1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * on the rights to use, copy, modify, merge, publish, distribute, sub
9  * license, and/or sell copies of the Software, and to permit persons to whom
10  * the Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 #include "ac_nir_to_llvm.h"
26 #include "ac_rtld.h"
27 #include "si_pipe.h"
28 #include "si_shader_internal.h"
29 #include "sid.h"
30 #include "tgsi/tgsi_from_mesa.h"
31 #include "util/u_memory.h"
32 
33 struct si_llvm_diagnostics {
34    struct pipe_debug_callback *debug;
35    unsigned retval;
36 };
37 
si_diagnostic_handler(LLVMDiagnosticInfoRef di,void * context)38 static void si_diagnostic_handler(LLVMDiagnosticInfoRef di, void *context)
39 {
40    struct si_llvm_diagnostics *diag = (struct si_llvm_diagnostics *)context;
41    LLVMDiagnosticSeverity severity = LLVMGetDiagInfoSeverity(di);
42    const char *severity_str = NULL;
43 
44    switch (severity) {
45    case LLVMDSError:
46       severity_str = "error";
47       break;
48    case LLVMDSWarning:
49       severity_str = "warning";
50       break;
51    case LLVMDSRemark:
52    case LLVMDSNote:
53    default:
54       return;
55    }
56 
57    char *description = LLVMGetDiagInfoDescription(di);
58 
59    pipe_debug_message(diag->debug, SHADER_INFO, "LLVM diagnostic (%s): %s", severity_str,
60                       description);
61 
62    if (severity == LLVMDSError) {
63       diag->retval = 1;
64       fprintf(stderr, "LLVM triggered Diagnostic Handler: %s\n", description);
65    }
66 
67    LLVMDisposeMessage(description);
68 }
69 
si_compile_llvm(struct si_screen * sscreen,struct si_shader_binary * binary,struct ac_shader_config * conf,struct ac_llvm_compiler * compiler,struct ac_llvm_context * ac,struct pipe_debug_callback * debug,gl_shader_stage stage,const char * name,bool less_optimized)70 bool si_compile_llvm(struct si_screen *sscreen, struct si_shader_binary *binary,
71                      struct ac_shader_config *conf, struct ac_llvm_compiler *compiler,
72                      struct ac_llvm_context *ac, struct pipe_debug_callback *debug,
73                      gl_shader_stage stage, const char *name, bool less_optimized)
74 {
75    unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
76 
77    if (si_can_dump_shader(sscreen, stage)) {
78       fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
79 
80       if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
81          fprintf(stderr, "%s LLVM IR:\n\n", name);
82          ac_dump_module(ac->module);
83          fprintf(stderr, "\n");
84       }
85    }
86 
87    if (sscreen->record_llvm_ir) {
88       char *ir = LLVMPrintModuleToString(ac->module);
89       binary->llvm_ir_string = strdup(ir);
90       LLVMDisposeMessage(ir);
91    }
92 
93    if (!si_replace_shader(count, binary)) {
94       struct ac_compiler_passes *passes = compiler->passes;
95 
96       if (ac->wave_size == 32)
97          passes = compiler->passes_wave32;
98       else if (less_optimized && compiler->low_opt_passes)
99          passes = compiler->low_opt_passes;
100 
101       struct si_llvm_diagnostics diag = {debug};
102       LLVMContextSetDiagnosticHandler(ac->context, si_diagnostic_handler, &diag);
103 
104       if (!ac_compile_module_to_elf(passes, ac->module, (char **)&binary->elf_buffer,
105                                     &binary->elf_size))
106          diag.retval = 1;
107 
108       if (diag.retval != 0) {
109          pipe_debug_message(debug, SHADER_INFO, "LLVM compilation failed");
110          return false;
111       }
112    }
113 
114    struct ac_rtld_binary rtld;
115    if (!ac_rtld_open(&rtld, (struct ac_rtld_open_info){
116                                .info = &sscreen->info,
117                                .shader_type = stage,
118                                .wave_size = ac->wave_size,
119                                .num_parts = 1,
120                                .elf_ptrs = &binary->elf_buffer,
121                                .elf_sizes = &binary->elf_size}))
122       return false;
123 
124    bool ok = ac_rtld_read_config(&sscreen->info, &rtld, conf);
125    ac_rtld_close(&rtld);
126    return ok;
127 }
128 
si_llvm_context_init(struct si_shader_context * ctx,struct si_screen * sscreen,struct ac_llvm_compiler * compiler,unsigned wave_size)129 void si_llvm_context_init(struct si_shader_context *ctx, struct si_screen *sscreen,
130                           struct ac_llvm_compiler *compiler, unsigned wave_size)
131 {
132    memset(ctx, 0, sizeof(*ctx));
133    ctx->screen = sscreen;
134    ctx->compiler = compiler;
135 
136    ac_llvm_context_init(&ctx->ac, compiler, sscreen->info.chip_class, sscreen->info.family,
137                         AC_FLOAT_MODE_DEFAULT_OPENGL, wave_size, 64);
138 }
139 
si_llvm_create_func(struct si_shader_context * ctx,const char * name,LLVMTypeRef * return_types,unsigned num_return_elems,unsigned max_workgroup_size)140 void si_llvm_create_func(struct si_shader_context *ctx, const char *name, LLVMTypeRef *return_types,
141                          unsigned num_return_elems, unsigned max_workgroup_size)
142 {
143    LLVMTypeRef ret_type;
144    enum ac_llvm_calling_convention call_conv;
145 
146    if (num_return_elems)
147       ret_type = LLVMStructTypeInContext(ctx->ac.context, return_types, num_return_elems, true);
148    else
149       ret_type = ctx->ac.voidt;
150 
151    gl_shader_stage real_stage = ctx->stage;
152 
153    /* LS is merged into HS (TCS), and ES is merged into GS. */
154    if (ctx->screen->info.chip_class >= GFX9) {
155       if (ctx->shader->key.as_ls)
156          real_stage = MESA_SHADER_TESS_CTRL;
157       else if (ctx->shader->key.as_es || ctx->shader->key.as_ngg)
158          real_stage = MESA_SHADER_GEOMETRY;
159    }
160 
161    switch (real_stage) {
162    case MESA_SHADER_VERTEX:
163    case MESA_SHADER_TESS_EVAL:
164       call_conv = AC_LLVM_AMDGPU_VS;
165       break;
166    case MESA_SHADER_TESS_CTRL:
167       call_conv = AC_LLVM_AMDGPU_HS;
168       break;
169    case MESA_SHADER_GEOMETRY:
170       call_conv = AC_LLVM_AMDGPU_GS;
171       break;
172    case MESA_SHADER_FRAGMENT:
173       call_conv = AC_LLVM_AMDGPU_PS;
174       break;
175    case MESA_SHADER_COMPUTE:
176       call_conv = AC_LLVM_AMDGPU_CS;
177       break;
178    default:
179       unreachable("Unhandle shader type");
180    }
181 
182    /* Setup the function */
183    ctx->return_type = ret_type;
184    ctx->main_fn = ac_build_main(&ctx->args, &ctx->ac, call_conv, name, ret_type, ctx->ac.module);
185    ctx->return_value = LLVMGetUndef(ctx->return_type);
186 
187    if (ctx->screen->info.address32_hi) {
188       ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-32bit-address-high-bits",
189                                            ctx->screen->info.address32_hi);
190    }
191 
192    ac_llvm_set_workgroup_size(ctx->main_fn, max_workgroup_size);
193 }
194 
si_llvm_optimize_module(struct si_shader_context * ctx)195 void si_llvm_optimize_module(struct si_shader_context *ctx)
196 {
197    /* Dump LLVM IR before any optimization passes */
198    if (ctx->screen->debug_flags & DBG(PREOPT_IR) && si_can_dump_shader(ctx->screen, ctx->stage))
199       LLVMDumpModule(ctx->ac.module);
200 
201    /* Run the pass */
202    LLVMRunPassManager(ctx->compiler->passmgr, ctx->ac.module);
203    LLVMDisposeBuilder(ctx->ac.builder);
204 }
205 
si_llvm_dispose(struct si_shader_context * ctx)206 void si_llvm_dispose(struct si_shader_context *ctx)
207 {
208    LLVMDisposeModule(ctx->ac.module);
209    LLVMContextDispose(ctx->ac.context);
210    ac_llvm_context_dispose(&ctx->ac);
211 }
212 
213 /**
214  * Load a dword from a constant buffer.
215  */
si_buffer_load_const(struct si_shader_context * ctx,LLVMValueRef resource,LLVMValueRef offset)216 LLVMValueRef si_buffer_load_const(struct si_shader_context *ctx, LLVMValueRef resource,
217                                   LLVMValueRef offset)
218 {
219    return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL, 0, 0, true, true);
220 }
221 
si_llvm_build_ret(struct si_shader_context * ctx,LLVMValueRef ret)222 void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
223 {
224    if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
225       LLVMBuildRetVoid(ctx->ac.builder);
226    else
227       LLVMBuildRet(ctx->ac.builder, ret);
228 }
229 
si_insert_input_ret(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)230 LLVMValueRef si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
231                                  struct ac_arg param, unsigned return_index)
232 {
233    return LLVMBuildInsertValue(ctx->ac.builder, ret, ac_get_arg(&ctx->ac, param), return_index, "");
234 }
235 
si_insert_input_ret_float(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)236 LLVMValueRef si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
237                                        struct ac_arg param, unsigned return_index)
238 {
239    LLVMBuilderRef builder = ctx->ac.builder;
240    LLVMValueRef p = ac_get_arg(&ctx->ac, param);
241 
242    return LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, p), return_index, "");
243 }
244 
si_insert_input_ptr(struct si_shader_context * ctx,LLVMValueRef ret,struct ac_arg param,unsigned return_index)245 LLVMValueRef si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
246                                  struct ac_arg param, unsigned return_index)
247 {
248    LLVMBuilderRef builder = ctx->ac.builder;
249    LLVMValueRef ptr = ac_get_arg(&ctx->ac, param);
250    ptr = LLVMBuildPtrToInt(builder, ptr, ctx->ac.i32, "");
251    return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
252 }
253 
si_prolog_get_rw_buffers(struct si_shader_context * ctx)254 LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
255 {
256    LLVMValueRef ptr[2], list;
257    bool merged_shader = si_is_merged_shader(ctx->shader);
258 
259    ptr[0] = LLVMGetParam(ctx->main_fn, (merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
260    list =
261       LLVMBuildIntToPtr(ctx->ac.builder, ptr[0], ac_array_in_const32_addr_space(ctx->ac.v4i32), "");
262    return list;
263 }
264 
si_llvm_emit_barrier(struct si_shader_context * ctx)265 void si_llvm_emit_barrier(struct si_shader_context *ctx)
266 {
267    /* GFX6 only (thanks to a hw bug workaround):
268     * The real barrier instruction isn’t needed, because an entire patch
269     * always fits into a single wave.
270     */
271    if (ctx->screen->info.chip_class == GFX6 && ctx->stage == MESA_SHADER_TESS_CTRL) {
272       ac_build_waitcnt(&ctx->ac, AC_WAIT_LGKM | AC_WAIT_VLOAD | AC_WAIT_VSTORE);
273       return;
274    }
275 
276    ac_build_s_barrier(&ctx->ac);
277 }
278 
279 /* Ensure that the esgs ring is declared.
280  *
281  * We declare it with 64KB alignment as a hint that the
282  * pointer value will always be 0.
283  */
si_llvm_declare_esgs_ring(struct si_shader_context * ctx)284 void si_llvm_declare_esgs_ring(struct si_shader_context *ctx)
285 {
286    if (ctx->esgs_ring)
287       return;
288 
289    assert(!LLVMGetNamedGlobal(ctx->ac.module, "esgs_ring"));
290 
291    ctx->esgs_ring = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i32, 0),
292                                                 "esgs_ring", AC_ADDR_SPACE_LDS);
293    LLVMSetLinkage(ctx->esgs_ring, LLVMExternalLinkage);
294    LLVMSetAlignment(ctx->esgs_ring, 64 * 1024);
295 }
296 
si_init_exec_from_input(struct si_shader_context * ctx,struct ac_arg param,unsigned bitoffset)297 void si_init_exec_from_input(struct si_shader_context *ctx, struct ac_arg param, unsigned bitoffset)
298 {
299    LLVMValueRef args[] = {
300       ac_get_arg(&ctx->ac, param),
301       LLVMConstInt(ctx->ac.i32, bitoffset, 0),
302    };
303    ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.init.exec.from.input", ctx->ac.voidt, args, 2,
304                       AC_FUNC_ATTR_CONVERGENT);
305 }
306 
307 /**
308  * Get the value of a shader input parameter and extract a bitfield.
309  */
unpack_llvm_param(struct si_shader_context * ctx,LLVMValueRef value,unsigned rshift,unsigned bitwidth)310 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx, LLVMValueRef value,
311                                       unsigned rshift, unsigned bitwidth)
312 {
313    if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
314       value = ac_to_integer(&ctx->ac, value);
315 
316    if (rshift)
317       value = LLVMBuildLShr(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, rshift, 0), "");
318 
319    if (rshift + bitwidth < 32) {
320       unsigned mask = (1 << bitwidth) - 1;
321       value = LLVMBuildAnd(ctx->ac.builder, value, LLVMConstInt(ctx->ac.i32, mask, 0), "");
322    }
323 
324    return value;
325 }
326 
si_unpack_param(struct si_shader_context * ctx,struct ac_arg param,unsigned rshift,unsigned bitwidth)327 LLVMValueRef si_unpack_param(struct si_shader_context *ctx, struct ac_arg param, unsigned rshift,
328                              unsigned bitwidth)
329 {
330    LLVMValueRef value = ac_get_arg(&ctx->ac, param);
331 
332    return unpack_llvm_param(ctx, value, rshift, bitwidth);
333 }
334 
si_get_primitive_id(struct si_shader_context * ctx,unsigned swizzle)335 LLVMValueRef si_get_primitive_id(struct si_shader_context *ctx, unsigned swizzle)
336 {
337    if (swizzle > 0)
338       return ctx->ac.i32_0;
339 
340    switch (ctx->stage) {
341    case MESA_SHADER_VERTEX:
342       return ac_get_arg(&ctx->ac, ctx->vs_prim_id);
343    case MESA_SHADER_TESS_CTRL:
344       return ac_get_arg(&ctx->ac, ctx->args.tcs_patch_id);
345    case MESA_SHADER_TESS_EVAL:
346       return ac_get_arg(&ctx->ac, ctx->args.tes_patch_id);
347    case MESA_SHADER_GEOMETRY:
348       return ac_get_arg(&ctx->ac, ctx->args.gs_prim_id);
349    default:
350       assert(0);
351       return ctx->ac.i32_0;
352    }
353 }
354 
si_llvm_get_block_size(struct ac_shader_abi * abi)355 LLVMValueRef si_llvm_get_block_size(struct ac_shader_abi *abi)
356 {
357    struct si_shader_context *ctx = si_shader_context_from_abi(abi);
358 
359    assert(ctx->shader->selector->info.base.cs.local_size_variable);
360    return ac_get_arg(&ctx->ac, ctx->block_size);
361 }
362 
si_llvm_declare_compute_memory(struct si_shader_context * ctx)363 void si_llvm_declare_compute_memory(struct si_shader_context *ctx)
364 {
365    struct si_shader_selector *sel = ctx->shader->selector;
366    unsigned lds_size = sel->info.base.cs.shared_size;
367 
368    LLVMTypeRef i8p = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
369    LLVMValueRef var;
370 
371    assert(!ctx->ac.lds);
372 
373    var = LLVMAddGlobalInAddressSpace(ctx->ac.module, LLVMArrayType(ctx->ac.i8, lds_size),
374                                      "compute_lds", AC_ADDR_SPACE_LDS);
375    LLVMSetAlignment(var, 64 * 1024);
376 
377    ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
378 }
379 
si_nir_build_llvm(struct si_shader_context * ctx,struct nir_shader * nir)380 bool si_nir_build_llvm(struct si_shader_context *ctx, struct nir_shader *nir)
381 {
382    if (nir->info.stage == MESA_SHADER_VERTEX) {
383       si_llvm_load_vs_inputs(ctx, nir);
384    } else if (nir->info.stage == MESA_SHADER_FRAGMENT) {
385       unsigned colors_read = ctx->shader->selector->info.colors_read;
386       LLVMValueRef main_fn = ctx->main_fn;
387 
388       LLVMValueRef undef = LLVMGetUndef(ctx->ac.f32);
389 
390       unsigned offset = SI_PARAM_POS_FIXED_PT + 1;
391 
392       if (colors_read & 0x0f) {
393          unsigned mask = colors_read & 0x0f;
394          LLVMValueRef values[4];
395          values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
396          values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
397          values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
398          values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
399          ctx->abi.color0 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
400       }
401       if (colors_read & 0xf0) {
402          unsigned mask = (colors_read & 0xf0) >> 4;
403          LLVMValueRef values[4];
404          values[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
405          values[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
406          values[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
407          values[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
408          ctx->abi.color1 = ac_to_integer(&ctx->ac, ac_build_gather_values(&ctx->ac, values, 4));
409       }
410 
411       ctx->abi.interp_at_sample_force_center =
412          ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center;
413 
414       ctx->abi.kill_ps_if_inf_interp =
415          ctx->screen->options.no_infinite_interp &&
416          (ctx->shader->selector->info.uses_persp_center ||
417           ctx->shader->selector->info.uses_persp_centroid ||
418           ctx->shader->selector->info.uses_persp_sample);
419 
420    } else if (nir->info.stage == MESA_SHADER_COMPUTE) {
421       if (nir->info.cs.user_data_components_amd) {
422          ctx->abi.user_data = ac_get_arg(&ctx->ac, ctx->cs_user_data);
423          ctx->abi.user_data = ac_build_expand_to_vec4(&ctx->ac, ctx->abi.user_data,
424                                                       nir->info.cs.user_data_components_amd);
425       }
426 
427       if (ctx->shader->selector->info.base.cs.shared_size)
428          si_llvm_declare_compute_memory(ctx);
429    }
430 
431    ctx->abi.inputs = &ctx->inputs[0];
432    ctx->abi.clamp_shadow_reference = true;
433    ctx->abi.robust_buffer_access = true;
434    ctx->abi.convert_undef_to_zero = true;
435    ctx->abi.clamp_div_by_zero = ctx->screen->options.clamp_div_by_zero;
436 
437    const struct si_shader_info *info = &ctx->shader->selector->info;
438    for (unsigned i = 0; i < info->num_outputs; i++) {
439       LLVMTypeRef type = ctx->ac.f32;
440 
441       if (nir_alu_type_get_type_size(ctx->shader->selector->info.output_type[i]) == 16)
442          type = ctx->ac.f16;
443 
444       for (unsigned j = 0; j < 4; j++)
445          ctx->abi.outputs[i * 4 + j] = ac_build_alloca_undef(&ctx->ac, type, "");
446    }
447 
448    ac_nir_translate(&ctx->ac, &ctx->abi, &ctx->args, nir);
449 
450    return true;
451 }
452 
453 /**
454  * Given a list of shader part functions, build a wrapper function that
455  * runs them in sequence to form a monolithic shader.
456  */
si_build_wrapper_function(struct si_shader_context * ctx,LLVMValueRef * parts,unsigned num_parts,unsigned main_part,unsigned next_shader_first_part)457 void si_build_wrapper_function(struct si_shader_context *ctx, LLVMValueRef *parts,
458                                unsigned num_parts, unsigned main_part,
459                                unsigned next_shader_first_part)
460 {
461    LLVMBuilderRef builder = ctx->ac.builder;
462    /* PS epilog has one arg per color component; gfx9 merged shader
463     * prologs need to forward 40 SGPRs.
464     */
465    LLVMValueRef initial[AC_MAX_ARGS], out[AC_MAX_ARGS];
466    LLVMTypeRef function_type;
467    unsigned num_first_params;
468    unsigned num_out, initial_num_out;
469    ASSERTED unsigned num_out_sgpr;         /* used in debug checks */
470    ASSERTED unsigned initial_num_out_sgpr; /* used in debug checks */
471    unsigned num_sgprs, num_vgprs;
472    unsigned gprs;
473 
474    memset(&ctx->args, 0, sizeof(ctx->args));
475 
476    for (unsigned i = 0; i < num_parts; ++i) {
477       ac_add_function_attr(ctx->ac.context, parts[i], -1, AC_FUNC_ATTR_ALWAYSINLINE);
478       LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
479    }
480 
481    /* The parameters of the wrapper function correspond to those of the
482     * first part in terms of SGPRs and VGPRs, but we use the types of the
483     * main part to get the right types. This is relevant for the
484     * dereferenceable attribute on descriptor table pointers.
485     */
486    num_sgprs = 0;
487    num_vgprs = 0;
488 
489    function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
490    num_first_params = LLVMCountParamTypes(function_type);
491 
492    for (unsigned i = 0; i < num_first_params; ++i) {
493       LLVMValueRef param = LLVMGetParam(parts[0], i);
494 
495       if (ac_is_sgpr_param(param)) {
496          assert(num_vgprs == 0);
497          num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
498       } else {
499          num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
500       }
501    }
502 
503    gprs = 0;
504    while (gprs < num_sgprs + num_vgprs) {
505       LLVMValueRef param = LLVMGetParam(parts[main_part], ctx->args.arg_count);
506       LLVMTypeRef type = LLVMTypeOf(param);
507       unsigned size = ac_get_type_size(type) / 4;
508 
509       /* This is going to get casted anyways, so we don't have to
510        * have the exact same type. But we do have to preserve the
511        * pointer-ness so that LLVM knows about it.
512        */
513       enum ac_arg_type arg_type = AC_ARG_INT;
514       if (LLVMGetTypeKind(type) == LLVMPointerTypeKind) {
515          type = LLVMGetElementType(type);
516 
517          if (LLVMGetTypeKind(type) == LLVMVectorTypeKind) {
518             if (LLVMGetVectorSize(type) == 4)
519                arg_type = AC_ARG_CONST_DESC_PTR;
520             else if (LLVMGetVectorSize(type) == 8)
521                arg_type = AC_ARG_CONST_IMAGE_PTR;
522             else
523                assert(0);
524          } else if (type == ctx->ac.f32) {
525             arg_type = AC_ARG_CONST_FLOAT_PTR;
526          } else {
527             assert(0);
528          }
529       }
530 
531       ac_add_arg(&ctx->args, gprs < num_sgprs ? AC_ARG_SGPR : AC_ARG_VGPR, size, arg_type, NULL);
532 
533       assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
534       assert(gprs + size <= num_sgprs + num_vgprs &&
535              (gprs >= num_sgprs || gprs + size <= num_sgprs));
536 
537       gprs += size;
538    }
539 
540    /* Prepare the return type. */
541    unsigned num_returns = 0;
542    LLVMTypeRef returns[AC_MAX_ARGS], last_func_type, return_type;
543 
544    last_func_type = LLVMGetElementType(LLVMTypeOf(parts[num_parts - 1]));
545    return_type = LLVMGetReturnType(last_func_type);
546 
547    switch (LLVMGetTypeKind(return_type)) {
548    case LLVMStructTypeKind:
549       num_returns = LLVMCountStructElementTypes(return_type);
550       assert(num_returns <= ARRAY_SIZE(returns));
551       LLVMGetStructElementTypes(return_type, returns);
552       break;
553    case LLVMVoidTypeKind:
554       break;
555    default:
556       unreachable("unexpected type");
557    }
558 
559    si_llvm_create_func(ctx, "wrapper", returns, num_returns,
560                        si_get_max_workgroup_size(ctx->shader));
561 
562    if (si_is_merged_shader(ctx->shader))
563       ac_init_exec_full_mask(&ctx->ac);
564 
565    /* Record the arguments of the function as if they were an output of
566     * a previous part.
567     */
568    num_out = 0;
569    num_out_sgpr = 0;
570 
571    for (unsigned i = 0; i < ctx->args.arg_count; ++i) {
572       LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
573       LLVMTypeRef param_type = LLVMTypeOf(param);
574       LLVMTypeRef out_type = ctx->args.args[i].file == AC_ARG_SGPR ? ctx->ac.i32 : ctx->ac.f32;
575       unsigned size = ac_get_type_size(param_type) / 4;
576 
577       if (size == 1) {
578          if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
579             param = LLVMBuildPtrToInt(builder, param, ctx->ac.i32, "");
580             param_type = ctx->ac.i32;
581          }
582 
583          if (param_type != out_type)
584             param = LLVMBuildBitCast(builder, param, out_type, "");
585          out[num_out++] = param;
586       } else {
587          LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
588 
589          if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
590             param = LLVMBuildPtrToInt(builder, param, ctx->ac.i64, "");
591             param_type = ctx->ac.i64;
592          }
593 
594          if (param_type != vector_type)
595             param = LLVMBuildBitCast(builder, param, vector_type, "");
596 
597          for (unsigned j = 0; j < size; ++j)
598             out[num_out++] =
599                LLVMBuildExtractElement(builder, param, LLVMConstInt(ctx->ac.i32, j, 0), "");
600       }
601 
602       if (ctx->args.args[i].file == AC_ARG_SGPR)
603          num_out_sgpr = num_out;
604    }
605 
606    memcpy(initial, out, sizeof(out));
607    initial_num_out = num_out;
608    initial_num_out_sgpr = num_out_sgpr;
609 
610    /* Now chain the parts. */
611    LLVMValueRef ret = NULL;
612    for (unsigned part = 0; part < num_parts; ++part) {
613       LLVMValueRef in[AC_MAX_ARGS];
614       LLVMTypeRef ret_type;
615       unsigned out_idx = 0;
616       unsigned num_params = LLVMCountParams(parts[part]);
617 
618       /* Merged shaders are executed conditionally depending
619        * on the number of enabled threads passed in the input SGPRs. */
620       if (si_is_multi_part_shader(ctx->shader) && part == 0) {
621          LLVMValueRef ena, count = initial[3];
622 
623          count = LLVMBuildAnd(builder, count, LLVMConstInt(ctx->ac.i32, 0x7f, 0), "");
624          ena = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), count, "");
625          ac_build_ifcc(&ctx->ac, ena, 6506);
626       }
627 
628       /* Derive arguments for the next part from outputs of the
629        * previous one.
630        */
631       for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
632          LLVMValueRef param;
633          LLVMTypeRef param_type;
634          bool is_sgpr;
635          unsigned param_size;
636          LLVMValueRef arg = NULL;
637 
638          param = LLVMGetParam(parts[part], param_idx);
639          param_type = LLVMTypeOf(param);
640          param_size = ac_get_type_size(param_type) / 4;
641          is_sgpr = ac_is_sgpr_param(param);
642 
643          if (is_sgpr) {
644             ac_add_function_attr(ctx->ac.context, parts[part], param_idx + 1, AC_FUNC_ATTR_INREG);
645          } else if (out_idx < num_out_sgpr) {
646             /* Skip returned SGPRs the current part doesn't
647              * declare on the input. */
648             out_idx = num_out_sgpr;
649          }
650 
651          assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
652 
653          if (param_size == 1)
654             arg = out[out_idx];
655          else
656             arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
657 
658          if (LLVMTypeOf(arg) != param_type) {
659             if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
660                if (LLVMGetPointerAddressSpace(param_type) == AC_ADDR_SPACE_CONST_32BIT) {
661                   arg = LLVMBuildBitCast(builder, arg, ctx->ac.i32, "");
662                   arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
663                } else {
664                   arg = LLVMBuildBitCast(builder, arg, ctx->ac.i64, "");
665                   arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
666                }
667             } else {
668                arg = LLVMBuildBitCast(builder, arg, param_type, "");
669             }
670          }
671 
672          in[param_idx] = arg;
673          out_idx += param_size;
674       }
675 
676       ret = ac_build_call(&ctx->ac, parts[part], in, num_params);
677 
678       if (si_is_multi_part_shader(ctx->shader) && part + 1 == next_shader_first_part) {
679          ac_build_endif(&ctx->ac, 6506);
680 
681          /* The second half of the merged shader should use
682           * the inputs from the toplevel (wrapper) function,
683           * not the return value from the last call.
684           *
685           * That's because the last call was executed condi-
686           * tionally, so we can't consume it in the main
687           * block.
688           */
689          memcpy(out, initial, sizeof(initial));
690          num_out = initial_num_out;
691          num_out_sgpr = initial_num_out_sgpr;
692          continue;
693       }
694 
695       /* Extract the returned GPRs. */
696       ret_type = LLVMTypeOf(ret);
697       num_out = 0;
698       num_out_sgpr = 0;
699 
700       if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
701          assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
702 
703          unsigned ret_size = LLVMCountStructElementTypes(ret_type);
704 
705          for (unsigned i = 0; i < ret_size; ++i) {
706             LLVMValueRef val = LLVMBuildExtractValue(builder, ret, i, "");
707 
708             assert(num_out < ARRAY_SIZE(out));
709             out[num_out++] = val;
710 
711             if (LLVMTypeOf(val) == ctx->ac.i32) {
712                assert(num_out_sgpr + 1 == num_out);
713                num_out_sgpr = num_out;
714             }
715          }
716       }
717    }
718 
719    /* Return the value from the last part. */
720    if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
721       LLVMBuildRetVoid(builder);
722    else
723       LLVMBuildRet(builder, ret);
724 }
725