1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H
11 #define EIGEN_TRIANGULAR_SOLVER_MATRIX_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // if the rhs is row major, let's transpose the product
18 template <typename Scalar, typename Index, int Side, int Mode, bool Conjugate, int TriStorageOrder>
19 struct triangular_solve_matrix<Scalar,Index,Side,Mode,Conjugate,TriStorageOrder,RowMajor>
20 {
21   static void run(
22     Index size, Index cols,
23     const Scalar*  tri, Index triStride,
24     Scalar* _other, Index otherStride,
25     level3_blocking<Scalar,Scalar>& blocking)
26   {
27     triangular_solve_matrix<
28       Scalar, Index, Side==OnTheLeft?OnTheRight:OnTheLeft,
29       (Mode&UnitDiag) | ((Mode&Upper) ? Lower : Upper),
30       NumTraits<Scalar>::IsComplex && Conjugate,
31       TriStorageOrder==RowMajor ? ColMajor : RowMajor, ColMajor>
32       ::run(size, cols, tri, triStride, _other, otherStride, blocking);
33   }
34 };
35 
36 /* Optimized triangular solver with multiple right hand side and the triangular matrix on the left
37  */
38 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
39 struct triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>
40 {
41   static EIGEN_DONT_INLINE void run(
42     Index size, Index otherSize,
43     const Scalar* _tri, Index triStride,
44     Scalar* _other, Index otherStride,
45     level3_blocking<Scalar,Scalar>& blocking);
46 };
47 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
48 EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheLeft,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
49     Index size, Index otherSize,
50     const Scalar* _tri, Index triStride,
51     Scalar* _other, Index otherStride,
52     level3_blocking<Scalar,Scalar>& blocking)
53   {
54     Index cols = otherSize;
55 
56     typedef const_blas_data_mapper<Scalar, Index, TriStorageOrder> TriMapper;
57     typedef blas_data_mapper<Scalar, Index, ColMajor> OtherMapper;
58     TriMapper tri(_tri, triStride);
59     OtherMapper other(_other, otherStride);
60 
61     typedef gebp_traits<Scalar,Scalar> Traits;
62 
63     enum {
64       SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
65       IsLower = (Mode&Lower) == Lower
66     };
67 
68     Index kc = blocking.kc();                   // cache block size along the K direction
69     Index mc = (std::min)(size,blocking.mc());  // cache block size along the M direction
70 
71     std::size_t sizeA = kc*mc;
72     std::size_t sizeB = kc*cols;
73 
74     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
75     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
76 
77     conj_if<Conjugate> conj;
78     gebp_kernel<Scalar, Scalar, Index, OtherMapper, Traits::mr, Traits::nr, Conjugate, false> gebp_kernel;
79     gemm_pack_lhs<Scalar, Index, TriMapper, Traits::mr, Traits::LhsProgress, TriStorageOrder> pack_lhs;
80     gemm_pack_rhs<Scalar, Index, OtherMapper, Traits::nr, ColMajor, false, true> pack_rhs;
81 
82     // the goal here is to subdivise the Rhs panels such that we keep some cache
83     // coherence when accessing the rhs elements
84     std::ptrdiff_t l1, l2, l3;
85     manage_caching_sizes(GetAction, &l1, &l2, &l3);
86     Index subcols = cols>0 ? l2/(4 * sizeof(Scalar) * std::max<Index>(otherStride,size)) : 0;
87     subcols = std::max<Index>((subcols/Traits::nr)*Traits::nr, Traits::nr);
88 
89     for(Index k2=IsLower ? 0 : size;
90         IsLower ? k2<size : k2>0;
91         IsLower ? k2+=kc : k2-=kc)
92     {
93       const Index actual_kc = (std::min)(IsLower ? size-k2 : k2, kc);
94 
95       // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel,
96       // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into
97       // A11 (the triangular part) and A21 the remaining rectangular part.
98       // Then the high level algorithm is:
99       //  - B = R1                    => general block copy (done during the next step)
100       //  - R1 = A11^-1 B             => tricky part
101       //  - update B from the new R1  => actually this has to be performed continuously during the above step
102       //  - R2 -= A21 * B             => GEPP
103 
104       // The tricky part: compute R1 = A11^-1 B while updating B from R1
105       // The idea is to split A11 into multiple small vertical panels.
106       // Each panel can be split into a small triangular part T1k which is processed without optimization,
107       // and the remaining small part T2k which is processed using gebp with appropriate block strides
108       for(Index j2=0; j2<cols; j2+=subcols)
109       {
110         Index actual_cols = (std::min)(cols-j2,subcols);
111         // for each small vertical panels [T1k^T, T2k^T]^T of lhs
112         for (Index k1=0; k1<actual_kc; k1+=SmallPanelWidth)
113         {
114           Index actualPanelWidth = std::min<Index>(actual_kc-k1, SmallPanelWidth);
115           // tr solve
116           for (Index k=0; k<actualPanelWidth; ++k)
117           {
118             // TODO write a small kernel handling this (can be shared with trsv)
119             Index i  = IsLower ? k2+k1+k : k2-k1-k-1;
120             Index rs = actualPanelWidth - k - 1; // remaining size
121             Index s  = TriStorageOrder==RowMajor ? (IsLower ? k2+k1 : i+1)
122                                                  :  IsLower ? i+1 : i-rs;
123 
124             Scalar a = (Mode & UnitDiag) ? Scalar(1) : Scalar(1)/conj(tri(i,i));
125             for (Index j=j2; j<j2+actual_cols; ++j)
126             {
127               if (TriStorageOrder==RowMajor)
128               {
129                 Scalar b(0);
130                 const Scalar* l = &tri(i,s);
131                 Scalar* r = &other(s,j);
132                 for (Index i3=0; i3<k; ++i3)
133                   b += conj(l[i3]) * r[i3];
134 
135                 other(i,j) = (other(i,j) - b)*a;
136               }
137               else
138               {
139                 Scalar b = (other(i,j) *= a);
140                 Scalar* r = &other(s,j);
141                 const Scalar* l = &tri(s,i);
142                 for (Index i3=0;i3<rs;++i3)
143                   r[i3] -= b * conj(l[i3]);
144               }
145             }
146           }
147 
148           Index lengthTarget = actual_kc-k1-actualPanelWidth;
149           Index startBlock   = IsLower ? k2+k1 : k2-k1-actualPanelWidth;
150           Index blockBOffset = IsLower ? k1 : lengthTarget;
151 
152           // update the respective rows of B from other
153           pack_rhs(blockB+actual_kc*j2, other.getSubMapper(startBlock,j2), actualPanelWidth, actual_cols, actual_kc, blockBOffset);
154 
155           // GEBP
156           if (lengthTarget>0)
157           {
158             Index startTarget  = IsLower ? k2+k1+actualPanelWidth : k2-actual_kc;
159 
160             pack_lhs(blockA, tri.getSubMapper(startTarget,startBlock), actualPanelWidth, lengthTarget);
161 
162             gebp_kernel(other.getSubMapper(startTarget,j2), blockA, blockB+actual_kc*j2, lengthTarget, actualPanelWidth, actual_cols, Scalar(-1),
163                         actualPanelWidth, actual_kc, 0, blockBOffset);
164           }
165         }
166       }
167 
168       // R2 -= A21 * B => GEPP
169       {
170         Index start = IsLower ? k2+kc : 0;
171         Index end   = IsLower ? size : k2-kc;
172         for(Index i2=start; i2<end; i2+=mc)
173         {
174           const Index actual_mc = (std::min)(mc,end-i2);
175           if (actual_mc>0)
176           {
177             pack_lhs(blockA, tri.getSubMapper(i2, IsLower ? k2 : k2-kc), actual_kc, actual_mc);
178 
179             gebp_kernel(other.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, Scalar(-1), -1, -1, 0, 0);
180           }
181         }
182       }
183     }
184   }
185 
186 /* Optimized triangular solver with multiple left hand sides and the triangular matrix on the right
187  */
188 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
189 struct triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>
190 {
191   static EIGEN_DONT_INLINE void run(
192     Index size, Index otherSize,
193     const Scalar* _tri, Index triStride,
194     Scalar* _other, Index otherStride,
195     level3_blocking<Scalar,Scalar>& blocking);
196 };
197 template <typename Scalar, typename Index, int Mode, bool Conjugate, int TriStorageOrder>
198 EIGEN_DONT_INLINE void triangular_solve_matrix<Scalar,Index,OnTheRight,Mode,Conjugate,TriStorageOrder,ColMajor>::run(
199     Index size, Index otherSize,
200     const Scalar* _tri, Index triStride,
201     Scalar* _other, Index otherStride,
202     level3_blocking<Scalar,Scalar>& blocking)
203   {
204     Index rows = otherSize;
205     typedef typename NumTraits<Scalar>::Real RealScalar;
206 
207     typedef blas_data_mapper<Scalar, Index, ColMajor> LhsMapper;
208     typedef const_blas_data_mapper<Scalar, Index, TriStorageOrder> RhsMapper;
209     LhsMapper lhs(_other, otherStride);
210     RhsMapper rhs(_tri, triStride);
211 
212     typedef gebp_traits<Scalar,Scalar> Traits;
213     enum {
214       RhsStorageOrder   = TriStorageOrder,
215       SmallPanelWidth   = EIGEN_PLAIN_ENUM_MAX(Traits::mr,Traits::nr),
216       IsLower = (Mode&Lower) == Lower
217     };
218 
219     Index kc = blocking.kc();                   // cache block size along the K direction
220     Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
221 
222     std::size_t sizeA = kc*mc;
223     std::size_t sizeB = kc*size;
224 
225     ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
226     ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
227 
228     conj_if<Conjugate> conj;
229     gebp_kernel<Scalar, Scalar, Index, LhsMapper, Traits::mr, Traits::nr, false, Conjugate> gebp_kernel;
230     gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs;
231     gemm_pack_rhs<Scalar, Index, RhsMapper, Traits::nr, RhsStorageOrder,false,true> pack_rhs_panel;
232     gemm_pack_lhs<Scalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, ColMajor, false, true> pack_lhs_panel;
233 
234     for(Index k2=IsLower ? size : 0;
235         IsLower ? k2>0 : k2<size;
236         IsLower ? k2-=kc : k2+=kc)
237     {
238       const Index actual_kc = (std::min)(IsLower ? k2 : size-k2, kc);
239       Index actual_k2 = IsLower ? k2-actual_kc : k2 ;
240 
241       Index startPanel = IsLower ? 0 : k2+actual_kc;
242       Index rs = IsLower ? actual_k2 : size - actual_k2 - actual_kc;
243       Scalar* geb = blockB+actual_kc*actual_kc;
244 
245       if (rs>0) pack_rhs(geb, rhs.getSubMapper(actual_k2,startPanel), actual_kc, rs);
246 
247       // triangular packing (we only pack the panels off the diagonal,
248       // neglecting the blocks overlapping the diagonal
249       {
250         for (Index j2=0; j2<actual_kc; j2+=SmallPanelWidth)
251         {
252           Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
253           Index actual_j2 = actual_k2 + j2;
254           Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
255           Index panelLength = IsLower ? actual_kc-j2-actualPanelWidth : j2;
256 
257           if (panelLength>0)
258           pack_rhs_panel(blockB+j2*actual_kc,
259                          rhs.getSubMapper(actual_k2+panelOffset, actual_j2),
260                          panelLength, actualPanelWidth,
261                          actual_kc, panelOffset);
262         }
263       }
264 
265       for(Index i2=0; i2<rows; i2+=mc)
266       {
267         const Index actual_mc = (std::min)(mc,rows-i2);
268 
269         // triangular solver kernel
270         {
271           // for each small block of the diagonal (=> vertical panels of rhs)
272           for (Index j2 = IsLower
273                       ? (actual_kc - ((actual_kc%SmallPanelWidth) ? Index(actual_kc%SmallPanelWidth)
274                                                                   : Index(SmallPanelWidth)))
275                       : 0;
276                IsLower ? j2>=0 : j2<actual_kc;
277                IsLower ? j2-=SmallPanelWidth : j2+=SmallPanelWidth)
278           {
279             Index actualPanelWidth = std::min<Index>(actual_kc-j2, SmallPanelWidth);
280             Index absolute_j2 = actual_k2 + j2;
281             Index panelOffset = IsLower ? j2+actualPanelWidth : 0;
282             Index panelLength = IsLower ? actual_kc - j2 - actualPanelWidth : j2;
283 
284             // GEBP
285             if(panelLength>0)
286             {
287               gebp_kernel(lhs.getSubMapper(i2,absolute_j2),
288                           blockA, blockB+j2*actual_kc,
289                           actual_mc, panelLength, actualPanelWidth,
290                           Scalar(-1),
291                           actual_kc, actual_kc, // strides
292                           panelOffset, panelOffset); // offsets
293             }
294 
295             // unblocked triangular solve
296             for (Index k=0; k<actualPanelWidth; ++k)
297             {
298               Index j = IsLower ? absolute_j2+actualPanelWidth-k-1 : absolute_j2+k;
299 
300               Scalar* r = &lhs(i2,j);
301               for (Index k3=0; k3<k; ++k3)
302               {
303                 Scalar b = conj(rhs(IsLower ? j+1+k3 : absolute_j2+k3,j));
304                 Scalar* a = &lhs(i2,IsLower ? j+1+k3 : absolute_j2+k3);
305                 for (Index i=0; i<actual_mc; ++i)
306                   r[i] -= a[i] * b;
307               }
308               if((Mode & UnitDiag)==0)
309               {
310                 Scalar inv_rjj = RealScalar(1)/conj(rhs(j,j));
311                 for (Index i=0; i<actual_mc; ++i)
312                   r[i] *= inv_rjj;
313               }
314             }
315 
316             // pack the just computed part of lhs to A
317             pack_lhs_panel(blockA, LhsMapper(_other+absolute_j2*otherStride+i2, otherStride),
318                            actualPanelWidth, actual_mc,
319                            actual_kc, j2);
320           }
321         }
322 
323         if (rs>0)
324           gebp_kernel(lhs.getSubMapper(i2, startPanel), blockA, geb,
325                       actual_mc, actual_kc, rs, Scalar(-1),
326                       -1, -1, 0, 0);
327       }
328     }
329   }
330 
331 } // end namespace internal
332 
333 } // end namespace Eigen
334 
335 #endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H
336