1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
12 
13 namespace Eigen {
14 
15 /** \class TensorGenerator
16   * \ingroup CXX11_Tensor_Module
17   *
18   * \brief Tensor generator class.
19   *
20   *
21   */
22 namespace internal {
23 template<typename Generator, typename XprType>
24 struct traits<TensorGeneratorOp<Generator, XprType> > : public traits<XprType>
25 {
26   typedef typename XprType::Scalar Scalar;
27   typedef traits<XprType> XprTraits;
28   typedef typename XprTraits::StorageKind StorageKind;
29   typedef typename XprTraits::Index Index;
30   typedef typename XprType::Nested Nested;
31   typedef typename remove_reference<Nested>::type _Nested;
32   static const int NumDimensions = XprTraits::NumDimensions;
33   static const int Layout = XprTraits::Layout;
34 };
35 
36 template<typename Generator, typename XprType>
37 struct eval<TensorGeneratorOp<Generator, XprType>, Eigen::Dense>
38 {
39   typedef const TensorGeneratorOp<Generator, XprType>& type;
40 };
41 
42 template<typename Generator, typename XprType>
43 struct nested<TensorGeneratorOp<Generator, XprType>, 1, typename eval<TensorGeneratorOp<Generator, XprType> >::type>
44 {
45   typedef TensorGeneratorOp<Generator, XprType> type;
46 };
47 
48 }  // end namespace internal
49 
50 
51 
52 template<typename Generator, typename XprType>
53 class TensorGeneratorOp : public TensorBase<TensorGeneratorOp<Generator, XprType>, ReadOnlyAccessors>
54 {
55   public:
56   typedef typename Eigen::internal::traits<TensorGeneratorOp>::Scalar Scalar;
57   typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
58   typedef typename XprType::CoeffReturnType CoeffReturnType;
59   typedef typename Eigen::internal::nested<TensorGeneratorOp>::type Nested;
60   typedef typename Eigen::internal::traits<TensorGeneratorOp>::StorageKind StorageKind;
61   typedef typename Eigen::internal::traits<TensorGeneratorOp>::Index Index;
62 
63   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorGeneratorOp(const XprType& expr, const Generator& generator)
64       : m_xpr(expr), m_generator(generator) {}
65 
66     EIGEN_DEVICE_FUNC
67     const Generator& generator() const { return m_generator; }
68 
69     EIGEN_DEVICE_FUNC
70     const typename internal::remove_all<typename XprType::Nested>::type&
71     expression() const { return m_xpr; }
72 
73   protected:
74     typename XprType::Nested m_xpr;
75     const Generator m_generator;
76 };
77 
78 
79 // Eval as rvalue
80 template<typename Generator, typename ArgType, typename Device>
81 struct TensorEvaluator<const TensorGeneratorOp<Generator, ArgType>, Device>
82 {
83   typedef TensorGeneratorOp<Generator, ArgType> XprType;
84   typedef typename XprType::Index Index;
85   typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
86   static const int NumDims = internal::array_size<Dimensions>::value;
87   typedef typename XprType::Scalar Scalar;
88   typedef typename XprType::CoeffReturnType CoeffReturnType;
89   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
90   enum {
91     IsAligned = false,
92     PacketAccess = (internal::unpacket_traits<PacketReturnType>::size > 1),
93     BlockAccess = false,
94     Layout = TensorEvaluator<ArgType, Device>::Layout,
95     CoordAccess = false,  // to be implemented
96     RawAccess = false
97   };
98 
99   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
100       : m_generator(op.generator())
101   {
102     TensorEvaluator<ArgType, Device> impl(op.expression(), device);
103     m_dimensions = impl.dimensions();
104 
105     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
106       m_strides[0] = 1;
107       for (int i = 1; i < NumDims; ++i) {
108         m_strides[i] = m_strides[i - 1] * m_dimensions[i - 1];
109       }
110     } else {
111       m_strides[NumDims - 1] = 1;
112       for (int i = NumDims - 2; i >= 0; --i) {
113         m_strides[i] = m_strides[i + 1] * m_dimensions[i + 1];
114       }
115     }
116   }
117 
118   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; }
119 
120   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
121     return true;
122   }
123   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
124   }
125 
126   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
127   {
128     array<Index, NumDims> coords;
129     extract_coordinates(index, coords);
130     return m_generator(coords);
131   }
132 
133   template<int LoadMode>
134   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
135   {
136     const int packetSize = internal::unpacket_traits<PacketReturnType>::size;
137     EIGEN_STATIC_ASSERT((packetSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
138     eigen_assert(index+packetSize-1 < dimensions().TotalSize());
139 
140     EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[packetSize];
141     for (int i = 0; i < packetSize; ++i) {
142       values[i] = coeff(index+i);
143     }
144     PacketReturnType rslt = internal::pload<PacketReturnType>(values);
145     return rslt;
146   }
147 
148   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
149   costPerCoeff(bool) const {
150     // TODO(rmlarsen): This is just a placeholder. Define interface to make
151     // generators return their cost.
152     return TensorOpCost(0, 0, TensorOpCost::AddCost<Scalar>() +
153                                   TensorOpCost::MulCost<Scalar>());
154   }
155 
156   EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
157 
158  protected:
159   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
160   void extract_coordinates(Index index, array<Index, NumDims>& coords) const {
161     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
162       for (int i = NumDims - 1; i > 0; --i) {
163         const Index idx = index / m_strides[i];
164         index -= idx * m_strides[i];
165         coords[i] = idx;
166       }
167       coords[0] = index;
168     } else {
169       for (int i = 0; i < NumDims - 1; ++i) {
170         const Index idx = index / m_strides[i];
171         index -= idx * m_strides[i];
172         coords[i] = idx;
173       }
174       coords[NumDims-1] = index;
175     }
176   }
177 
178   Dimensions m_dimensions;
179   array<Index, NumDims> m_strides;
180   Generator m_generator;
181 };
182 
183 } // end namespace Eigen
184 
185 #endif // EIGEN_CXX11_TENSOR_TENSOR_GENERATOR_H
186