD when both L1 and L2 are written out (WB or INV).
1062 		 */
1063 		gcr_cntl |= S_586_GL1_INV(1) | S_586_GLK_INV(1);
1064 
1065 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_SMEM_L0;
1066 	}
1067 	if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
1068 		gcr_cntl |= S_586_GL1_INV(1) | S_586_GLV_INV(1);
1069 
1070 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_VMEM_L0 | RGP_FLUSH_INVAL_L1;
1071 	}
1072 	if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1073 		/* Writeback and invalidate everything in L2. */
1074 		gcr_cntl |= S_586_GL2_INV(1) | S_586_GL2_WB(1) |
1075 		            S_586_GLM_INV(1) | S_586_GLM_WB(1);
1076 
1077 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_L2;
1078 	} else if (flush_bits & RADV_CMD_FLAG_WB_L2) {
1079 		/* Writeback but do not invalidate.
1080 		 * GLM doesn't support WB alone. If WB is set, INV must be set too.
1081 		 */
1082 		gcr_cntl |= S_586_GL2_WB(1) |
1083 		            S_586_GLM_WB(1) | S_586_GLM_INV(1);
1084 
1085 		*sqtt_flush_bits |= RGP_FLUSH_FLUSH_L2;
1086 	}
1087 
1088 	/* TODO: Implement this new flag for GFX9+.
1089 	else if (flush_bits & RADV_CMD_FLAG_INV_L2_METADATA)
1090 		gcr_cntl |= S_586_GLM_INV(1) | S_586_GLM_WB(1);
1091 	*/
1092 
1093 	if (flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
1094 		/* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_CB_META */
1095 		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1096 			/* Flush CMASK/FMASK/DCC. Will wait for idle later. */
1097 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1098 			radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) |
1099 					EVENT_INDEX(0));
1100 
1101 			*sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB;
1102 		}
1103 
1104 		/* TODO: trigger on RADV_CMD_FLAG_FLUSH_AND_INV_DB_META ? */
1105 		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1106 			/* Flush HTILE. Will wait for idle later. */
1107 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1108 			radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) |
1109 					EVENT_INDEX(0));
1110 
1111 			*sqtt_flush_bits |= RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB;
1112 		}
1113 
1114 		/* First flush CB/DB, then L1/L2. */
1115 		gcr_cntl |= S_586_SEQ(V_586_SEQ_FORWARD);
1116 
1117 		if ((flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) ==
1118 		    (RADV_CMD_FLAG_FLUSH_AND_INV_CB | RADV_CMD_FLAG_FLUSH_AND_INV_DB)) {
1119 			cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1120 		} else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1121 			cb_db_event = V_028A90_FLUSH_AND_INV_CB_DATA_TS;
1122 		} else if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1123 			cb_db_event = V_028A90_FLUSH_AND_INV_DB_DATA_TS;
1124 		} else {
1125 			assert(0);
1126 		}
1127 	} else {
1128 		/* Wait for graphics shaders to go idle if requested. */
1129 		if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1130 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1131 			radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1132 
1133 			*sqtt_flush_bits |= RGP_FLUSH_PS_PARTIAL_FLUSH;
1134 		} else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1135 			radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1136 			radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1137 
1138 			*sqtt_flush_bits |= RGP_FLUSH_VS_PARTIAL_FLUSH;
1139 		}
1140 	}
1141 
1142 	if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1143 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1144 		radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH | EVENT_INDEX(4)));
1145 
1146 		*sqtt_flush_bits |= RGP_FLUSH_CS_PARTIAL_FLUSH;
1147 	}
1148 
1149 	if (cb_db_event) {
1150 		/* CB/DB flush and invalidate (or possibly just a wait for a
1151 		 * meta flush) via RELEASE_MEM.
1152 		 *
1153 		 * Combine this with other cache flushes when possible; this
1154 		 * requires affected shaders to be idle, so do it after the
1155 		 * CS_PARTIAL_FLUSH before (VS/PS partial flushes are always
1156 		 * implied).
1157 		 */
1158 		/* Get GCR_CNTL fields, because the encoding is different in RELEASE_MEM. */
1159 		unsigned glm_wb = G_586_GLM_WB(gcr_cntl);
1160 		unsigned glm_inv = G_586_GLM_INV(gcr_cntl);
1161 		unsigned glv_inv = G_586_GLV_INV(gcr_cntl);
1162 		unsigned gl1_inv = G_586_GL1_INV(gcr_cntl);
1163 		assert(G_586_GL2_US(gcr_cntl) == 0);
1164 		assert(G_586_GL2_RANGE(gcr_cntl) == 0);
1165 		assert(G_586_GL2_DISCARD(gcr_cntl) == 0);
1166 		unsigned gl2_inv = G_586_GL2_INV(gcr_cntl);
1167 		unsigned gl2_wb = G_586_GL2_WB(gcr_cntl);
1168 		unsigned gcr_seq = G_586_SEQ(gcr_cntl);
1169 
1170 		gcr_cntl &= C_586_GLM_WB &
1171 			    C_586_GLM_INV &
1172 			    C_586_GLV_INV &
1173 			    C_586_GL1_INV &
1174 			    C_586_GL2_INV &
1175 			    C_586_GL2_WB; /* keep SEQ */
1176 
1177 		assert(flush_cnt);
1178 		(*flush_cnt)++;
1179 
1180 		si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event,
1181 					   S_490_GLM_WB(glm_wb) |
1182 					   S_490_GLM_INV(glm_inv) |
1183 					   S_490_GLV_INV(glv_inv) |
1184 					   S_490_GL1_INV(gl1_inv) |
1185 					   S_490_GL2_INV(gl2_inv) |
1186 					   S_490_GL2_WB(gl2_wb) |
1187 					   S_490_SEQ(gcr_seq),
1188 					   EOP_DST_SEL_MEM,
1189 					   EOP_DATA_SEL_VALUE_32BIT,
1190 					   flush_va, *flush_cnt,
1191 					   gfx9_eop_bug_va);
1192 
1193 		radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1194 				 *flush_cnt, 0xffffffff);
1195 	}
1196 
1197 	/* VGT state sync */
1198 	if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1199 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1200 		radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1201 	}
1202 
1203 	/* Ignore fields that only modify the behavior of other fields. */
1204 	if (gcr_cntl & C_586_GL1_RANGE & C_586_GL2_RANGE & C_586_SEQ) {
1205 		/* Flush caches and wait for the caches to assert idle.
1206 		 * The cache flush is executed in the ME, but the PFP waits
1207 		 * for completion.
1208 		 */
1209 		radeon_emit(cs, PKT3(PKT3_ACQUIRE_MEM, 6, 0));
1210 		radeon_emit(cs, 0);		/* CP_COHER_CNTL */
1211 		radeon_emit(cs, 0xffffffff);	/* CP_COHER_SIZE */
1212 		radeon_emit(cs, 0xffffff);	/* CP_COHER_SIZE_HI */
1213 		radeon_emit(cs, 0);		/* CP_COHER_BASE */
1214 		radeon_emit(cs, 0);		/* CP_COHER_BASE_HI */
1215 		radeon_emit(cs, 0x0000000A);	/* POLL_INTERVAL */
1216 		radeon_emit(cs, gcr_cntl);	/* GCR_CNTL */
1217 	} else if ((cb_db_event ||
1218 		   (flush_bits & (RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1219 			     RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1220 			     RADV_CMD_FLAG_CS_PARTIAL_FLUSH)))
1221 		   && !is_mec) {
1222 		/* We need to ensure that PFP waits as well. */
1223 		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1224 		radeon_emit(cs, 0);
1225 
1226 		*sqtt_flush_bits |= RGP_FLUSH_PFP_SYNC_ME;
1227 	}
1228 
1229 	if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1230 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1231 		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1232 			        EVENT_INDEX(0));
1233 	} else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1234 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1235 		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1236 			        EVENT_INDEX(0));
1237 	}
1238 }
1239 
1240 void
si_cs_emit_cache_flush(struct radeon_cmdbuf * cs,enum chip_class chip_class,uint32_t * flush_cnt,uint64_t flush_va,bool is_mec,enum radv_cmd_flush_bits flush_bits,enum rgp_flush_bits * sqtt_flush_bits,uint64_t gfx9_eop_bug_va)1241 si_cs_emit_cache_flush(struct radeon_cmdbuf *cs,
1242                        enum chip_class chip_class,
1243 		       uint32_t *flush_cnt,
1244 		       uint64_t flush_va,
1245                        bool is_mec,
1246                        enum radv_cmd_flush_bits flush_bits,
1247 		       enum rgp_flush_bits *sqtt_flush_bits,
1248 		       uint64_t gfx9_eop_bug_va)
1249 {
1250 	unsigned cp_coher_cntl = 0;
1251 	uint32_t flush_cb_db = flush_bits & (RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1252 					     RADV_CMD_FLAG_FLUSH_AND_INV_DB);
1253 
1254 	if (chip_class >= GFX10) {
1255 		/* GFX10 cache flush handling is quite different. */
1256 		gfx10_cs_emit_cache_flush(cs, chip_class, flush_cnt, flush_va,
1257 					  is_mec, flush_bits, sqtt_flush_bits,
1258 					  gfx9_eop_bug_va);
1259 		return;
1260 	}
1261 
1262 	if (flush_bits & RADV_CMD_FLAG_INV_ICACHE) {
1263 		cp_coher_cntl |= S_0085F0_SH_ICACHE_ACTION_ENA(1);
1264 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_ICACHE;
1265 	}
1266 	if (flush_bits & RADV_CMD_FLAG_INV_SCACHE) {
1267 		cp_coher_cntl |= S_0085F0_SH_KCACHE_ACTION_ENA(1);
1268 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_SMEM_L0;
1269 	}
1270 
1271 	if (chip_class <= GFX8) {
1272 		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB) {
1273 			cp_coher_cntl |= S_0085F0_CB_ACTION_ENA(1) |
1274 				S_0085F0_CB0_DEST_BASE_ENA(1) |
1275 				S_0085F0_CB1_DEST_BASE_ENA(1) |
1276 				S_0085F0_CB2_DEST_BASE_ENA(1) |
1277 				S_0085F0_CB3_DEST_BASE_ENA(1) |
1278 				S_0085F0_CB4_DEST_BASE_ENA(1) |
1279 				S_0085F0_CB5_DEST_BASE_ENA(1) |
1280 				S_0085F0_CB6_DEST_BASE_ENA(1) |
1281 				S_0085F0_CB7_DEST_BASE_ENA(1);
1282 
1283 			/* Necessary for DCC */
1284 			if (chip_class >= GFX8) {
1285 				si_cs_emit_write_event_eop(cs,
1286 							   chip_class,
1287 							   is_mec,
1288 							   V_028A90_FLUSH_AND_INV_CB_DATA_TS,
1289 							   0,
1290 							   EOP_DST_SEL_MEM,
1291 							   EOP_DATA_SEL_DISCARD,
1292 							   0, 0,
1293 							   gfx9_eop_bug_va);
1294 			}
1295 
1296 			*sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB;
1297 		}
1298 		if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB) {
1299 			cp_coher_cntl |= S_0085F0_DB_ACTION_ENA(1) |
1300 				S_0085F0_DB_DEST_BASE_ENA(1);
1301 
1302 			*sqtt_flush_bits |= RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB;
1303 		}
1304 	}
1305 
1306 	if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_CB_META) {
1307 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1308 		radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_CB_META) | EVENT_INDEX(0));
1309 
1310 		*sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB;
1311 	}
1312 
1313 	if (flush_bits & RADV_CMD_FLAG_FLUSH_AND_INV_DB_META) {
1314 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1315 		radeon_emit(cs, EVENT_TYPE(V_028A90_FLUSH_AND_INV_DB_META) | EVENT_INDEX(0));
1316 
1317 		*sqtt_flush_bits |= RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB;
1318 	}
1319 
1320 	if (flush_bits & RADV_CMD_FLAG_PS_PARTIAL_FLUSH) {
1321 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1322 		radeon_emit(cs, EVENT_TYPE(V_028A90_PS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1323 
1324 		*sqtt_flush_bits |= RGP_FLUSH_PS_PARTIAL_FLUSH;
1325 	} else if (flush_bits & RADV_CMD_FLAG_VS_PARTIAL_FLUSH) {
1326 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1327 		radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1328 
1329 		*sqtt_flush_bits |= RGP_FLUSH_VS_PARTIAL_FLUSH;
1330 	}
1331 
1332 	if (flush_bits & RADV_CMD_FLAG_CS_PARTIAL_FLUSH) {
1333 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1334 		radeon_emit(cs, EVENT_TYPE(V_028A90_CS_PARTIAL_FLUSH) | EVENT_INDEX(4));
1335 
1336 		*sqtt_flush_bits |= RGP_FLUSH_CS_PARTIAL_FLUSH;
1337 	}
1338 
1339 	if (chip_class == GFX9 && flush_cb_db) {
1340 		unsigned cb_db_event, tc_flags;
1341 
1342 		/* Set the CB/DB flush event. */
1343 		cb_db_event = V_028A90_CACHE_FLUSH_AND_INV_TS_EVENT;
1344 
1345 		/* These are the only allowed combinations. If you need to
1346 		 * do multiple operations at once, do them separately.
1347 		 * All operations that invalidate L2 also seem to invalidate
1348 		 * metadata. Volatile (VOL) and WC flushes are not listed here.
1349 		 *
1350 		 * TC    | TC_WB         = writeback & invalidate L2 & L1
1351 		 * TC    | TC_WB | TC_NC = writeback & invalidate L2 for MTYPE == NC
1352 		 *         TC_WB | TC_NC = writeback L2 for MTYPE == NC
1353 		 * TC            | TC_NC = invalidate L2 for MTYPE == NC
1354 		 * TC    | TC_MD         = writeback & invalidate L2 metadata (DCC, etc.)
1355 		 * TCL1                  = invalidate L1
1356 		 */
1357 		tc_flags = EVENT_TC_ACTION_ENA |
1358 		           EVENT_TC_MD_ACTION_ENA;
1359 
1360 		*sqtt_flush_bits |= RGP_FLUSH_FLUSH_CB | RGP_FLUSH_INVAL_CB |
1361 		                    RGP_FLUSH_FLUSH_DB | RGP_FLUSH_INVAL_DB;
1362 
1363 		/* Ideally flush TC together with CB/DB. */
1364 		if (flush_bits & RADV_CMD_FLAG_INV_L2) {
1365 			/* Writeback and invalidate everything in L2 & L1. */
1366 			tc_flags = EVENT_TC_ACTION_ENA |
1367 			           EVENT_TC_WB_ACTION_ENA;
1368 
1369 
1370 			/* Clear the flags. */
1371 		        flush_bits &= ~(RADV_CMD_FLAG_INV_L2 |
1372 					 RADV_CMD_FLAG_WB_L2 |
1373 					 RADV_CMD_FLAG_INV_VCACHE);
1374 
1375 			*sqtt_flush_bits |= RGP_FLUSH_INVAL_L2;
1376 		}
1377 		assert(flush_cnt);
1378 		(*flush_cnt)++;
1379 
1380 		si_cs_emit_write_event_eop(cs, chip_class, false, cb_db_event, tc_flags,
1381 					   EOP_DST_SEL_MEM,
1382 					   EOP_DATA_SEL_VALUE_32BIT,
1383 					   flush_va, *flush_cnt,
1384 					   gfx9_eop_bug_va);
1385 		radv_cp_wait_mem(cs, WAIT_REG_MEM_EQUAL, flush_va,
1386 				 *flush_cnt, 0xffffffff);
1387 	}
1388 
1389 	/* VGT state sync */
1390 	if (flush_bits & RADV_CMD_FLAG_VGT_FLUSH) {
1391 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1392 		radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
1393 	}
1394 
1395 	/* VGT streamout state sync */
1396 	if (flush_bits & RADV_CMD_FLAG_VGT_STREAMOUT_SYNC) {
1397 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1398 		radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_STREAMOUT_SYNC) | EVENT_INDEX(0));
1399 	}
1400 
1401 	/* Make sure ME is idle (it executes most packets) before continuing.
1402 	 * This prevents read-after-write hazards between PFP and ME.
1403 	 */
1404 	if ((cp_coher_cntl ||
1405 	     (flush_bits & (RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1406 			    RADV_CMD_FLAG_INV_VCACHE |
1407 			    RADV_CMD_FLAG_INV_L2 |
1408 			    RADV_CMD_FLAG_WB_L2))) &&
1409 	    !is_mec) {
1410 		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
1411 		radeon_emit(cs, 0);
1412 
1413 		*sqtt_flush_bits |= RGP_FLUSH_PFP_SYNC_ME;
1414 	}
1415 
1416 	if ((flush_bits & RADV_CMD_FLAG_INV_L2) ||
1417 	    (chip_class <= GFX7 && (flush_bits & RADV_CMD_FLAG_WB_L2))) {
1418 		si_emit_acquire_mem(cs, is_mec, chip_class == GFX9,
1419 				    cp_coher_cntl |
1420 				    S_0085F0_TC_ACTION_ENA(1) |
1421 				    S_0085F0_TCL1_ACTION_ENA(1) |
1422 				    S_0301F0_TC_WB_ACTION_ENA(chip_class >= GFX8));
1423 		cp_coher_cntl = 0;
1424 
1425 		*sqtt_flush_bits |= RGP_FLUSH_INVAL_L2 | RGP_FLUSH_INVAL_VMEM_L0;
1426 	} else {
1427 		if(flush_bits & RADV_CMD_FLAG_WB_L2) {
1428 			/* WB = write-back
1429 			 * NC = apply to non-coherent MTYPEs
1430 			 *      (i.e. MTYPE <= 1, which is what we use everywhere)
1431 			 *
1432 			 * WB doesn't work without NC.
1433 			 */
1434 			si_emit_acquire_mem(cs, is_mec,
1435 					    chip_class == GFX9,
1436 					    cp_coher_cntl |
1437 					    S_0301F0_TC_WB_ACTION_ENA(1) |
1438 					    S_0301F0_TC_NC_ACTION_ENA(1));
1439 			cp_coher_cntl = 0;
1440 
1441 			*sqtt_flush_bits |= RGP_FLUSH_FLUSH_L2 | RGP_FLUSH_INVAL_VMEM_L0;
1442 		}
1443 		if (flush_bits & RADV_CMD_FLAG_INV_VCACHE) {
1444 			si_emit_acquire_mem(cs, is_mec,
1445 					    chip_class == GFX9,
1446 					    cp_coher_cntl |
1447 					    S_0085F0_TCL1_ACTION_ENA(1));
1448 			cp_coher_cntl = 0;
1449 
1450 			*sqtt_flush_bits |= RGP_FLUSH_INVAL_VMEM_L0;
1451 		}
1452 	}
1453 
1454 	/* When one of the DEST_BASE flags is set, SURFACE_SYNC waits for idle.
1455 	 * Therefore, it should be last. Done in PFP.
1456 	 */
1457 	if (cp_coher_cntl)
1458 		si_emit_acquire_mem(cs, is_mec, chip_class == GFX9, cp_coher_cntl);
1459 
1460 	if (flush_bits & RADV_CMD_FLAG_START_PIPELINE_STATS) {
1461 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1462 		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_START) |
1463 			        EVENT_INDEX(0));
1464 	} else if (flush_bits & RADV_CMD_FLAG_STOP_PIPELINE_STATS) {
1465 		radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
1466 		radeon_emit(cs, EVENT_TYPE(V_028A90_PIPELINESTAT_STOP) |
1467 			        EVENT_INDEX(0));
1468 	}
1469 }
1470 
1471 void
si_emit_cache_flush(struct radv_cmd_buffer * cmd_buffer)1472 si_emit_cache_flush(struct radv_cmd_buffer *cmd_buffer)
1473 {
1474 	bool is_compute = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE;
1475 
1476 	if (is_compute)
1477 		cmd_buffer->state.flush_bits &= ~(RADV_CMD_FLAG_FLUSH_AND_INV_CB |
1478 	                                          RADV_CMD_FLAG_FLUSH_AND_INV_CB_META |
1479 	                                          RADV_CMD_FLAG_FLUSH_AND_INV_DB |
1480 	                                          RADV_CMD_FLAG_FLUSH_AND_INV_DB_META |
1481 	                                          RADV_CMD_FLAG_PS_PARTIAL_FLUSH |
1482 	                                          RADV_CMD_FLAG_VS_PARTIAL_FLUSH |
1483 	                                          RADV_CMD_FLAG_VGT_FLUSH |
1484 						  RADV_CMD_FLAG_START_PIPELINE_STATS |
1485 						  RADV_CMD_FLAG_STOP_PIPELINE_STATS);
1486 
1487 	if (!cmd_buffer->state.flush_bits) {
1488 		radv_describe_barrier_end_delayed(cmd_buffer);
1489 		return;
1490 	}
1491 
1492 	radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 128);
1493 
1494 	si_cs_emit_cache_flush(cmd_buffer->cs,
1495 	                       cmd_buffer->device->physical_device->rad_info.chip_class,
1496 			       &cmd_buffer->gfx9_fence_idx,
1497 			       cmd_buffer->gfx9_fence_va,
1498 	                       radv_cmd_buffer_uses_mec(cmd_buffer),
1499 	                       cmd_buffer->state.flush_bits,
1500 			       &cmd_buffer->state.sqtt_flush_bits,
1501 			       cmd_buffer->gfx9_eop_bug_va);
1502 
1503 
1504 	if (unlikely(cmd_buffer->device->trace_bo))
1505 		radv_cmd_buffer_trace_emit(cmd_buffer);
1506 
1507 	/* Clear the caches that have been flushed to avoid syncing too much
1508 	 * when there is some pending active queries.
1509 	 */
1510 	cmd_buffer->active_query_flush_bits &= ~cmd_buffer->state.flush_bits;
1511 
1512 	cmd_buffer->state.flush_bits = 0;
1513 
1514 	/* If the driver used a compute shader for resetting a query pool, it
1515 	 * should be finished at this point.
1516 	 */
1517 	cmd_buffer->pending_reset_query = false;
1518 
1519 	radv_describe_barrier_end_delayed(cmd_buffer);
1520 }
1521 
1522 /* sets the CP predication state using a boolean stored at va */
1523 void
si_emit_set_predication_state(struct radv_cmd_buffer * cmd_buffer,bool draw_visible,uint64_t va)1524 si_emit_set_predication_state(struct radv_cmd_buffer *cmd_buffer,
1525 			      bool draw_visible, uint64_t va)
1526 {
1527 	uint32_t op = 0;
1528 
1529 	if (va) {
1530 		op = PRED_OP(PREDICATION_OP_BOOL64);
1531 
1532 		/* PREDICATION_DRAW_VISIBLE means that if the 32-bit value is
1533 		 * zero, all rendering commands are discarded. Otherwise, they
1534 		 * are discarded if the value is non zero.
1535 		 */
1536 		op |= draw_visible ? PREDICATION_DRAW_VISIBLE :
1537 				     PREDICATION_DRAW_NOT_VISIBLE;
1538 	}
1539 	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1540 		radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 2, 0));
1541 		radeon_emit(cmd_buffer->cs, op);
1542 		radeon_emit(cmd_buffer->cs, va);
1543 		radeon_emit(cmd_buffer->cs, va >> 32);
1544 	} else {
1545 		radeon_emit(cmd_buffer->cs, PKT3(PKT3_SET_PREDICATION, 1, 0));
1546 		radeon_emit(cmd_buffer->cs, va);
1547 		radeon_emit(cmd_buffer->cs, op | ((va >> 32) & 0xFF));
1548 	}
1549 }
1550 
1551 /* Set this if you want the 3D engine to wait until CP DMA is done.
1552  * It should be set on the last CP DMA packet. */
1553 #define CP_DMA_SYNC	(1 << 0)
1554 
1555 /* Set this if the source data was used as a destination in a previous CP DMA
1556  * packet. It's for preventing a read-after-write (RAW) hazard between two
1557  * CP DMA packets. */
1558 #define CP_DMA_RAW_WAIT	(1 << 1)
1559 #define CP_DMA_USE_L2	(1 << 2)
1560 #define CP_DMA_CLEAR	(1 << 3)
1561 
1562 /* Alignment for optimal performance. */
1563 #define SI_CPDMA_ALIGNMENT	32
1564 
1565 /* The max number of bytes that can be copied per packet. */
cp_dma_max_byte_count(struct radv_cmd_buffer * cmd_buffer)1566 static inline unsigned cp_dma_max_byte_count(struct radv_cmd_buffer *cmd_buffer)
1567 {
1568 	unsigned max = cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 ?
1569 			       S_414_BYTE_COUNT_GFX9(~0u) :
1570 			       S_414_BYTE_COUNT_GFX6(~0u);
1571 
1572 	/* make it aligned for optimal performance */
1573 	return max & ~(SI_CPDMA_ALIGNMENT - 1);
1574 }
1575 
1576 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
1577  * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
1578  * clear value.
1579  */
si_emit_cp_dma(struct radv_cmd_buffer * cmd_buffer,uint64_t dst_va,uint64_t src_va,unsigned size,unsigned flags)1580 static void si_emit_cp_dma(struct radv_cmd_buffer *cmd_buffer,
1581 			   uint64_t dst_va, uint64_t src_va,
1582 			   unsigned size, unsigned flags)
1583 {
1584 	struct radeon_cmdbuf *cs = cmd_buffer->cs;
1585 	uint32_t header = 0, command = 0;
1586 
1587 	assert(size <= cp_dma_max_byte_count(cmd_buffer));
1588 
1589 	radeon_check_space(cmd_buffer->device->ws, cmd_buffer->cs, 9);
1590 	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1591 		command |= S_414_BYTE_COUNT_GFX9(size);
1592 	else
1593 		command |= S_414_BYTE_COUNT_GFX6(size);
1594 
1595 	/* Sync flags. */
1596 	if (flags & CP_DMA_SYNC)
1597 		header |= S_411_CP_SYNC(1);
1598 	else {
1599 		if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9)
1600 			command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
1601 		else
1602 			command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
1603 	}
1604 
1605 	if (flags & CP_DMA_RAW_WAIT)
1606 		command |= S_414_RAW_WAIT(1);
1607 
1608 	/* Src and dst flags. */
1609 	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9 &&
1610 	    !(flags & CP_DMA_CLEAR) &&
1611 	    src_va == dst_va)
1612 		header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */
1613 	else if (flags & CP_DMA_USE_L2)
1614 		header |= S_411_DST_SEL(V_411_DST_ADDR_TC_L2);
1615 
1616 	if (flags & CP_DMA_CLEAR)
1617 		header |= S_411_SRC_SEL(V_411_DATA);
1618 	else if (flags & CP_DMA_USE_L2)
1619 		header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
1620 
1621 	if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX7) {
1622 		radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, cmd_buffer->state.predicating));
1623 		radeon_emit(cs, header);
1624 		radeon_emit(cs, src_va);		/* SRC_ADDR_LO [31:0] */
1625 		radeon_emit(cs, src_va >> 32);		/* SRC_ADDR_HI [31:0] */
1626 		radeon_emit(cs, dst_va);		/* DST_ADDR_LO [31:0] */
1627 		radeon_emit(cs, dst_va >> 32);		/* DST_ADDR_HI [31:0] */
1628 		radeon_emit(cs, command);
1629 	} else {
1630 		assert(!(flags & CP_DMA_USE_L2));
1631 		header |= S_411_SRC_ADDR_HI(src_va >> 32);
1632 		radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, cmd_buffer->state.predicating));
1633 		radeon_emit(cs, src_va);			/* SRC_ADDR_LO [31:0] */
1634 		radeon_emit(cs, header);			/* SRC_ADDR_HI [15:0] + flags. */
1635 		radeon_emit(cs, dst_va);			/* DST_ADDR_LO [31:0] */
1636 		radeon_emit(cs, (dst_va >> 32) & 0xffff);	/* DST_ADDR_HI [15:0] */
1637 		radeon_emit(cs, command);
1638 	}
1639 
1640 	/* CP DMA is executed in ME, but index buffers are read by PFP.
1641 	 * This ensures that ME (CP DMA) is idle before PFP starts fetching
1642 	 * indices. If we wanted to execute CP DMA in PFP, this packet
1643 	 * should precede it.
1644 	 */
1645 	if (flags & CP_DMA_SYNC) {
1646 		if (cmd_buffer->queue_family_index == RADV_QUEUE_GENERAL) {
1647 			radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, cmd_buffer->state.predicating));
1648 			radeon_emit(cs, 0);
1649 		}
1650 
1651 		/* CP will see the sync flag and wait for all DMAs to complete. */
1652 		cmd_buffer->state.dma_is_busy = false;
1653 	}
1654 
1655 	if (unlikely(cmd_buffer->device->trace_bo))
1656 		radv_cmd_buffer_trace_emit(cmd_buffer);
1657 }
1658 
si_cp_dma_prefetch(struct radv_cmd_buffer * cmd_buffer,uint64_t va,unsigned size)1659 void si_cp_dma_prefetch(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1660                         unsigned size)
1661 {
1662 	uint64_t aligned_va = va & ~(SI_CPDMA_ALIGNMENT - 1);
1663 	uint64_t aligned_size = ((va + size + SI_CPDMA_ALIGNMENT -1) & ~(SI_CPDMA_ALIGNMENT - 1)) - aligned_va;
1664 
1665 	si_emit_cp_dma(cmd_buffer, aligned_va, aligned_va,
1666 		       aligned_size, CP_DMA_USE_L2);
1667 }
1668 
si_cp_dma_prepare(struct radv_cmd_buffer * cmd_buffer,uint64_t byte_count,uint64_t remaining_size,unsigned * flags)1669 static void si_cp_dma_prepare(struct radv_cmd_buffer *cmd_buffer, uint64_t byte_count,
1670 			      uint64_t remaining_size, unsigned *flags)
1671 {
1672 
1673 	/* Flush the caches for the first copy only.
1674 	 * Also wait for the previous CP DMA operations.
1675 	 */
1676 	if (cmd_buffer->state.flush_bits) {
1677 		si_emit_cache_flush(cmd_buffer);
1678 		*flags |= CP_DMA_RAW_WAIT;
1679 	}
1680 
1681 	/* Do the synchronization after the last dma, so that all data
1682 	 * is written to memory.
1683 	 */
1684 	if (byte_count == remaining_size)
1685 		*flags |= CP_DMA_SYNC;
1686 }
1687 
si_cp_dma_realign_engine(struct radv_cmd_buffer * cmd_buffer,unsigned size)1688 static void si_cp_dma_realign_engine(struct radv_cmd_buffer *cmd_buffer, unsigned size)
1689 {
1690 	uint64_t va;
1691 	uint32_t offset;
1692 	unsigned dma_flags = 0;
1693 	unsigned buf_size = SI_CPDMA_ALIGNMENT * 2;
1694 	void *ptr;
1695 
1696 	assert(size < SI_CPDMA_ALIGNMENT);
1697 
1698 	radv_cmd_buffer_upload_alloc(cmd_buffer, buf_size, SI_CPDMA_ALIGNMENT,  &offset, &ptr);
1699 
1700 	va = radv_buffer_get_va(cmd_buffer->upload.upload_bo);
1701 	va += offset;
1702 
1703 	si_cp_dma_prepare(cmd_buffer, size, size, &dma_flags);
1704 
1705 	si_emit_cp_dma(cmd_buffer, va, va + SI_CPDMA_ALIGNMENT, size,
1706 		       dma_flags);
1707 }
1708 
si_cp_dma_buffer_copy(struct radv_cmd_buffer * cmd_buffer,uint64_t src_va,uint64_t dest_va,uint64_t size)1709 void si_cp_dma_buffer_copy(struct radv_cmd_buffer *cmd_buffer,
1710 			   uint64_t src_va, uint64_t dest_va,
1711 			   uint64_t size)
1712 {
1713 	uint64_t main_src_va, main_dest_va;
1714 	uint64_t skipped_size = 0, realign_size = 0;
1715 
1716 	/* Assume that we are not going to sync after the last DMA operation. */
1717 	cmd_buffer->state.dma_is_busy = true;
1718 
1719 	if (cmd_buffer->device->physical_device->rad_info.family <= CHIP_CARRIZO ||
1720 	    cmd_buffer->device->physical_device->rad_info.family == CHIP_STONEY) {
1721 		/* If the size is not aligned, we must add a dummy copy at the end
1722 		 * just to align the internal counter. Otherwise, the DMA engine
1723 		 * would slow down by an order of magnitude for following copies.
1724 		 */
1725 		if (size % SI_CPDMA_ALIGNMENT)
1726 			realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
1727 
1728 		/* If the copy begins unaligned, we must start copying from the next
1729 		 * aligned block and the skipped part should be copied after everything
1730 		 * else has been copied. Only the src alignment matters, not dst.
1731 		 */
1732 		if (src_va % SI_CPDMA_ALIGNMENT) {
1733 			skipped_size = SI_CPDMA_ALIGNMENT - (src_va % SI_CPDMA_ALIGNMENT);
1734 			/* The main part will be skipped if the size is too small. */
1735 			skipped_size = MIN2(skipped_size, size);
1736 			size -= skipped_size;
1737 		}
1738 	}
1739 	main_src_va = src_va + skipped_size;
1740 	main_dest_va = dest_va + skipped_size;
1741 
1742 	while (size) {
1743 		unsigned dma_flags = 0;
1744 		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1745 
1746 		if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1747 			/* DMA operations via L2 are coherent and faster.
1748 			 * TODO: GFX7-GFX9 should also support this but it
1749 			 * requires tests/benchmarks.
1750 			 */
1751 			dma_flags |= CP_DMA_USE_L2;
1752 		}
1753 
1754 		si_cp_dma_prepare(cmd_buffer, byte_count,
1755 				  size + skipped_size + realign_size,
1756 				  &dma_flags);
1757 
1758 		dma_flags &= ~CP_DMA_SYNC;
1759 
1760 		si_emit_cp_dma(cmd_buffer, main_dest_va, main_src_va,
1761 			       byte_count, dma_flags);
1762 
1763 		size -= byte_count;
1764 		main_src_va += byte_count;
1765 		main_dest_va += byte_count;
1766 	}
1767 
1768 	if (skipped_size) {
1769 		unsigned dma_flags = 0;
1770 
1771 		si_cp_dma_prepare(cmd_buffer, skipped_size,
1772 				  size + skipped_size + realign_size,
1773 				  &dma_flags);
1774 
1775 		si_emit_cp_dma(cmd_buffer, dest_va, src_va,
1776 			       skipped_size, dma_flags);
1777 	}
1778 	if (realign_size)
1779 		si_cp_dma_realign_engine(cmd_buffer, realign_size);
1780 }
1781 
si_cp_dma_clear_buffer(struct radv_cmd_buffer * cmd_buffer,uint64_t va,uint64_t size,unsigned value)1782 void si_cp_dma_clear_buffer(struct radv_cmd_buffer *cmd_buffer, uint64_t va,
1783 			    uint64_t size, unsigned value)
1784 {
1785 
1786 	if (!size)
1787 		return;
1788 
1789 	assert(va % 4 == 0 && size % 4 == 0);
1790 
1791 	/* Assume that we are not going to sync after the last DMA operation. */
1792 	cmd_buffer->state.dma_is_busy = true;
1793 
1794 	while (size) {
1795 		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(cmd_buffer));
1796 		unsigned dma_flags = CP_DMA_CLEAR;
1797 
1798 		if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1799 			/* DMA operations via L2 are coherent and faster.
1800 			 * TODO: GFX7-GFX9 should also support this but it
1801 			 * requires tests/benchmarks.
1802 			 */
1803 			dma_flags |= CP_DMA_USE_L2;
1804 		}
1805 
1806 		si_cp_dma_prepare(cmd_buffer, byte_count, size, &dma_flags);
1807 
1808 		/* Emit the clear packet. */
1809 		si_emit_cp_dma(cmd_buffer, va, value, byte_count,
1810 			       dma_flags);
1811 
1812 		size -= byte_count;
1813 		va += byte_count;
1814 	}
1815 }
1816 
si_cp_dma_wait_for_idle(struct radv_cmd_buffer * cmd_buffer)1817 void si_cp_dma_wait_for_idle(struct radv_cmd_buffer *cmd_buffer)
1818 {
1819 	if (cmd_buffer->device->physical_device->rad_info.chip_class < GFX7)
1820 		return;
1821 
1822 	if (!cmd_buffer->state.dma_is_busy)
1823 		return;
1824 
1825 	/* Issue a dummy DMA that copies zero bytes.
1826 	 *
1827 	 * The DMA engine will see that there's no work to do and skip this
1828 	 * DMA request, however, the CP will see the sync flag and still wait
1829 	 * for all DMAs to complete.
1830 	 */
1831 	si_emit_cp_dma(cmd_buffer, 0, 0, 0, CP_DMA_SYNC);
1832 
1833 	cmd_buffer->state.dma_is_busy = false;
1834 }
1835 
1836 /* For MSAA sample positions. */
1837 #define FILL_SREG(s0x, s0y, s1x, s1y, s2x, s2y, s3x, s3y)  \
1838 	((((unsigned)(s0x) & 0xf) << 0)  | (((unsigned)(s0y) & 0xf) << 4)  | \
1839 	 (((unsigned)(s1x) & 0xf) << 8)  | (((unsigned)(s1y) & 0xf) << 12) | \
1840 	 (((unsigned)(s2x) & 0xf) << 16) | (((unsigned)(s2y) & 0xf) << 20) | \
1841 	 (((unsigned)(s3x) & 0xf) << 24) | (((unsigned)(s3y) & 0xf) << 28))
1842 
1843 /* For obtaining location coordinates from registers */
1844 #define SEXT4(x)		((int)((x) | ((x) & 0x8 ? 0xfffffff0 : 0)))
1845 #define GET_SFIELD(reg, index)	SEXT4(((reg) >> ((index) * 4)) & 0xf)
1846 #define GET_SX(reg, index)	GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2)
1847 #define GET_SY(reg, index)	GET_SFIELD((reg)[(index) / 4], ((index) % 4) * 2 + 1)
1848 
1849 /* 1x MSAA */
1850 static const uint32_t sample_locs_1x =
1851 	FILL_SREG(0, 0,   0, 0,   0, 0,   0, 0);
1852 static const unsigned max_dist_1x = 0;
1853 static const uint64_t centroid_priority_1x = 0x0000000000000000ull;
1854 
1855 /* 2xMSAA */
1856 static const uint32_t sample_locs_2x =
1857 	FILL_SREG(4,4,   -4, -4,   0, 0,   0, 0);
1858 static const unsigned max_dist_2x = 4;
1859 static const uint64_t centroid_priority_2x = 0x1010101010101010ull;
1860 
1861 /* 4xMSAA */
1862 static const uint32_t sample_locs_4x =
1863 	FILL_SREG(-2,-6,   6, -2,   -6, 2,  2, 6);
1864 static const unsigned max_dist_4x = 6;
1865 static const uint64_t centroid_priority_4x = 0x3210321032103210ull;
1866 
1867 /* 8xMSAA */
1868 static const uint32_t sample_locs_8x[] = {
1869 	FILL_SREG( 1,-3,  -1, 3,   5, 1,  -3,-5),
1870 	FILL_SREG(-5, 5,  -7,-1,   3, 7,   7,-7),
1871 	/* The following are unused by hardware, but we emit them to IBs
1872 	 * instead of multiple SET_CONTEXT_REG packets. */
1873 	0,
1874 	0,
1875 };
1876 static const unsigned max_dist_8x = 7;
1877 static const uint64_t centroid_priority_8x = 0x7654321076543210ull;
1878 
radv_get_default_max_sample_dist(int log_samples)1879 unsigned radv_get_default_max_sample_dist(int log_samples)
1880 {
1881 	unsigned max_dist[] = {
1882 		max_dist_1x,
1883 		max_dist_2x,
1884 		max_dist_4x,
1885 		max_dist_8x,
1886 	};
1887 	return max_dist[log_samples];
1888 }
1889 
radv_emit_default_sample_locations(struct radeon_cmdbuf * cs,int nr_samples)1890 void radv_emit_default_sample_locations(struct radeon_cmdbuf *cs, int nr_samples)
1891 {
1892 	switch (nr_samples) {
1893 	default:
1894 	case 1:
1895 		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1896 		radeon_emit(cs, (uint32_t)centroid_priority_1x);
1897 		radeon_emit(cs, centroid_priority_1x >> 32);
1898 		radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_1x);
1899 		radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_1x);
1900 		radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_1x);
1901 		radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_1x);
1902 		break;
1903 	case 2:
1904 		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1905 		radeon_emit(cs, (uint32_t)centroid_priority_2x);
1906 		radeon_emit(cs, centroid_priority_2x >> 32);
1907 		radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_2x);
1908 		radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_2x);
1909 		radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_2x);
1910 		radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_2x);
1911 		break;
1912 	case 4:
1913 		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1914 		radeon_emit(cs, (uint32_t)centroid_priority_4x);
1915 		radeon_emit(cs, centroid_priority_4x >> 32);
1916 		radeon_set_context_reg(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, sample_locs_4x);
1917 		radeon_set_context_reg(cs, R_028C08_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y0_0, sample_locs_4x);
1918 		radeon_set_context_reg(cs, R_028C18_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y1_0, sample_locs_4x);
1919 		radeon_set_context_reg(cs, R_028C28_PA_SC_AA_SAMPLE_LOCS_PIXEL_X1Y1_0, sample_locs_4x);
1920 		break;
1921 	case 8:
1922 		radeon_set_context_reg_seq(cs, R_028BD4_PA_SC_CENTROID_PRIORITY_0, 2);
1923 		radeon_emit(cs, (uint32_t)centroid_priority_8x);
1924 		radeon_emit(cs, centroid_priority_8x >> 32);
1925 		radeon_set_context_reg_seq(cs, R_028BF8_PA_SC_AA_SAMPLE_LOCS_PIXEL_X0Y0_0, 14);
1926 		radeon_emit_array(cs, sample_locs_8x, 4);
1927 		radeon_emit_array(cs, sample_locs_8x, 4);
1928 		radeon_emit_array(cs, sample_locs_8x, 4);
1929 		radeon_emit_array(cs, sample_locs_8x, 2);
1930 		break;
1931 	}
1932 }
1933 
radv_get_sample_position(struct radv_device * device,unsigned sample_count,unsigned sample_index,float * out_value)1934 static void radv_get_sample_position(struct radv_device *device,
1935 				     unsigned sample_count,
1936 				     unsigned sample_index, float *out_value)
1937 {
1938 	const uint32_t *sample_locs;
1939 
1940 	switch (sample_count) {
1941 	case 1:
1942 	default:
1943 		sample_locs = &sample_locs_1x;
1944 		break;
1945 	case 2:
1946 		sample_locs = &sample_locs_2x;
1947 		break;
1948 	case 4:
1949 		sample_locs = &sample_locs_4x;
1950 		break;
1951 	case 8:
1952 		sample_locs = sample_locs_8x;
1953 		break;
1954 	}
1955 
1956 	out_value[0] = (GET_SX(sample_locs, sample_index) + 8) / 16.0f;
1957 	out_value[1] = (GET_SY(sample_locs, sample_index) + 8) / 16.0f;
1958 }
1959 
radv_device_init_msaa(struct radv_device * device)1960 void radv_device_init_msaa(struct radv_device *device)
1961 {
1962 	int i;
1963 
1964 	radv_get_sample_position(device, 1, 0, device->sample_locations_1x[0]);
1965 
1966 	for (i = 0; i < 2; i++)
1967 		radv_get_sample_position(device, 2, i, device->sample_locations_2x[i]);
1968 	for (i = 0; i < 4; i++)
1969 		radv_get_sample_position(device, 4, i, device->sample_locations_4x[i]);
1970 	for (i = 0; i < 8; i++)
1971 		radv_get_sample_position(device, 8, i, device->sample_locations_8x[i]);
1972 }
1973