1 R"********(
2 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
3 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of version 2 of the GNU General Public
7  * License as published by the Free Software Foundation.
8  */
9 #ifndef _UAPI__LINUX_BPF_H__
10 #define _UAPI__LINUX_BPF_H__
11 
12 #include <linux/types.h>
13 #include <linux/bpf_common.h>
14 
15 /* Extended instruction set based on top of classic BPF */
16 
17 /* instruction classes */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 };
109 
110 enum bpf_map_type {
111 	BPF_MAP_TYPE_UNSPEC,
112 	BPF_MAP_TYPE_HASH,
113 	BPF_MAP_TYPE_ARRAY,
114 	BPF_MAP_TYPE_PROG_ARRAY,
115 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
116 	BPF_MAP_TYPE_PERCPU_HASH,
117 	BPF_MAP_TYPE_PERCPU_ARRAY,
118 	BPF_MAP_TYPE_STACK_TRACE,
119 	BPF_MAP_TYPE_CGROUP_ARRAY,
120 	BPF_MAP_TYPE_LRU_HASH,
121 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
122 	BPF_MAP_TYPE_LPM_TRIE,
123 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
124 	BPF_MAP_TYPE_HASH_OF_MAPS,
125 	BPF_MAP_TYPE_DEVMAP,
126 	BPF_MAP_TYPE_SOCKMAP,
127 	BPF_MAP_TYPE_CPUMAP,
128 	BPF_MAP_TYPE_XSKMAP,
129 	BPF_MAP_TYPE_SOCKHASH,
130 	BPF_MAP_TYPE_CGROUP_STORAGE,
131 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
132 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
133 	BPF_MAP_TYPE_QUEUE,
134 	BPF_MAP_TYPE_STACK,
135 };
136 
137 /* Note that tracing related programs such as
138  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
139  * are not subject to a stable API since kernel internal data
140  * structures can change from release to release and may
141  * therefore break existing tracing BPF programs. Tracing BPF
142  * programs correspond to /a/ specific kernel which is to be
143  * analyzed, and not /a/ specific kernel /and/ all future ones.
144  */
145 enum bpf_prog_type {
146 	BPF_PROG_TYPE_UNSPEC,
147 	BPF_PROG_TYPE_SOCKET_FILTER,
148 	BPF_PROG_TYPE_KPROBE,
149 	BPF_PROG_TYPE_SCHED_CLS,
150 	BPF_PROG_TYPE_SCHED_ACT,
151 	BPF_PROG_TYPE_TRACEPOINT,
152 	BPF_PROG_TYPE_XDP,
153 	BPF_PROG_TYPE_PERF_EVENT,
154 	BPF_PROG_TYPE_CGROUP_SKB,
155 	BPF_PROG_TYPE_CGROUP_SOCK,
156 	BPF_PROG_TYPE_LWT_IN,
157 	BPF_PROG_TYPE_LWT_OUT,
158 	BPF_PROG_TYPE_LWT_XMIT,
159 	BPF_PROG_TYPE_SOCK_OPS,
160 	BPF_PROG_TYPE_SK_SKB,
161 	BPF_PROG_TYPE_CGROUP_DEVICE,
162 	BPF_PROG_TYPE_SK_MSG,
163 	BPF_PROG_TYPE_RAW_TRACEPOINT,
164 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
165 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
166 	BPF_PROG_TYPE_LIRC_MODE2,
167 	BPF_PROG_TYPE_SK_REUSEPORT,
168 	BPF_PROG_TYPE_FLOW_DISSECTOR,
169 };
170 
171 enum bpf_attach_type {
172 	BPF_CGROUP_INET_INGRESS,
173 	BPF_CGROUP_INET_EGRESS,
174 	BPF_CGROUP_INET_SOCK_CREATE,
175 	BPF_CGROUP_SOCK_OPS,
176 	BPF_SK_SKB_STREAM_PARSER,
177 	BPF_SK_SKB_STREAM_VERDICT,
178 	BPF_CGROUP_DEVICE,
179 	BPF_SK_MSG_VERDICT,
180 	BPF_CGROUP_INET4_BIND,
181 	BPF_CGROUP_INET6_BIND,
182 	BPF_CGROUP_INET4_CONNECT,
183 	BPF_CGROUP_INET6_CONNECT,
184 	BPF_CGROUP_INET4_POST_BIND,
185 	BPF_CGROUP_INET6_POST_BIND,
186 	BPF_CGROUP_UDP4_SENDMSG,
187 	BPF_CGROUP_UDP6_SENDMSG,
188 	BPF_LIRC_MODE2,
189 	BPF_FLOW_DISSECTOR,
190 	__MAX_BPF_ATTACH_TYPE
191 };
192 
193 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
194 
195 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
196  *
197  * NONE(default): No further bpf programs allowed in the subtree.
198  *
199  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
200  * the program in this cgroup yields to sub-cgroup program.
201  *
202  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
203  * that cgroup program gets run in addition to the program in this cgroup.
204  *
205  * Only one program is allowed to be attached to a cgroup with
206  * NONE or BPF_F_ALLOW_OVERRIDE flag.
207  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
208  * release old program and attach the new one. Attach flags has to match.
209  *
210  * Multiple programs are allowed to be attached to a cgroup with
211  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
212  * (those that were attached first, run first)
213  * The programs of sub-cgroup are executed first, then programs of
214  * this cgroup and then programs of parent cgroup.
215  * When children program makes decision (like picking TCP CA or sock bind)
216  * parent program has a chance to override it.
217  *
218  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
219  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
220  * Ex1:
221  * cgrp1 (MULTI progs A, B) ->
222  *    cgrp2 (OVERRIDE prog C) ->
223  *      cgrp3 (MULTI prog D) ->
224  *        cgrp4 (OVERRIDE prog E) ->
225  *          cgrp5 (NONE prog F)
226  * the event in cgrp5 triggers execution of F,D,A,B in that order.
227  * if prog F is detached, the execution is E,D,A,B
228  * if prog F and D are detached, the execution is E,A,B
229  * if prog F, E and D are detached, the execution is C,A,B
230  *
231  * All eligible programs are executed regardless of return code from
232  * earlier programs.
233  */
234 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
235 #define BPF_F_ALLOW_MULTI	(1U << 1)
236 
237 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
238  * verifier will perform strict alignment checking as if the kernel
239  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
240  * and NET_IP_ALIGN defined to 2.
241  */
242 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
243 
244 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
245  * verifier will allow any alignment whatsoever.  On platforms
246  * with strict alignment requirements for loads ands stores (such
247  * as sparc and mips) the verifier validates that all loads and
248  * stores provably follow this requirement.  This flag turns that
249  * checking and enforcement off.
250  *
251  * It is mostly used for testing when we want to validate the
252  * context and memory access aspects of the verifier, but because
253  * of an unaligned access the alignment check would trigger before
254  * the one we are interested in.
255  */
256 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
257 
258 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */
259 #define BPF_PSEUDO_MAP_FD	1
260 
261 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
262  * offset to another bpf function
263  */
264 #define BPF_PSEUDO_CALL		1
265 
266 /* flags for BPF_MAP_UPDATE_ELEM command */
267 #define BPF_ANY		0 /* create new element or update existing */
268 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
269 #define BPF_EXIST	2 /* update existing element */
270 
271 /* flags for BPF_MAP_CREATE command */
272 #define BPF_F_NO_PREALLOC	(1U << 0)
273 /* Instead of having one common LRU list in the
274  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
275  * which can scale and perform better.
276  * Note, the LRU nodes (including free nodes) cannot be moved
277  * across different LRU lists.
278  */
279 #define BPF_F_NO_COMMON_LRU	(1U << 1)
280 /* Specify numa node during map creation */
281 #define BPF_F_NUMA_NODE		(1U << 2)
282 
283 #define BPF_OBJ_NAME_LEN 16U
284 
285 /* Flags for accessing BPF object */
286 #define BPF_F_RDONLY		(1U << 3)
287 #define BPF_F_WRONLY		(1U << 4)
288 
289 /* Flag for stack_map, store build_id+offset instead of pointer */
290 #define BPF_F_STACK_BUILD_ID	(1U << 5)
291 
292 /* Zero-initialize hash function seed. This should only be used for testing. */
293 #define BPF_F_ZERO_SEED		(1U << 6)
294 
295 /* flags for BPF_PROG_QUERY */
296 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
297 
298 enum bpf_stack_build_id_status {
299 	/* user space need an empty entry to identify end of a trace */
300 	BPF_STACK_BUILD_ID_EMPTY = 0,
301 	/* with valid build_id and offset */
302 	BPF_STACK_BUILD_ID_VALID = 1,
303 	/* couldn't get build_id, fallback to ip */
304 	BPF_STACK_BUILD_ID_IP = 2,
305 };
306 
307 #define BPF_BUILD_ID_SIZE 20
308 struct bpf_stack_build_id {
309 	__s32		status;
310 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
311 	union {
312 		__u64	offset;
313 		__u64	ip;
314 	};
315 };
316 
317 union bpf_attr {
318 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
319 		__u32	map_type;	/* one of enum bpf_map_type */
320 		__u32	key_size;	/* size of key in bytes */
321 		__u32	value_size;	/* size of value in bytes */
322 		__u32	max_entries;	/* max number of entries in a map */
323 		__u32	map_flags;	/* BPF_MAP_CREATE related
324 					 * flags defined above.
325 					 */
326 		__u32	inner_map_fd;	/* fd pointing to the inner map */
327 		__u32	numa_node;	/* numa node (effective only if
328 					 * BPF_F_NUMA_NODE is set).
329 					 */
330 		char	map_name[BPF_OBJ_NAME_LEN];
331 		__u32	map_ifindex;	/* ifindex of netdev to create on */
332 		__u32	btf_fd;		/* fd pointing to a BTF type data */
333 		__u32	btf_key_type_id;	/* BTF type_id of the key */
334 		__u32	btf_value_type_id;	/* BTF type_id of the value */
335 	};
336 
337 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
338 		__u32		map_fd;
339 		__aligned_u64	key;
340 		union {
341 			__aligned_u64 value;
342 			__aligned_u64 next_key;
343 		};
344 		__u64		flags;
345 	};
346 
347 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
348 		__u32		prog_type;	/* one of enum bpf_prog_type */
349 		__u32		insn_cnt;
350 		__aligned_u64	insns;
351 		__aligned_u64	license;
352 		__u32		log_level;	/* verbosity level of verifier */
353 		__u32		log_size;	/* size of user buffer */
354 		__aligned_u64	log_buf;	/* user supplied buffer */
355 		__u32		kern_version;	/* not used */
356 		__u32		prog_flags;
357 		char		prog_name[BPF_OBJ_NAME_LEN];
358 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
359 		/* For some prog types expected attach type must be known at
360 		 * load time to verify attach type specific parts of prog
361 		 * (context accesses, allowed helpers, etc).
362 		 */
363 		__u32		expected_attach_type;
364 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
365 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
366 		__aligned_u64	func_info;	/* func info */
367 		__u32		func_info_cnt;	/* number of bpf_func_info records */
368 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
369 		__aligned_u64	line_info;	/* line info */
370 		__u32		line_info_cnt;	/* number of bpf_line_info records */
371 	};
372 
373 	struct { /* anonymous struct used by BPF_OBJ_* commands */
374 		__aligned_u64	pathname;
375 		__u32		bpf_fd;
376 		__u32		file_flags;
377 	};
378 
379 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
380 		__u32		target_fd;	/* container object to attach to */
381 		__u32		attach_bpf_fd;	/* eBPF program to attach */
382 		__u32		attach_type;
383 		__u32		attach_flags;
384 	};
385 
386 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
387 		__u32		prog_fd;
388 		__u32		retval;
389 		__u32		data_size_in;	/* input: len of data_in */
390 		__u32		data_size_out;	/* input/output: len of data_out
391 						 *   returns ENOSPC if data_out
392 						 *   is too small.
393 						 */
394 		__aligned_u64	data_in;
395 		__aligned_u64	data_out;
396 		__u32		repeat;
397 		__u32		duration;
398 	} test;
399 
400 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
401 		union {
402 			__u32		start_id;
403 			__u32		prog_id;
404 			__u32		map_id;
405 			__u32		btf_id;
406 		};
407 		__u32		next_id;
408 		__u32		open_flags;
409 	};
410 
411 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
412 		__u32		bpf_fd;
413 		__u32		info_len;
414 		__aligned_u64	info;
415 	} info;
416 
417 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
418 		__u32		target_fd;	/* container object to query */
419 		__u32		attach_type;
420 		__u32		query_flags;
421 		__u32		attach_flags;
422 		__aligned_u64	prog_ids;
423 		__u32		prog_cnt;
424 	} query;
425 
426 	struct {
427 		__u64 name;
428 		__u32 prog_fd;
429 	} raw_tracepoint;
430 
431 	struct { /* anonymous struct for BPF_BTF_LOAD */
432 		__aligned_u64	btf;
433 		__aligned_u64	btf_log_buf;
434 		__u32		btf_size;
435 		__u32		btf_log_size;
436 		__u32		btf_log_level;
437 	};
438 
439 	struct {
440 		__u32		pid;		/* input: pid */
441 		__u32		fd;		/* input: fd */
442 		__u32		flags;		/* input: flags */
443 		__u32		buf_len;	/* input/output: buf len */
444 		__aligned_u64	buf;		/* input/output:
445 						 *   tp_name for tracepoint
446 						 *   symbol for kprobe
447 						 *   filename for uprobe
448 						 */
449 		__u32		prog_id;	/* output: prod_id */
450 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
451 		__u64		probe_offset;	/* output: probe_offset */
452 		__u64		probe_addr;	/* output: probe_addr */
453 	} task_fd_query;
454 } __attribute__((aligned(8)));
455 
456 /* The description below is an attempt at providing documentation to eBPF
457  * developers about the multiple available eBPF helper functions. It can be
458  * parsed and used to produce a manual page. The workflow is the following,
459  * and requires the rst2man utility:
460  *
461  *     $ ./scripts/bpf_helpers_doc.py \
462  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
463  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
464  *     $ man /tmp/bpf-helpers.7
465  *
466  * Note that in order to produce this external documentation, some RST
467  * formatting is used in the descriptions to get "bold" and "italics" in
468  * manual pages. Also note that the few trailing white spaces are
469  * intentional, removing them would break paragraphs for rst2man.
470  *
471  * Start of BPF helper function descriptions:
472  *
473  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
474  * 	Description
475  * 		Perform a lookup in *map* for an entry associated to *key*.
476  * 	Return
477  * 		Map value associated to *key*, or **NULL** if no entry was
478  * 		found.
479  *
480  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
481  * 	Description
482  * 		Add or update the value of the entry associated to *key* in
483  * 		*map* with *value*. *flags* is one of:
484  *
485  * 		**BPF_NOEXIST**
486  * 			The entry for *key* must not exist in the map.
487  * 		**BPF_EXIST**
488  * 			The entry for *key* must already exist in the map.
489  * 		**BPF_ANY**
490  * 			No condition on the existence of the entry for *key*.
491  *
492  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
493  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
494  * 		elements always exist), the helper would return an error.
495  * 	Return
496  * 		0 on success, or a negative error in case of failure.
497  *
498  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
499  * 	Description
500  * 		Delete entry with *key* from *map*.
501  * 	Return
502  * 		0 on success, or a negative error in case of failure.
503  *
504  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
505  * 	Description
506  * 		Push an element *value* in *map*. *flags* is one of:
507  *
508  * 		**BPF_EXIST**
509  * 		If the queue/stack is full, the oldest element is removed to
510  * 		make room for this.
511  * 	Return
512  * 		0 on success, or a negative error in case of failure.
513  *
514  * int bpf_probe_read(void *dst, u32 size, const void *src)
515  * 	Description
516  * 		For tracing programs, safely attempt to read *size* bytes from
517  * 		address *src* and store the data in *dst*.
518  * 	Return
519  * 		0 on success, or a negative error in case of failure.
520  *
521  * u64 bpf_ktime_get_ns(void)
522  * 	Description
523  * 		Return the time elapsed since system boot, in nanoseconds.
524  * 	Return
525  * 		Current *ktime*.
526  *
527  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
528  * 	Description
529  * 		This helper is a "printk()-like" facility for debugging. It
530  * 		prints a message defined by format *fmt* (of size *fmt_size*)
531  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
532  * 		available. It can take up to three additional **u64**
533  * 		arguments (as an eBPF helpers, the total number of arguments is
534  * 		limited to five).
535  *
536  * 		Each time the helper is called, it appends a line to the trace.
537  * 		The format of the trace is customizable, and the exact output
538  * 		one will get depends on the options set in
539  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
540  * 		*README* file under the same directory). However, it usually
541  * 		defaults to something like:
542  *
543  * 		::
544  *
545  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
546  *
547  * 		In the above:
548  *
549  * 			* ``telnet`` is the name of the current task.
550  * 			* ``470`` is the PID of the current task.
551  * 			* ``001`` is the CPU number on which the task is
552  * 			  running.
553  * 			* In ``.N..``, each character refers to a set of
554  * 			  options (whether irqs are enabled, scheduling
555  * 			  options, whether hard/softirqs are running, level of
556  * 			  preempt_disabled respectively). **N** means that
557  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
558  * 			  are set.
559  * 			* ``419421.045894`` is a timestamp.
560  * 			* ``0x00000001`` is a fake value used by BPF for the
561  * 			  instruction pointer register.
562  * 			* ``<formatted msg>`` is the message formatted with
563  * 			  *fmt*.
564  *
565  * 		The conversion specifiers supported by *fmt* are similar, but
566  * 		more limited than for printk(). They are **%d**, **%i**,
567  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
568  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
569  * 		of field, padding with zeroes, etc.) is available, and the
570  * 		helper will return **-EINVAL** (but print nothing) if it
571  * 		encounters an unknown specifier.
572  *
573  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
574  * 		only be used for debugging purposes. For this reason, a notice
575  * 		bloc (spanning several lines) is printed to kernel logs and
576  * 		states that the helper should not be used "for production use"
577  * 		the first time this helper is used (or more precisely, when
578  * 		**trace_printk**\ () buffers are allocated). For passing values
579  * 		to user space, perf events should be preferred.
580  * 	Return
581  * 		The number of bytes written to the buffer, or a negative error
582  * 		in case of failure.
583  *
584  * u32 bpf_get_prandom_u32(void)
585  * 	Description
586  * 		Get a pseudo-random number.
587  *
588  * 		From a security point of view, this helper uses its own
589  * 		pseudo-random internal state, and cannot be used to infer the
590  * 		seed of other random functions in the kernel. However, it is
591  * 		essential to note that the generator used by the helper is not
592  * 		cryptographically secure.
593  * 	Return
594  * 		A random 32-bit unsigned value.
595  *
596  * u32 bpf_get_smp_processor_id(void)
597  * 	Description
598  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
599  * 		all programs run with preemption disabled, which means that the
600  * 		SMP processor id is stable during all the execution of the
601  * 		program.
602  * 	Return
603  * 		The SMP id of the processor running the program.
604  *
605  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
606  * 	Description
607  * 		Store *len* bytes from address *from* into the packet
608  * 		associated to *skb*, at *offset*. *flags* are a combination of
609  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
610  * 		checksum for the packet after storing the bytes) and
611  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
612  * 		**->swhash** and *skb*\ **->l4hash** to 0).
613  *
614  * 		A call to this helper is susceptible to change the underlaying
615  * 		packet buffer. Therefore, at load time, all checks on pointers
616  * 		previously done by the verifier are invalidated and must be
617  * 		performed again, if the helper is used in combination with
618  * 		direct packet access.
619  * 	Return
620  * 		0 on success, or a negative error in case of failure.
621  *
622  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
623  * 	Description
624  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
625  * 		associated to *skb*. Computation is incremental, so the helper
626  * 		must know the former value of the header field that was
627  * 		modified (*from*), the new value of this field (*to*), and the
628  * 		number of bytes (2 or 4) for this field, stored in *size*.
629  * 		Alternatively, it is possible to store the difference between
630  * 		the previous and the new values of the header field in *to*, by
631  * 		setting *from* and *size* to 0. For both methods, *offset*
632  * 		indicates the location of the IP checksum within the packet.
633  *
634  * 		This helper works in combination with **bpf_csum_diff**\ (),
635  * 		which does not update the checksum in-place, but offers more
636  * 		flexibility and can handle sizes larger than 2 or 4 for the
637  * 		checksum to update.
638  *
639  * 		A call to this helper is susceptible to change the underlaying
640  * 		packet buffer. Therefore, at load time, all checks on pointers
641  * 		previously done by the verifier are invalidated and must be
642  * 		performed again, if the helper is used in combination with
643  * 		direct packet access.
644  * 	Return
645  * 		0 on success, or a negative error in case of failure.
646  *
647  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
648  * 	Description
649  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
650  * 		packet associated to *skb*. Computation is incremental, so the
651  * 		helper must know the former value of the header field that was
652  * 		modified (*from*), the new value of this field (*to*), and the
653  * 		number of bytes (2 or 4) for this field, stored on the lowest
654  * 		four bits of *flags*. Alternatively, it is possible to store
655  * 		the difference between the previous and the new values of the
656  * 		header field in *to*, by setting *from* and the four lowest
657  * 		bits of *flags* to 0. For both methods, *offset* indicates the
658  * 		location of the IP checksum within the packet. In addition to
659  * 		the size of the field, *flags* can be added (bitwise OR) actual
660  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
661  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
662  * 		for updates resulting in a null checksum the value is set to
663  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
664  * 		the checksum is to be computed against a pseudo-header.
665  *
666  * 		This helper works in combination with **bpf_csum_diff**\ (),
667  * 		which does not update the checksum in-place, but offers more
668  * 		flexibility and can handle sizes larger than 2 or 4 for the
669  * 		checksum to update.
670  *
671  * 		A call to this helper is susceptible to change the underlaying
672  * 		packet buffer. Therefore, at load time, all checks on pointers
673  * 		previously done by the verifier are invalidated and must be
674  * 		performed again, if the helper is used in combination with
675  * 		direct packet access.
676  * 	Return
677  * 		0 on success, or a negative error in case of failure.
678  *
679  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
680  * 	Description
681  * 		This special helper is used to trigger a "tail call", or in
682  * 		other words, to jump into another eBPF program. The same stack
683  * 		frame is used (but values on stack and in registers for the
684  * 		caller are not accessible to the callee). This mechanism allows
685  * 		for program chaining, either for raising the maximum number of
686  * 		available eBPF instructions, or to execute given programs in
687  * 		conditional blocks. For security reasons, there is an upper
688  * 		limit to the number of successive tail calls that can be
689  * 		performed.
690  *
691  * 		Upon call of this helper, the program attempts to jump into a
692  * 		program referenced at index *index* in *prog_array_map*, a
693  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
694  * 		*ctx*, a pointer to the context.
695  *
696  * 		If the call succeeds, the kernel immediately runs the first
697  * 		instruction of the new program. This is not a function call,
698  * 		and it never returns to the previous program. If the call
699  * 		fails, then the helper has no effect, and the caller continues
700  * 		to run its subsequent instructions. A call can fail if the
701  * 		destination program for the jump does not exist (i.e. *index*
702  * 		is superior to the number of entries in *prog_array_map*), or
703  * 		if the maximum number of tail calls has been reached for this
704  * 		chain of programs. This limit is defined in the kernel by the
705  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
706  * 		which is currently set to 32.
707  * 	Return
708  * 		0 on success, or a negative error in case of failure.
709  *
710  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
711  * 	Description
712  * 		Clone and redirect the packet associated to *skb* to another
713  * 		net device of index *ifindex*. Both ingress and egress
714  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
715  * 		value in *flags* is used to make the distinction (ingress path
716  * 		is selected if the flag is present, egress path otherwise).
717  * 		This is the only flag supported for now.
718  *
719  * 		In comparison with **bpf_redirect**\ () helper,
720  * 		**bpf_clone_redirect**\ () has the associated cost of
721  * 		duplicating the packet buffer, but this can be executed out of
722  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
723  * 		efficient, but it is handled through an action code where the
724  * 		redirection happens only after the eBPF program has returned.
725  *
726  * 		A call to this helper is susceptible to change the underlaying
727  * 		packet buffer. Therefore, at load time, all checks on pointers
728  * 		previously done by the verifier are invalidated and must be
729  * 		performed again, if the helper is used in combination with
730  * 		direct packet access.
731  * 	Return
732  * 		0 on success, or a negative error in case of failure.
733  *
734  * u64 bpf_get_current_pid_tgid(void)
735  * 	Return
736  * 		A 64-bit integer containing the current tgid and pid, and
737  * 		created as such:
738  * 		*current_task*\ **->tgid << 32 \|**
739  * 		*current_task*\ **->pid**.
740  *
741  * u64 bpf_get_current_uid_gid(void)
742  * 	Return
743  * 		A 64-bit integer containing the current GID and UID, and
744  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
745  *
746  * int bpf_get_current_comm(char *buf, u32 size_of_buf)
747  * 	Description
748  * 		Copy the **comm** attribute of the current task into *buf* of
749  * 		*size_of_buf*. The **comm** attribute contains the name of
750  * 		the executable (excluding the path) for the current task. The
751  * 		*size_of_buf* must be strictly positive. On success, the
752  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
753  * 		it is filled with zeroes.
754  * 	Return
755  * 		0 on success, or a negative error in case of failure.
756  *
757  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
758  * 	Description
759  * 		Retrieve the classid for the current task, i.e. for the net_cls
760  * 		cgroup to which *skb* belongs.
761  *
762  * 		This helper can be used on TC egress path, but not on ingress.
763  *
764  * 		The net_cls cgroup provides an interface to tag network packets
765  * 		based on a user-provided identifier for all traffic coming from
766  * 		the tasks belonging to the related cgroup. See also the related
767  * 		kernel documentation, available from the Linux sources in file
768  * 		*Documentation/cgroup-v1/net_cls.txt*.
769  *
770  * 		The Linux kernel has two versions for cgroups: there are
771  * 		cgroups v1 and cgroups v2. Both are available to users, who can
772  * 		use a mixture of them, but note that the net_cls cgroup is for
773  * 		cgroup v1 only. This makes it incompatible with BPF programs
774  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
775  * 		only hold data for one version of cgroups at a time).
776  *
777  * 		This helper is only available is the kernel was compiled with
778  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
779  * 		"**y**" or to "**m**".
780  * 	Return
781  * 		The classid, or 0 for the default unconfigured classid.
782  *
783  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
784  * 	Description
785  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
786  * 		*vlan_proto* to the packet associated to *skb*, then update
787  * 		the checksum. Note that if *vlan_proto* is different from
788  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
789  * 		be **ETH_P_8021Q**.
790  *
791  * 		A call to this helper is susceptible to change the underlaying
792  * 		packet buffer. Therefore, at load time, all checks on pointers
793  * 		previously done by the verifier are invalidated and must be
794  * 		performed again, if the helper is used in combination with
795  * 		direct packet access.
796  * 	Return
797  * 		0 on success, or a negative error in case of failure.
798  *
799  * int bpf_skb_vlan_pop(struct sk_buff *skb)
800  * 	Description
801  * 		Pop a VLAN header from the packet associated to *skb*.
802  *
803  * 		A call to this helper is susceptible to change the underlaying
804  * 		packet buffer. Therefore, at load time, all checks on pointers
805  * 		previously done by the verifier are invalidated and must be
806  * 		performed again, if the helper is used in combination with
807  * 		direct packet access.
808  * 	Return
809  * 		0 on success, or a negative error in case of failure.
810  *
811  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
812  * 	Description
813  * 		Get tunnel metadata. This helper takes a pointer *key* to an
814  * 		empty **struct bpf_tunnel_key** of **size**, that will be
815  * 		filled with tunnel metadata for the packet associated to *skb*.
816  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
817  * 		indicates that the tunnel is based on IPv6 protocol instead of
818  * 		IPv4.
819  *
820  * 		The **struct bpf_tunnel_key** is an object that generalizes the
821  * 		principal parameters used by various tunneling protocols into a
822  * 		single struct. This way, it can be used to easily make a
823  * 		decision based on the contents of the encapsulation header,
824  * 		"summarized" in this struct. In particular, it holds the IP
825  * 		address of the remote end (IPv4 or IPv6, depending on the case)
826  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
827  * 		this struct exposes the *key*\ **->tunnel_id**, which is
828  * 		generally mapped to a VNI (Virtual Network Identifier), making
829  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
830  * 		() helper.
831  *
832  * 		Let's imagine that the following code is part of a program
833  * 		attached to the TC ingress interface, on one end of a GRE
834  * 		tunnel, and is supposed to filter out all messages coming from
835  * 		remote ends with IPv4 address other than 10.0.0.1:
836  *
837  * 		::
838  *
839  * 			int ret;
840  * 			struct bpf_tunnel_key key = {};
841  *
842  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
843  * 			if (ret < 0)
844  * 				return TC_ACT_SHOT;	// drop packet
845  *
846  * 			if (key.remote_ipv4 != 0x0a000001)
847  * 				return TC_ACT_SHOT;	// drop packet
848  *
849  * 			return TC_ACT_OK;		// accept packet
850  *
851  * 		This interface can also be used with all encapsulation devices
852  * 		that can operate in "collect metadata" mode: instead of having
853  * 		one network device per specific configuration, the "collect
854  * 		metadata" mode only requires a single device where the
855  * 		configuration can be extracted from this helper.
856  *
857  * 		This can be used together with various tunnels such as VXLan,
858  * 		Geneve, GRE or IP in IP (IPIP).
859  * 	Return
860  * 		0 on success, or a negative error in case of failure.
861  *
862  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
863  * 	Description
864  * 		Populate tunnel metadata for packet associated to *skb.* The
865  * 		tunnel metadata is set to the contents of *key*, of *size*. The
866  * 		*flags* can be set to a combination of the following values:
867  *
868  * 		**BPF_F_TUNINFO_IPV6**
869  * 			Indicate that the tunnel is based on IPv6 protocol
870  * 			instead of IPv4.
871  * 		**BPF_F_ZERO_CSUM_TX**
872  * 			For IPv4 packets, add a flag to tunnel metadata
873  * 			indicating that checksum computation should be skipped
874  * 			and checksum set to zeroes.
875  * 		**BPF_F_DONT_FRAGMENT**
876  * 			Add a flag to tunnel metadata indicating that the
877  * 			packet should not be fragmented.
878  * 		**BPF_F_SEQ_NUMBER**
879  * 			Add a flag to tunnel metadata indicating that a
880  * 			sequence number should be added to tunnel header before
881  * 			sending the packet. This flag was added for GRE
882  * 			encapsulation, but might be used with other protocols
883  * 			as well in the future.
884  *
885  * 		Here is a typical usage on the transmit path:
886  *
887  * 		::
888  *
889  * 			struct bpf_tunnel_key key;
890  * 			     populate key ...
891  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
892  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
893  *
894  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
895  * 		helper for additional information.
896  * 	Return
897  * 		0 on success, or a negative error in case of failure.
898  *
899  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
900  * 	Description
901  * 		Read the value of a perf event counter. This helper relies on a
902  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
903  * 		the perf event counter is selected when *map* is updated with
904  * 		perf event file descriptors. The *map* is an array whose size
905  * 		is the number of available CPUs, and each cell contains a value
906  * 		relative to one CPU. The value to retrieve is indicated by
907  * 		*flags*, that contains the index of the CPU to look up, masked
908  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
909  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
910  * 		current CPU should be retrieved.
911  *
912  * 		Note that before Linux 4.13, only hardware perf event can be
913  * 		retrieved.
914  *
915  * 		Also, be aware that the newer helper
916  * 		**bpf_perf_event_read_value**\ () is recommended over
917  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
918  * 		quirks where error and counter value are used as a return code
919  * 		(which is wrong to do since ranges may overlap). This issue is
920  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
921  * 		time provides more features over the **bpf_perf_event_read**\
922  * 		() interface. Please refer to the description of
923  * 		**bpf_perf_event_read_value**\ () for details.
924  * 	Return
925  * 		The value of the perf event counter read from the map, or a
926  * 		negative error code in case of failure.
927  *
928  * int bpf_redirect(u32 ifindex, u64 flags)
929  * 	Description
930  * 		Redirect the packet to another net device of index *ifindex*.
931  * 		This helper is somewhat similar to **bpf_clone_redirect**\
932  * 		(), except that the packet is not cloned, which provides
933  * 		increased performance.
934  *
935  * 		Except for XDP, both ingress and egress interfaces can be used
936  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
937  * 		to make the distinction (ingress path is selected if the flag
938  * 		is present, egress path otherwise). Currently, XDP only
939  * 		supports redirection to the egress interface, and accepts no
940  * 		flag at all.
941  *
942  * 		The same effect can be attained with the more generic
943  * 		**bpf_redirect_map**\ (), which requires specific maps to be
944  * 		used but offers better performance.
945  * 	Return
946  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
947  * 		**XDP_ABORTED** on error. For other program types, the values
948  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
949  * 		error.
950  *
951  * u32 bpf_get_route_realm(struct sk_buff *skb)
952  * 	Description
953  * 		Retrieve the realm or the route, that is to say the
954  * 		**tclassid** field of the destination for the *skb*. The
955  * 		indentifier retrieved is a user-provided tag, similar to the
956  * 		one used with the net_cls cgroup (see description for
957  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
958  * 		held by a route (a destination entry), not by a task.
959  *
960  * 		Retrieving this identifier works with the clsact TC egress hook
961  * 		(see also **tc-bpf(8)**), or alternatively on conventional
962  * 		classful egress qdiscs, but not on TC ingress path. In case of
963  * 		clsact TC egress hook, this has the advantage that, internally,
964  * 		the destination entry has not been dropped yet in the transmit
965  * 		path. Therefore, the destination entry does not need to be
966  * 		artificially held via **netif_keep_dst**\ () for a classful
967  * 		qdisc until the *skb* is freed.
968  *
969  * 		This helper is available only if the kernel was compiled with
970  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
971  * 	Return
972  * 		The realm of the route for the packet associated to *skb*, or 0
973  * 		if none was found.
974  *
975  * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
976  * 	Description
977  * 		Write raw *data* blob into a special BPF perf event held by
978  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
979  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
980  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
981  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
982  *
983  * 		The *flags* are used to indicate the index in *map* for which
984  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
985  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
986  * 		to indicate that the index of the current CPU core should be
987  * 		used.
988  *
989  * 		The value to write, of *size*, is passed through eBPF stack and
990  * 		pointed by *data*.
991  *
992  * 		The context of the program *ctx* needs also be passed to the
993  * 		helper.
994  *
995  * 		On user space, a program willing to read the values needs to
996  * 		call **perf_event_open**\ () on the perf event (either for
997  * 		one or for all CPUs) and to store the file descriptor into the
998  * 		*map*. This must be done before the eBPF program can send data
999  * 		into it. An example is available in file
1000  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1001  * 		tree (the eBPF program counterpart is in
1002  * 		*samples/bpf/trace_output_kern.c*).
1003  *
1004  * 		**bpf_perf_event_output**\ () achieves better performance
1005  * 		than **bpf_trace_printk**\ () for sharing data with user
1006  * 		space, and is much better suitable for streaming data from eBPF
1007  * 		programs.
1008  *
1009  * 		Note that this helper is not restricted to tracing use cases
1010  * 		and can be used with programs attached to TC or XDP as well,
1011  * 		where it allows for passing data to user space listeners. Data
1012  * 		can be:
1013  *
1014  * 		* Only custom structs,
1015  * 		* Only the packet payload, or
1016  * 		* A combination of both.
1017  * 	Return
1018  * 		0 on success, or a negative error in case of failure.
1019  *
1020  * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1021  * 	Description
1022  * 		This helper was provided as an easy way to load data from a
1023  * 		packet. It can be used to load *len* bytes from *offset* from
1024  * 		the packet associated to *skb*, into the buffer pointed by
1025  * 		*to*.
1026  *
1027  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1028  * 		by "direct packet access", enabling packet data to be
1029  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1030  * 		pointing respectively to the first byte of packet data and to
1031  * 		the byte after the last byte of packet data. However, it
1032  * 		remains useful if one wishes to read large quantities of data
1033  * 		at once from a packet into the eBPF stack.
1034  * 	Return
1035  * 		0 on success, or a negative error in case of failure.
1036  *
1037  * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
1038  * 	Description
1039  * 		Walk a user or a kernel stack and return its id. To achieve
1040  * 		this, the helper needs *ctx*, which is a pointer to the context
1041  * 		on which the tracing program is executed, and a pointer to a
1042  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1043  *
1044  * 		The last argument, *flags*, holds the number of stack frames to
1045  * 		skip (from 0 to 255), masked with
1046  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1047  * 		a combination of the following flags:
1048  *
1049  * 		**BPF_F_USER_STACK**
1050  * 			Collect a user space stack instead of a kernel stack.
1051  * 		**BPF_F_FAST_STACK_CMP**
1052  * 			Compare stacks by hash only.
1053  * 		**BPF_F_REUSE_STACKID**
1054  * 			If two different stacks hash into the same *stackid*,
1055  * 			discard the old one.
1056  *
1057  * 		The stack id retrieved is a 32 bit long integer handle which
1058  * 		can be further combined with other data (including other stack
1059  * 		ids) and used as a key into maps. This can be useful for
1060  * 		generating a variety of graphs (such as flame graphs or off-cpu
1061  * 		graphs).
1062  *
1063  * 		For walking a stack, this helper is an improvement over
1064  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1065  * 		but is not efficient and consumes a lot of eBPF instructions.
1066  * 		Instead, **bpf_get_stackid**\ () can collect up to
1067  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1068  * 		this limit can be controlled with the **sysctl** program, and
1069  * 		that it should be manually increased in order to profile long
1070  * 		user stacks (such as stacks for Java programs). To do so, use:
1071  *
1072  * 		::
1073  *
1074  * 			# sysctl kernel.perf_event_max_stack=<new value>
1075  * 	Return
1076  * 		The positive or null stack id on success, or a negative error
1077  * 		in case of failure.
1078  *
1079  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1080  * 	Description
1081  * 		Compute a checksum difference, from the raw buffer pointed by
1082  * 		*from*, of length *from_size* (that must be a multiple of 4),
1083  * 		towards the raw buffer pointed by *to*, of size *to_size*
1084  * 		(same remark). An optional *seed* can be added to the value
1085  * 		(this can be cascaded, the seed may come from a previous call
1086  * 		to the helper).
1087  *
1088  * 		This is flexible enough to be used in several ways:
1089  *
1090  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1091  * 		  checksum, it can be used when pushing new data.
1092  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1093  * 		  checksum, it can be used when removing data from a packet.
1094  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1095  * 		  can be used to compute a diff. Note that *from_size* and
1096  * 		  *to_size* do not need to be equal.
1097  *
1098  * 		This helper can be used in combination with
1099  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1100  * 		which one can feed in the difference computed with
1101  * 		**bpf_csum_diff**\ ().
1102  * 	Return
1103  * 		The checksum result, or a negative error code in case of
1104  * 		failure.
1105  *
1106  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1107  * 	Description
1108  * 		Retrieve tunnel options metadata for the packet associated to
1109  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1110  * 		of *size*.
1111  *
1112  * 		This helper can be used with encapsulation devices that can
1113  * 		operate in "collect metadata" mode (please refer to the related
1114  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1115  * 		more details). A particular example where this can be used is
1116  * 		in combination with the Geneve encapsulation protocol, where it
1117  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1118  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1119  * 		the eBPF program. This allows for full customization of these
1120  * 		headers.
1121  * 	Return
1122  * 		The size of the option data retrieved.
1123  *
1124  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1125  * 	Description
1126  * 		Set tunnel options metadata for the packet associated to *skb*
1127  * 		to the option data contained in the raw buffer *opt* of *size*.
1128  *
1129  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1130  * 		helper for additional information.
1131  * 	Return
1132  * 		0 on success, or a negative error in case of failure.
1133  *
1134  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1135  * 	Description
1136  * 		Change the protocol of the *skb* to *proto*. Currently
1137  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1138  * 		IPv4. The helper takes care of the groundwork for the
1139  * 		transition, including resizing the socket buffer. The eBPF
1140  * 		program is expected to fill the new headers, if any, via
1141  * 		**skb_store_bytes**\ () and to recompute the checksums with
1142  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1143  * 		(). The main case for this helper is to perform NAT64
1144  * 		operations out of an eBPF program.
1145  *
1146  * 		Internally, the GSO type is marked as dodgy so that headers are
1147  * 		checked and segments are recalculated by the GSO/GRO engine.
1148  * 		The size for GSO target is adapted as well.
1149  *
1150  * 		All values for *flags* are reserved for future usage, and must
1151  * 		be left at zero.
1152  *
1153  * 		A call to this helper is susceptible to change the underlaying
1154  * 		packet buffer. Therefore, at load time, all checks on pointers
1155  * 		previously done by the verifier are invalidated and must be
1156  * 		performed again, if the helper is used in combination with
1157  * 		direct packet access.
1158  * 	Return
1159  * 		0 on success, or a negative error in case of failure.
1160  *
1161  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1162  * 	Description
1163  * 		Change the packet type for the packet associated to *skb*. This
1164  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1165  * 		the eBPF program does not have a write access to *skb*\
1166  * 		**->pkt_type** beside this helper. Using a helper here allows
1167  * 		for graceful handling of errors.
1168  *
1169  * 		The major use case is to change incoming *skb*s to
1170  * 		**PACKET_HOST** in a programmatic way instead of having to
1171  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1172  * 		example.
1173  *
1174  * 		Note that *type* only allows certain values. At this time, they
1175  * 		are:
1176  *
1177  * 		**PACKET_HOST**
1178  * 			Packet is for us.
1179  * 		**PACKET_BROADCAST**
1180  * 			Send packet to all.
1181  * 		**PACKET_MULTICAST**
1182  * 			Send packet to group.
1183  * 		**PACKET_OTHERHOST**
1184  * 			Send packet to someone else.
1185  * 	Return
1186  * 		0 on success, or a negative error in case of failure.
1187  *
1188  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1189  * 	Description
1190  * 		Check whether *skb* is a descendant of the cgroup2 held by
1191  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1192  * 	Return
1193  * 		The return value depends on the result of the test, and can be:
1194  *
1195  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1196  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1197  * 		* A negative error code, if an error occurred.
1198  *
1199  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1200  * 	Description
1201  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1202  * 		not set, in particular if the hash was cleared due to mangling,
1203  * 		recompute this hash. Later accesses to the hash can be done
1204  * 		directly with *skb*\ **->hash**.
1205  *
1206  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1207  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1208  * 		**bpf_skb_store_bytes**\ () with the
1209  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1210  * 		the hash and to trigger a new computation for the next call to
1211  * 		**bpf_get_hash_recalc**\ ().
1212  * 	Return
1213  * 		The 32-bit hash.
1214  *
1215  * u64 bpf_get_current_task(void)
1216  * 	Return
1217  * 		A pointer to the current task struct.
1218  *
1219  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1220  * 	Description
1221  * 		Attempt in a safe way to write *len* bytes from the buffer
1222  * 		*src* to *dst* in memory. It only works for threads that are in
1223  * 		user context, and *dst* must be a valid user space address.
1224  *
1225  * 		This helper should not be used to implement any kind of
1226  * 		security mechanism because of TOC-TOU attacks, but rather to
1227  * 		debug, divert, and manipulate execution of semi-cooperative
1228  * 		processes.
1229  *
1230  * 		Keep in mind that this feature is meant for experiments, and it
1231  * 		has a risk of crashing the system and running programs.
1232  * 		Therefore, when an eBPF program using this helper is attached,
1233  * 		a warning including PID and process name is printed to kernel
1234  * 		logs.
1235  * 	Return
1236  * 		0 on success, or a negative error in case of failure.
1237  *
1238  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1239  * 	Description
1240  * 		Check whether the probe is being run is the context of a given
1241  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1242  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1243  * 	Return
1244  * 		The return value depends on the result of the test, and can be:
1245  *
1246  * 		* 0, if the *skb* task belongs to the cgroup2.
1247  * 		* 1, if the *skb* task does not belong to the cgroup2.
1248  * 		* A negative error code, if an error occurred.
1249  *
1250  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1251  * 	Description
1252  * 		Resize (trim or grow) the packet associated to *skb* to the
1253  * 		new *len*. The *flags* are reserved for future usage, and must
1254  * 		be left at zero.
1255  *
1256  * 		The basic idea is that the helper performs the needed work to
1257  * 		change the size of the packet, then the eBPF program rewrites
1258  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1259  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1260  * 		and others. This helper is a slow path utility intended for
1261  * 		replies with control messages. And because it is targeted for
1262  * 		slow path, the helper itself can afford to be slow: it
1263  * 		implicitly linearizes, unclones and drops offloads from the
1264  * 		*skb*.
1265  *
1266  * 		A call to this helper is susceptible to change the underlaying
1267  * 		packet buffer. Therefore, at load time, all checks on pointers
1268  * 		previously done by the verifier are invalidated and must be
1269  * 		performed again, if the helper is used in combination with
1270  * 		direct packet access.
1271  * 	Return
1272  * 		0 on success, or a negative error in case of failure.
1273  *
1274  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1275  * 	Description
1276  * 		Pull in non-linear data in case the *skb* is non-linear and not
1277  * 		all of *len* are part of the linear section. Make *len* bytes
1278  * 		from *skb* readable and writable. If a zero value is passed for
1279  * 		*len*, then the whole length of the *skb* is pulled.
1280  *
1281  * 		This helper is only needed for reading and writing with direct
1282  * 		packet access.
1283  *
1284  * 		For direct packet access, testing that offsets to access
1285  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1286  * 		susceptible to fail if offsets are invalid, or if the requested
1287  * 		data is in non-linear parts of the *skb*. On failure the
1288  * 		program can just bail out, or in the case of a non-linear
1289  * 		buffer, use a helper to make the data available. The
1290  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1291  * 		the data. Another one consists in using **bpf_skb_pull_data**
1292  * 		to pull in once the non-linear parts, then retesting and
1293  * 		eventually access the data.
1294  *
1295  * 		At the same time, this also makes sure the *skb* is uncloned,
1296  * 		which is a necessary condition for direct write. As this needs
1297  * 		to be an invariant for the write part only, the verifier
1298  * 		detects writes and adds a prologue that is calling
1299  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1300  * 		the very beginning in case it is indeed cloned.
1301  *
1302  * 		A call to this helper is susceptible to change the underlaying
1303  * 		packet buffer. Therefore, at load time, all checks on pointers
1304  * 		previously done by the verifier are invalidated and must be
1305  * 		performed again, if the helper is used in combination with
1306  * 		direct packet access.
1307  * 	Return
1308  * 		0 on success, or a negative error in case of failure.
1309  *
1310  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1311  * 	Description
1312  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1313  * 		driver has supplied a checksum for the entire packet into that
1314  * 		field. Return an error otherwise. This helper is intended to be
1315  * 		used in combination with **bpf_csum_diff**\ (), in particular
1316  * 		when the checksum needs to be updated after data has been
1317  * 		written into the packet through direct packet access.
1318  * 	Return
1319  * 		The checksum on success, or a negative error code in case of
1320  * 		failure.
1321  *
1322  * void bpf_set_hash_invalid(struct sk_buff *skb)
1323  * 	Description
1324  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1325  * 		mangling on headers through direct packet access, in order to
1326  * 		indicate that the hash is outdated and to trigger a
1327  * 		recalculation the next time the kernel tries to access this
1328  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1329  *
1330  * int bpf_get_numa_node_id(void)
1331  * 	Description
1332  * 		Return the id of the current NUMA node. The primary use case
1333  * 		for this helper is the selection of sockets for the local NUMA
1334  * 		node, when the program is attached to sockets using the
1335  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1336  * 		but the helper is also available to other eBPF program types,
1337  * 		similarly to **bpf_get_smp_processor_id**\ ().
1338  * 	Return
1339  * 		The id of current NUMA node.
1340  *
1341  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1342  * 	Description
1343  * 		Grows headroom of packet associated to *skb* and adjusts the
1344  * 		offset of the MAC header accordingly, adding *len* bytes of
1345  * 		space. It automatically extends and reallocates memory as
1346  * 		required.
1347  *
1348  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1349  * 		for redirection into a layer 2 device.
1350  *
1351  * 		All values for *flags* are reserved for future usage, and must
1352  * 		be left at zero.
1353  *
1354  * 		A call to this helper is susceptible to change the underlaying
1355  * 		packet buffer. Therefore, at load time, all checks on pointers
1356  * 		previously done by the verifier are invalidated and must be
1357  * 		performed again, if the helper is used in combination with
1358  * 		direct packet access.
1359  * 	Return
1360  * 		0 on success, or a negative error in case of failure.
1361  *
1362  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1363  * 	Description
1364  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1365  * 		it is possible to use a negative value for *delta*. This helper
1366  * 		can be used to prepare the packet for pushing or popping
1367  * 		headers.
1368  *
1369  * 		A call to this helper is susceptible to change the underlaying
1370  * 		packet buffer. Therefore, at load time, all checks on pointers
1371  * 		previously done by the verifier are invalidated and must be
1372  * 		performed again, if the helper is used in combination with
1373  * 		direct packet access.
1374  * 	Return
1375  * 		0 on success, or a negative error in case of failure.
1376  *
1377  * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1378  * 	Description
1379  * 		Copy a NUL terminated string from an unsafe address
1380  * 		*unsafe_ptr* to *dst*. The *size* should include the
1381  * 		terminating NUL byte. In case the string length is smaller than
1382  * 		*size*, the target is not padded with further NUL bytes. If the
1383  * 		string length is larger than *size*, just *size*-1 bytes are
1384  * 		copied and the last byte is set to NUL.
1385  *
1386  * 		On success, the length of the copied string is returned. This
1387  * 		makes this helper useful in tracing programs for reading
1388  * 		strings, and more importantly to get its length at runtime. See
1389  * 		the following snippet:
1390  *
1391  * 		::
1392  *
1393  * 			SEC("kprobe/sys_open")
1394  * 			void bpf_sys_open(struct pt_regs *ctx)
1395  * 			{
1396  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
1397  * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
1398  * 				                             ctx->di);
1399  *
1400  * 				// Consume buf, for example push it to
1401  * 				// userspace via bpf_perf_event_output(); we
1402  * 				// can use res (the string length) as event
1403  * 				// size, after checking its boundaries.
1404  * 			}
1405  *
1406  * 		In comparison, using **bpf_probe_read()** helper here instead
1407  * 		to read the string would require to estimate the length at
1408  * 		compile time, and would often result in copying more memory
1409  * 		than necessary.
1410  *
1411  * 		Another useful use case is when parsing individual process
1412  * 		arguments or individual environment variables navigating
1413  * 		*current*\ **->mm->arg_start** and *current*\
1414  * 		**->mm->env_start**: using this helper and the return value,
1415  * 		one can quickly iterate at the right offset of the memory area.
1416  * 	Return
1417  * 		On success, the strictly positive length of the string,
1418  * 		including the trailing NUL character. On error, a negative
1419  * 		value.
1420  *
1421  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1422  * 	Description
1423  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1424  * 		retrieve the cookie (generated by the kernel) of this socket.
1425  * 		If no cookie has been set yet, generate a new cookie. Once
1426  * 		generated, the socket cookie remains stable for the life of the
1427  * 		socket. This helper can be useful for monitoring per socket
1428  * 		networking traffic statistics as it provides a unique socket
1429  * 		identifier per namespace.
1430  * 	Return
1431  * 		A 8-byte long non-decreasing number on success, or 0 if the
1432  * 		socket field is missing inside *skb*.
1433  *
1434  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1435  * 	Description
1436  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1437  * 		*skb*, but gets socket from **struct bpf_sock_addr** contex.
1438  * 	Return
1439  * 		A 8-byte long non-decreasing number.
1440  *
1441  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1442  * 	Description
1443  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1444  * 		*skb*, but gets socket from **struct bpf_sock_ops** contex.
1445  * 	Return
1446  * 		A 8-byte long non-decreasing number.
1447  *
1448  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1449  * 	Return
1450  * 		The owner UID of the socket associated to *skb*. If the socket
1451  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1452  * 		time-wait or a request socket instead), **overflowuid** value
1453  * 		is returned (note that **overflowuid** might also be the actual
1454  * 		UID value for the socket).
1455  *
1456  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1457  * 	Description
1458  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1459  * 		to value *hash*.
1460  * 	Return
1461  * 		0
1462  *
1463  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1464  * 	Description
1465  * 		Emulate a call to **setsockopt()** on the socket associated to
1466  * 		*bpf_socket*, which must be a full socket. The *level* at
1467  * 		which the option resides and the name *optname* of the option
1468  * 		must be specified, see **setsockopt(2)** for more information.
1469  * 		The option value of length *optlen* is pointed by *optval*.
1470  *
1471  * 		This helper actually implements a subset of **setsockopt()**.
1472  * 		It supports the following *level*\ s:
1473  *
1474  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1475  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1476  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1477  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1478  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1479  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1480  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1481  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1482  * 	Return
1483  * 		0 on success, or a negative error in case of failure.
1484  *
1485  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1486  * 	Description
1487  * 		Grow or shrink the room for data in the packet associated to
1488  * 		*skb* by *len_diff*, and according to the selected *mode*.
1489  *
1490  * 		There is a single supported mode at this time:
1491  *
1492  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1493  * 		  (room space is added or removed below the layer 3 header).
1494  *
1495  * 		All values for *flags* are reserved for future usage, and must
1496  * 		be left at zero.
1497  *
1498  * 		A call to this helper is susceptible to change the underlaying
1499  * 		packet buffer. Therefore, at load time, all checks on pointers
1500  * 		previously done by the verifier are invalidated and must be
1501  * 		performed again, if the helper is used in combination with
1502  * 		direct packet access.
1503  * 	Return
1504  * 		0 on success, or a negative error in case of failure.
1505  *
1506  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1507  * 	Description
1508  * 		Redirect the packet to the endpoint referenced by *map* at
1509  * 		index *key*. Depending on its type, this *map* can contain
1510  * 		references to net devices (for forwarding packets through other
1511  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1512  * 		but this is only implemented for native XDP (with driver
1513  * 		support) as of this writing).
1514  *
1515  * 		All values for *flags* are reserved for future usage, and must
1516  * 		be left at zero.
1517  *
1518  * 		When used to redirect packets to net devices, this helper
1519  * 		provides a high performance increase over **bpf_redirect**\ ().
1520  * 		This is due to various implementation details of the underlying
1521  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1522  * 		() tries to send packet as a "bulk" to the device.
1523  * 	Return
1524  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1525  *
1526  * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1527  * 	Description
1528  * 		Redirect the packet to the socket referenced by *map* (of type
1529  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1530  * 		egress interfaces can be used for redirection. The
1531  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1532  * 		distinction (ingress path is selected if the flag is present,
1533  * 		egress path otherwise). This is the only flag supported for now.
1534  * 	Return
1535  * 		**SK_PASS** on success, or **SK_DROP** on error.
1536  *
1537  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1538  * 	Description
1539  * 		Add an entry to, or update a *map* referencing sockets. The
1540  * 		*skops* is used as a new value for the entry associated to
1541  * 		*key*. *flags* is one of:
1542  *
1543  * 		**BPF_NOEXIST**
1544  * 			The entry for *key* must not exist in the map.
1545  * 		**BPF_EXIST**
1546  * 			The entry for *key* must already exist in the map.
1547  * 		**BPF_ANY**
1548  * 			No condition on the existence of the entry for *key*.
1549  *
1550  * 		If the *map* has eBPF programs (parser and verdict), those will
1551  * 		be inherited by the socket being added. If the socket is
1552  * 		already attached to eBPF programs, this results in an error.
1553  * 	Return
1554  * 		0 on success, or a negative error in case of failure.
1555  *
1556  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1557  * 	Description
1558  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1559  * 		*delta* (which can be positive or negative). Note that this
1560  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1561  * 		so the latter must be loaded only after the helper has been
1562  * 		called.
1563  *
1564  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1565  * 		are not required to use it. The rationale is that when the
1566  * 		packet is processed with XDP (e.g. as DoS filter), it is
1567  * 		possible to push further meta data along with it before passing
1568  * 		to the stack, and to give the guarantee that an ingress eBPF
1569  * 		program attached as a TC classifier on the same device can pick
1570  * 		this up for further post-processing. Since TC works with socket
1571  * 		buffers, it remains possible to set from XDP the **mark** or
1572  * 		**priority** pointers, or other pointers for the socket buffer.
1573  * 		Having this scratch space generic and programmable allows for
1574  * 		more flexibility as the user is free to store whatever meta
1575  * 		data they need.
1576  *
1577  * 		A call to this helper is susceptible to change the underlaying
1578  * 		packet buffer. Therefore, at load time, all checks on pointers
1579  * 		previously done by the verifier are invalidated and must be
1580  * 		performed again, if the helper is used in combination with
1581  * 		direct packet access.
1582  * 	Return
1583  * 		0 on success, or a negative error in case of failure.
1584  *
1585  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1586  * 	Description
1587  * 		Read the value of a perf event counter, and store it into *buf*
1588  * 		of size *buf_size*. This helper relies on a *map* of type
1589  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1590  * 		counter is selected when *map* is updated with perf event file
1591  * 		descriptors. The *map* is an array whose size is the number of
1592  * 		available CPUs, and each cell contains a value relative to one
1593  * 		CPU. The value to retrieve is indicated by *flags*, that
1594  * 		contains the index of the CPU to look up, masked with
1595  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1596  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1597  * 		current CPU should be retrieved.
1598  *
1599  * 		This helper behaves in a way close to
1600  * 		**bpf_perf_event_read**\ () helper, save that instead of
1601  * 		just returning the value observed, it fills the *buf*
1602  * 		structure. This allows for additional data to be retrieved: in
1603  * 		particular, the enabled and running times (in *buf*\
1604  * 		**->enabled** and *buf*\ **->running**, respectively) are
1605  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1606  * 		recommended over **bpf_perf_event_read**\ (), which has some
1607  * 		ABI issues and provides fewer functionalities.
1608  *
1609  * 		These values are interesting, because hardware PMU (Performance
1610  * 		Monitoring Unit) counters are limited resources. When there are
1611  * 		more PMU based perf events opened than available counters,
1612  * 		kernel will multiplex these events so each event gets certain
1613  * 		percentage (but not all) of the PMU time. In case that
1614  * 		multiplexing happens, the number of samples or counter value
1615  * 		will not reflect the case compared to when no multiplexing
1616  * 		occurs. This makes comparison between different runs difficult.
1617  * 		Typically, the counter value should be normalized before
1618  * 		comparing to other experiments. The usual normalization is done
1619  * 		as follows.
1620  *
1621  * 		::
1622  *
1623  * 			normalized_counter = counter * t_enabled / t_running
1624  *
1625  * 		Where t_enabled is the time enabled for event and t_running is
1626  * 		the time running for event since last normalization. The
1627  * 		enabled and running times are accumulated since the perf event
1628  * 		open. To achieve scaling factor between two invocations of an
1629  * 		eBPF program, users can can use CPU id as the key (which is
1630  * 		typical for perf array usage model) to remember the previous
1631  * 		value and do the calculation inside the eBPF program.
1632  * 	Return
1633  * 		0 on success, or a negative error in case of failure.
1634  *
1635  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1636  * 	Description
1637  * 		For en eBPF program attached to a perf event, retrieve the
1638  * 		value of the event counter associated to *ctx* and store it in
1639  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1640  * 		and running times are also stored in the structure (see
1641  * 		description of helper **bpf_perf_event_read_value**\ () for
1642  * 		more details).
1643  * 	Return
1644  * 		0 on success, or a negative error in case of failure.
1645  *
1646  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1647  * 	Description
1648  * 		Emulate a call to **getsockopt()** on the socket associated to
1649  * 		*bpf_socket*, which must be a full socket. The *level* at
1650  * 		which the option resides and the name *optname* of the option
1651  * 		must be specified, see **getsockopt(2)** for more information.
1652  * 		The retrieved value is stored in the structure pointed by
1653  * 		*opval* and of length *optlen*.
1654  *
1655  * 		This helper actually implements a subset of **getsockopt()**.
1656  * 		It supports the following *level*\ s:
1657  *
1658  * 		* **IPPROTO_TCP**, which supports *optname*
1659  * 		  **TCP_CONGESTION**.
1660  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1661  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1662  * 	Return
1663  * 		0 on success, or a negative error in case of failure.
1664  *
1665  * int bpf_override_return(struct pt_reg *regs, u64 rc)
1666  * 	Description
1667  * 		Used for error injection, this helper uses kprobes to override
1668  * 		the return value of the probed function, and to set it to *rc*.
1669  * 		The first argument is the context *regs* on which the kprobe
1670  * 		works.
1671  *
1672  * 		This helper works by setting setting the PC (program counter)
1673  * 		to an override function which is run in place of the original
1674  * 		probed function. This means the probed function is not run at
1675  * 		all. The replacement function just returns with the required
1676  * 		value.
1677  *
1678  * 		This helper has security implications, and thus is subject to
1679  * 		restrictions. It is only available if the kernel was compiled
1680  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1681  * 		option, and in this case it only works on functions tagged with
1682  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1683  *
1684  * 		Also, the helper is only available for the architectures having
1685  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1686  * 		x86 architecture is the only one to support this feature.
1687  * 	Return
1688  * 		0
1689  *
1690  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1691  * 	Description
1692  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1693  * 		for the full TCP socket associated to *bpf_sock_ops* to
1694  * 		*argval*.
1695  *
1696  * 		The primary use of this field is to determine if there should
1697  * 		be calls to eBPF programs of type
1698  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1699  * 		code. A program of the same type can change its value, per
1700  * 		connection and as necessary, when the connection is
1701  * 		established. This field is directly accessible for reading, but
1702  * 		this helper must be used for updates in order to return an
1703  * 		error if an eBPF program tries to set a callback that is not
1704  * 		supported in the current kernel.
1705  *
1706  * 		The supported callback values that *argval* can combine are:
1707  *
1708  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1709  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1710  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1711  *
1712  * 		Here are some examples of where one could call such eBPF
1713  * 		program:
1714  *
1715  * 		* When RTO fires.
1716  * 		* When a packet is retransmitted.
1717  * 		* When the connection terminates.
1718  * 		* When a packet is sent.
1719  * 		* When a packet is received.
1720  * 	Return
1721  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1722  * 		otherwise, a positive number containing the bits that could not
1723  * 		be set is returned (which comes down to 0 if all bits were set
1724  * 		as required).
1725  *
1726  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1727  * 	Description
1728  * 		This helper is used in programs implementing policies at the
1729  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1730  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1731  * 		the socket referenced by *map* (of type
1732  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1733  * 		egress interfaces can be used for redirection. The
1734  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1735  * 		distinction (ingress path is selected if the flag is present,
1736  * 		egress path otherwise). This is the only flag supported for now.
1737  * 	Return
1738  * 		**SK_PASS** on success, or **SK_DROP** on error.
1739  *
1740  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1741  * 	Description
1742  * 		For socket policies, apply the verdict of the eBPF program to
1743  * 		the next *bytes* (number of bytes) of message *msg*.
1744  *
1745  * 		For example, this helper can be used in the following cases:
1746  *
1747  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1748  * 		  contains multiple logical messages that the eBPF program is
1749  * 		  supposed to read and for which it should apply a verdict.
1750  * 		* An eBPF program only cares to read the first *bytes* of a
1751  * 		  *msg*. If the message has a large payload, then setting up
1752  * 		  and calling the eBPF program repeatedly for all bytes, even
1753  * 		  though the verdict is already known, would create unnecessary
1754  * 		  overhead.
1755  *
1756  * 		When called from within an eBPF program, the helper sets a
1757  * 		counter internal to the BPF infrastructure, that is used to
1758  * 		apply the last verdict to the next *bytes*. If *bytes* is
1759  * 		smaller than the current data being processed from a
1760  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1761  * 		*bytes* will be sent and the eBPF program will be re-run with
1762  * 		the pointer for start of data pointing to byte number *bytes*
1763  * 		**+ 1**. If *bytes* is larger than the current data being
1764  * 		processed, then the eBPF verdict will be applied to multiple
1765  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1766  * 		consumed.
1767  *
1768  * 		Note that if a socket closes with the internal counter holding
1769  * 		a non-zero value, this is not a problem because data is not
1770  * 		being buffered for *bytes* and is sent as it is received.
1771  * 	Return
1772  * 		0
1773  *
1774  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1775  * 	Description
1776  * 		For socket policies, prevent the execution of the verdict eBPF
1777  * 		program for message *msg* until *bytes* (byte number) have been
1778  * 		accumulated.
1779  *
1780  * 		This can be used when one needs a specific number of bytes
1781  * 		before a verdict can be assigned, even if the data spans
1782  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1783  * 		case would be a user calling **sendmsg**\ () repeatedly with
1784  * 		1-byte long message segments. Obviously, this is bad for
1785  * 		performance, but it is still valid. If the eBPF program needs
1786  * 		*bytes* bytes to validate a header, this helper can be used to
1787  * 		prevent the eBPF program to be called again until *bytes* have
1788  * 		been accumulated.
1789  * 	Return
1790  * 		0
1791  *
1792  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1793  * 	Description
1794  * 		For socket policies, pull in non-linear data from user space
1795  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1796  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1797  * 		respectively.
1798  *
1799  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1800  * 		*msg* it can only parse data that the (**data**, **data_end**)
1801  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1802  * 		is likely the first scatterlist element. But for calls relying
1803  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1804  * 		be the range (**0**, **0**) because the data is shared with
1805  * 		user space and by default the objective is to avoid allowing
1806  * 		user space to modify data while (or after) eBPF verdict is
1807  * 		being decided. This helper can be used to pull in data and to
1808  * 		set the start and end pointer to given values. Data will be
1809  * 		copied if necessary (i.e. if data was not linear and if start
1810  * 		and end pointers do not point to the same chunk).
1811  *
1812  * 		A call to this helper is susceptible to change the underlaying
1813  * 		packet buffer. Therefore, at load time, all checks on pointers
1814  * 		previously done by the verifier are invalidated and must be
1815  * 		performed again, if the helper is used in combination with
1816  * 		direct packet access.
1817  *
1818  * 		All values for *flags* are reserved for future usage, and must
1819  * 		be left at zero.
1820  * 	Return
1821  * 		0 on success, or a negative error in case of failure.
1822  *
1823  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1824  * 	Description
1825  * 		Bind the socket associated to *ctx* to the address pointed by
1826  * 		*addr*, of length *addr_len*. This allows for making outgoing
1827  * 		connection from the desired IP address, which can be useful for
1828  * 		example when all processes inside a cgroup should use one
1829  * 		single IP address on a host that has multiple IP configured.
1830  *
1831  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1832  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1833  * 		**AF_INET6**). Looking for a free port to bind to can be
1834  * 		expensive, therefore binding to port is not permitted by the
1835  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1836  * 		must be set to zero.
1837  * 	Return
1838  * 		0 on success, or a negative error in case of failure.
1839  *
1840  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1841  * 	Description
1842  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1843  * 		only possible to shrink the packet as of this writing,
1844  * 		therefore *delta* must be a negative integer.
1845  *
1846  * 		A call to this helper is susceptible to change the underlaying
1847  * 		packet buffer. Therefore, at load time, all checks on pointers
1848  * 		previously done by the verifier are invalidated and must be
1849  * 		performed again, if the helper is used in combination with
1850  * 		direct packet access.
1851  * 	Return
1852  * 		0 on success, or a negative error in case of failure.
1853  *
1854  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1855  * 	Description
1856  * 		Retrieve the XFRM state (IP transform framework, see also
1857  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1858  *
1859  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1860  * 		pointed by *xfrm_state* and of length *size*.
1861  *
1862  * 		All values for *flags* are reserved for future usage, and must
1863  * 		be left at zero.
1864  *
1865  * 		This helper is available only if the kernel was compiled with
1866  * 		**CONFIG_XFRM** configuration option.
1867  * 	Return
1868  * 		0 on success, or a negative error in case of failure.
1869  *
1870  * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1871  * 	Description
1872  * 		Return a user or a kernel stack in bpf program provided buffer.
1873  * 		To achieve this, the helper needs *ctx*, which is a pointer
1874  * 		to the context on which the tracing program is executed.
1875  * 		To store the stacktrace, the bpf program provides *buf* with
1876  * 		a nonnegative *size*.
1877  *
1878  * 		The last argument, *flags*, holds the number of stack frames to
1879  * 		skip (from 0 to 255), masked with
1880  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1881  * 		the following flags:
1882  *
1883  * 		**BPF_F_USER_STACK**
1884  * 			Collect a user space stack instead of a kernel stack.
1885  * 		**BPF_F_USER_BUILD_ID**
1886  * 			Collect buildid+offset instead of ips for user stack,
1887  * 			only valid if **BPF_F_USER_STACK** is also specified.
1888  *
1889  * 		**bpf_get_stack**\ () can collect up to
1890  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1891  * 		to sufficient large buffer size. Note that
1892  * 		this limit can be controlled with the **sysctl** program, and
1893  * 		that it should be manually increased in order to profile long
1894  * 		user stacks (such as stacks for Java programs). To do so, use:
1895  *
1896  * 		::
1897  *
1898  * 			# sysctl kernel.perf_event_max_stack=<new value>
1899  * 	Return
1900  * 		A non-negative value equal to or less than *size* on success,
1901  * 		or a negative error in case of failure.
1902  *
1903  * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1904  * 	Description
1905  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1906  * 		it provides an easy way to load *len* bytes from *offset*
1907  * 		from the packet associated to *skb*, into the buffer pointed
1908  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1909  * 		a fifth argument *start_header* exists in order to select a
1910  * 		base offset to start from. *start_header* can be one of:
1911  *
1912  * 		**BPF_HDR_START_MAC**
1913  * 			Base offset to load data from is *skb*'s mac header.
1914  * 		**BPF_HDR_START_NET**
1915  * 			Base offset to load data from is *skb*'s network header.
1916  *
1917  * 		In general, "direct packet access" is the preferred method to
1918  * 		access packet data, however, this helper is in particular useful
1919  * 		in socket filters where *skb*\ **->data** does not always point
1920  * 		to the start of the mac header and where "direct packet access"
1921  * 		is not available.
1922  * 	Return
1923  * 		0 on success, or a negative error in case of failure.
1924  *
1925  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1926  *	Description
1927  *		Do FIB lookup in kernel tables using parameters in *params*.
1928  *		If lookup is successful and result shows packet is to be
1929  *		forwarded, the neighbor tables are searched for the nexthop.
1930  *		If successful (ie., FIB lookup shows forwarding and nexthop
1931  *		is resolved), the nexthop address is returned in ipv4_dst
1932  *		or ipv6_dst based on family, smac is set to mac address of
1933  *		egress device, dmac is set to nexthop mac address, rt_metric
1934  *		is set to metric from route (IPv4/IPv6 only), and ifindex
1935  *		is set to the device index of the nexthop from the FIB lookup.
1936  *
1937  *		*plen* argument is the size of the passed in struct.
1938  *		*flags* argument can be a combination of one or more of the
1939  *		following values:
1940  *
1941  *		**BPF_FIB_LOOKUP_DIRECT**
1942  *			Do a direct table lookup vs full lookup using FIB
1943  *			rules.
1944  *		**BPF_FIB_LOOKUP_OUTPUT**
1945  *			Perform lookup from an egress perspective (default is
1946  *			ingress).
1947  *
1948  *		*ctx* is either **struct xdp_md** for XDP programs or
1949  *		**struct sk_buff** tc cls_act programs.
1950  *	Return
1951  *		* < 0 if any input argument is invalid
1952  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
1953  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1954  *		  packet is not forwarded or needs assist from full stack
1955  *
1956  * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
1957  *	Description
1958  *		Add an entry to, or update a sockhash *map* referencing sockets.
1959  *		The *skops* is used as a new value for the entry associated to
1960  *		*key*. *flags* is one of:
1961  *
1962  *		**BPF_NOEXIST**
1963  *			The entry for *key* must not exist in the map.
1964  *		**BPF_EXIST**
1965  *			The entry for *key* must already exist in the map.
1966  *		**BPF_ANY**
1967  *			No condition on the existence of the entry for *key*.
1968  *
1969  *		If the *map* has eBPF programs (parser and verdict), those will
1970  *		be inherited by the socket being added. If the socket is
1971  *		already attached to eBPF programs, this results in an error.
1972  *	Return
1973  *		0 on success, or a negative error in case of failure.
1974  *
1975  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
1976  *	Description
1977  *		This helper is used in programs implementing policies at the
1978  *		socket level. If the message *msg* is allowed to pass (i.e. if
1979  *		the verdict eBPF program returns **SK_PASS**), redirect it to
1980  *		the socket referenced by *map* (of type
1981  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1982  *		egress interfaces can be used for redirection. The
1983  *		**BPF_F_INGRESS** value in *flags* is used to make the
1984  *		distinction (ingress path is selected if the flag is present,
1985  *		egress path otherwise). This is the only flag supported for now.
1986  *	Return
1987  *		**SK_PASS** on success, or **SK_DROP** on error.
1988  *
1989  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
1990  *	Description
1991  *		This helper is used in programs implementing policies at the
1992  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
1993  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
1994  *		to the socket referenced by *map* (of type
1995  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
1996  *		egress interfaces can be used for redirection. The
1997  *		**BPF_F_INGRESS** value in *flags* is used to make the
1998  *		distinction (ingress path is selected if the flag is present,
1999  *		egress otherwise). This is the only flag supported for now.
2000  *	Return
2001  *		**SK_PASS** on success, or **SK_DROP** on error.
2002  *
2003  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2004  *	Description
2005  *		Encapsulate the packet associated to *skb* within a Layer 3
2006  *		protocol header. This header is provided in the buffer at
2007  *		address *hdr*, with *len* its size in bytes. *type* indicates
2008  *		the protocol of the header and can be one of:
2009  *
2010  *		**BPF_LWT_ENCAP_SEG6**
2011  *			IPv6 encapsulation with Segment Routing Header
2012  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2013  *			the IPv6 header is computed by the kernel.
2014  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2015  *			Only works if *skb* contains an IPv6 packet. Insert a
2016  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2017  *			the IPv6 header.
2018  *
2019  * 		A call to this helper is susceptible to change the underlaying
2020  * 		packet buffer. Therefore, at load time, all checks on pointers
2021  * 		previously done by the verifier are invalidated and must be
2022  * 		performed again, if the helper is used in combination with
2023  * 		direct packet access.
2024  *	Return
2025  * 		0 on success, or a negative error in case of failure.
2026  *
2027  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2028  *	Description
2029  *		Store *len* bytes from address *from* into the packet
2030  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2031  *		inside the outermost IPv6 Segment Routing Header can be
2032  *		modified through this helper.
2033  *
2034  * 		A call to this helper is susceptible to change the underlaying
2035  * 		packet buffer. Therefore, at load time, all checks on pointers
2036  * 		previously done by the verifier are invalidated and must be
2037  * 		performed again, if the helper is used in combination with
2038  * 		direct packet access.
2039  *	Return
2040  * 		0 on success, or a negative error in case of failure.
2041  *
2042  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2043  *	Description
2044  *		Adjust the size allocated to TLVs in the outermost IPv6
2045  *		Segment Routing Header contained in the packet associated to
2046  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2047  *		after the segments are accepted. *delta* can be as well
2048  *		positive (growing) as negative (shrinking).
2049  *
2050  * 		A call to this helper is susceptible to change the underlaying
2051  * 		packet buffer. Therefore, at load time, all checks on pointers
2052  * 		previously done by the verifier are invalidated and must be
2053  * 		performed again, if the helper is used in combination with
2054  * 		direct packet access.
2055  *	Return
2056  * 		0 on success, or a negative error in case of failure.
2057  *
2058  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2059  *	Description
2060  *		Apply an IPv6 Segment Routing action of type *action* to the
2061  *		packet associated to *skb*. Each action takes a parameter
2062  *		contained at address *param*, and of length *param_len* bytes.
2063  *		*action* can be one of:
2064  *
2065  *		**SEG6_LOCAL_ACTION_END_X**
2066  *			End.X action: Endpoint with Layer-3 cross-connect.
2067  *			Type of *param*: **struct in6_addr**.
2068  *		**SEG6_LOCAL_ACTION_END_T**
2069  *			End.T action: Endpoint with specific IPv6 table lookup.
2070  *			Type of *param*: **int**.
2071  *		**SEG6_LOCAL_ACTION_END_B6**
2072  *			End.B6 action: Endpoint bound to an SRv6 policy.
2073  *			Type of param: **struct ipv6_sr_hdr**.
2074  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2075  *			End.B6.Encap action: Endpoint bound to an SRv6
2076  *			encapsulation policy.
2077  *			Type of param: **struct ipv6_sr_hdr**.
2078  *
2079  * 		A call to this helper is susceptible to change the underlaying
2080  * 		packet buffer. Therefore, at load time, all checks on pointers
2081  * 		previously done by the verifier are invalidated and must be
2082  * 		performed again, if the helper is used in combination with
2083  * 		direct packet access.
2084  *	Return
2085  * 		0 on success, or a negative error in case of failure.
2086  *
2087  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2088  *	Description
2089  *		This helper is used in programs implementing IR decoding, to
2090  *		report a successfully decoded key press with *scancode*,
2091  *		*toggle* value in the given *protocol*. The scancode will be
2092  *		translated to a keycode using the rc keymap, and reported as
2093  *		an input key down event. After a period a key up event is
2094  *		generated. This period can be extended by calling either
2095  *		**bpf_rc_keydown**\ () again with the same values, or calling
2096  *		**bpf_rc_repeat**\ ().
2097  *
2098  *		Some protocols include a toggle bit, in case the button	was
2099  *		released and pressed again between consecutive scancodes.
2100  *
2101  *		The *ctx* should point to the lirc sample as passed into
2102  *		the program.
2103  *
2104  *		The *protocol* is the decoded protocol number (see
2105  *		**enum rc_proto** for some predefined values).
2106  *
2107  *		This helper is only available is the kernel was compiled with
2108  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2109  *		"**y**".
2110  *	Return
2111  *		0
2112  *
2113  * int bpf_rc_repeat(void *ctx)
2114  *	Description
2115  *		This helper is used in programs implementing IR decoding, to
2116  *		report a successfully decoded repeat key message. This delays
2117  *		the generation of a key up event for previously generated
2118  *		key down event.
2119  *
2120  *		Some IR protocols like NEC have a special IR message for
2121  *		repeating last button, for when a button is held down.
2122  *
2123  *		The *ctx* should point to the lirc sample as passed into
2124  *		the program.
2125  *
2126  *		This helper is only available is the kernel was compiled with
2127  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2128  *		"**y**".
2129  *	Return
2130  *		0
2131  *
2132  * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb)
2133  * 	Description
2134  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2135  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2136  * 		helper for cgroup v1 by providing a tag resp. identifier that
2137  * 		can be matched on or used for map lookups e.g. to implement
2138  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2139  * 		exposed in user space through the f_handle API in order to get
2140  * 		to the same 64-bit id.
2141  *
2142  * 		This helper can be used on TC egress path, but not on ingress,
2143  * 		and is available only if the kernel was compiled with the
2144  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2145  * 	Return
2146  * 		The id is returned or 0 in case the id could not be retrieved.
2147  *
2148  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2149  *	Description
2150  *		Return id of cgroup v2 that is ancestor of cgroup associated
2151  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2152  *		*ancestor_level* zero and each step down the hierarchy
2153  *		increments the level. If *ancestor_level* == level of cgroup
2154  *		associated with *skb*, then return value will be same as that
2155  *		of **bpf_skb_cgroup_id**\ ().
2156  *
2157  *		The helper is useful to implement policies based on cgroups
2158  *		that are upper in hierarchy than immediate cgroup associated
2159  *		with *skb*.
2160  *
2161  *		The format of returned id and helper limitations are same as in
2162  *		**bpf_skb_cgroup_id**\ ().
2163  *	Return
2164  *		The id is returned or 0 in case the id could not be retrieved.
2165  *
2166  * u64 bpf_get_current_cgroup_id(void)
2167  * 	Return
2168  * 		A 64-bit integer containing the current cgroup id based
2169  * 		on the cgroup within which the current task is running.
2170  *
2171  * void* get_local_storage(void *map, u64 flags)
2172  *	Description
2173  *		Get the pointer to the local storage area.
2174  *		The type and the size of the local storage is defined
2175  *		by the *map* argument.
2176  *		The *flags* meaning is specific for each map type,
2177  *		and has to be 0 for cgroup local storage.
2178  *
2179  *		Depending on the BPF program type, a local storage area
2180  *		can be shared between multiple instances of the BPF program,
2181  *		running simultaneously.
2182  *
2183  *		A user should care about the synchronization by himself.
2184  *		For example, by using the **BPF_STX_XADD** instruction to alter
2185  *		the shared data.
2186  *	Return
2187  *		A pointer to the local storage area.
2188  *
2189  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2190  *	Description
2191  *		Select a **SO_REUSEPORT** socket from a
2192  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2193  *		It checks the selected socket is matching the incoming
2194  *		request in the socket buffer.
2195  *	Return
2196  *		0 on success, or a negative error in case of failure.
2197  *
2198  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2199  *	Description
2200  *		Look for TCP socket matching *tuple*, optionally in a child
2201  *		network namespace *netns*. The return value must be checked,
2202  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2203  *
2204  *		The *ctx* should point to the context of the program, such as
2205  *		the skb or socket (depending on the hook in use). This is used
2206  *		to determine the base network namespace for the lookup.
2207  *
2208  *		*tuple_size* must be one of:
2209  *
2210  *		**sizeof**\ (*tuple*\ **->ipv4**)
2211  *			Look for an IPv4 socket.
2212  *		**sizeof**\ (*tuple*\ **->ipv6**)
2213  *			Look for an IPv6 socket.
2214  *
2215  *		If the *netns* is a negative signed 32-bit integer, then the
2216  *		socket lookup table in the netns associated with the *ctx* will
2217  *		will be used. For the TC hooks, this is the netns of the device
2218  *		in the skb. For socket hooks, this is the netns of the socket.
2219  *		If *netns* is any other signed 32-bit value greater than or
2220  *		equal to zero then it specifies the ID of the netns relative to
2221  *		the netns associated with the *ctx*. *netns* values beyond the
2222  *		range of 32-bit integers are reserved for future use.
2223  *
2224  *		All values for *flags* are reserved for future usage, and must
2225  *		be left at zero.
2226  *
2227  *		This helper is available only if the kernel was compiled with
2228  *		**CONFIG_NET** configuration option.
2229  *	Return
2230  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2231  *		For sockets with reuseport option, the **struct bpf_sock**
2232  *		result is from **reuse->socks**\ [] using the hash of the tuple.
2233  *
2234  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2235  *	Description
2236  *		Look for UDP socket matching *tuple*, optionally in a child
2237  *		network namespace *netns*. The return value must be checked,
2238  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2239  *
2240  *		The *ctx* should point to the context of the program, such as
2241  *		the skb or socket (depending on the hook in use). This is used
2242  *		to determine the base network namespace for the lookup.
2243  *
2244  *		*tuple_size* must be one of:
2245  *
2246  *		**sizeof**\ (*tuple*\ **->ipv4**)
2247  *			Look for an IPv4 socket.
2248  *		**sizeof**\ (*tuple*\ **->ipv6**)
2249  *			Look for an IPv6 socket.
2250  *
2251  *		If the *netns* is a negative signed 32-bit integer, then the
2252  *		socket lookup table in the netns associated with the *ctx* will
2253  *		will be used. For the TC hooks, this is the netns of the device
2254  *		in the skb. For socket hooks, this is the netns of the socket.
2255  *		If *netns* is any other signed 32-bit value greater than or
2256  *		equal to zero then it specifies the ID of the netns relative to
2257  *		the netns associated with the *ctx*. *netns* values beyond the
2258  *		range of 32-bit integers are reserved for future use.
2259  *
2260  *		All values for *flags* are reserved for future usage, and must
2261  *		be left at zero.
2262  *
2263  *		This helper is available only if the kernel was compiled with
2264  *		**CONFIG_NET** configuration option.
2265  *	Return
2266  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2267  *		For sockets with reuseport option, the **struct bpf_sock**
2268  *		result is from **reuse->socks**\ [] using the hash of the tuple.
2269  *
2270  * int bpf_sk_release(struct bpf_sock *sock)
2271  *	Description
2272  *		Release the reference held by *sock*. *sock* must be a
2273  *		non-**NULL** pointer that was returned from
2274  *		**bpf_sk_lookup_xxx**\ ().
2275  *	Return
2276  *		0 on success, or a negative error in case of failure.
2277  *
2278  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2279  * 	Description
2280  * 		Pop an element from *map*.
2281  * 	Return
2282  * 		0 on success, or a negative error in case of failure.
2283  *
2284  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2285  * 	Description
2286  * 		Get an element from *map* without removing it.
2287  * 	Return
2288  * 		0 on success, or a negative error in case of failure.
2289  *
2290  * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags)
2291  *	Description
2292  *		For socket policies, insert *len* bytes into *msg* at offset
2293  *		*start*.
2294  *
2295  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2296  *		*msg* it may want to insert metadata or options into the *msg*.
2297  *		This can later be read and used by any of the lower layer BPF
2298  *		hooks.
2299  *
2300  *		This helper may fail if under memory pressure (a malloc
2301  *		fails) in these cases BPF programs will get an appropriate
2302  *		error and BPF programs will need to handle them.
2303  *	Return
2304  *		0 on success, or a negative error in case of failure.
2305  *
2306  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags)
2307  *	Description
2308  *		Will remove *pop* bytes from a *msg* starting at byte *start*.
2309  *		This may result in **ENOMEM** errors under certain situations if
2310  *		an allocation and copy are required due to a full ring buffer.
2311  *		However, the helper will try to avoid doing the allocation
2312  *		if possible. Other errors can occur if input parameters are
2313  *		invalid either due to *start* byte not being valid part of *msg*
2314  *		payload and/or *pop* value being to large.
2315  *	Return
2316  *		0 on success, or a negative error in case of failure.
2317  *
2318  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2319  *	Description
2320  *		This helper is used in programs implementing IR decoding, to
2321  *		report a successfully decoded pointer movement.
2322  *
2323  *		The *ctx* should point to the lirc sample as passed into
2324  *		the program.
2325  *
2326  *		This helper is only available is the kernel was compiled with
2327  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2328  *		"**y**".
2329  *	Return
2330  *		0
2331  */
2332 #define __BPF_FUNC_MAPPER(FN)		\
2333 	FN(unspec),			\
2334 	FN(map_lookup_elem),		\
2335 	FN(map_update_elem),		\
2336 	FN(map_delete_elem),		\
2337 	FN(probe_read),			\
2338 	FN(ktime_get_ns),		\
2339 	FN(trace_printk),		\
2340 	FN(get_prandom_u32),		\
2341 	FN(get_smp_processor_id),	\
2342 	FN(skb_store_bytes),		\
2343 	FN(l3_csum_replace),		\
2344 	FN(l4_csum_replace),		\
2345 	FN(tail_call),			\
2346 	FN(clone_redirect),		\
2347 	FN(get_current_pid_tgid),	\
2348 	FN(get_current_uid_gid),	\
2349 	FN(get_current_comm),		\
2350 	FN(get_cgroup_classid),		\
2351 	FN(skb_vlan_push),		\
2352 	FN(skb_vlan_pop),		\
2353 	FN(skb_get_tunnel_key),		\
2354 	FN(skb_set_tunnel_key),		\
2355 	FN(perf_event_read),		\
2356 	FN(redirect),			\
2357 	FN(get_route_realm),		\
2358 	FN(perf_event_output),		\
2359 	FN(skb_load_bytes),		\
2360 	FN(get_stackid),		\
2361 	FN(csum_diff),			\
2362 	FN(skb_get_tunnel_opt),		\
2363 	FN(skb_set_tunnel_opt),		\
2364 	FN(skb_change_proto),		\
2365 	FN(skb_change_type),		\
2366 	FN(skb_under_cgroup),		\
2367 	FN(get_hash_recalc),		\
2368 	FN(get_current_task),		\
2369 	FN(probe_write_user),		\
2370 	FN(current_task_under_cgroup),	\
2371 	FN(skb_change_tail),		\
2372 	FN(skb_pull_data),		\
2373 	FN(csum_update),		\
2374 	FN(set_hash_invalid),		\
2375 	FN(get_numa_node_id),		\
2376 	FN(skb_change_head),		\
2377 	FN(xdp_adjust_head),		\
2378 	FN(probe_read_str),		\
2379 	FN(get_socket_cookie),		\
2380 	FN(get_socket_uid),		\
2381 	FN(set_hash),			\
2382 	FN(setsockopt),			\
2383 	FN(skb_adjust_room),		\
2384 	FN(redirect_map),		\
2385 	FN(sk_redirect_map),		\
2386 	FN(sock_map_update),		\
2387 	FN(xdp_adjust_meta),		\
2388 	FN(perf_event_read_value),	\
2389 	FN(perf_prog_read_value),	\
2390 	FN(getsockopt),			\
2391 	FN(override_return),		\
2392 	FN(sock_ops_cb_flags_set),	\
2393 	FN(msg_redirect_map),		\
2394 	FN(msg_apply_bytes),		\
2395 	FN(msg_cork_bytes),		\
2396 	FN(msg_pull_data),		\
2397 	FN(bind),			\
2398 	FN(xdp_adjust_tail),		\
2399 	FN(skb_get_xfrm_state),		\
2400 	FN(get_stack),			\
2401 	FN(skb_load_bytes_relative),	\
2402 	FN(fib_lookup),			\
2403 	FN(sock_hash_update),		\
2404 	FN(msg_redirect_hash),		\
2405 	FN(sk_redirect_hash),		\
2406 	FN(lwt_push_encap),		\
2407 	FN(lwt_seg6_store_bytes),	\
2408 	FN(lwt_seg6_adjust_srh),	\
2409 	FN(lwt_seg6_action),		\
2410 	FN(rc_repeat),			\
2411 	FN(rc_keydown),			\
2412 	FN(skb_cgroup_id),		\
2413 	FN(get_current_cgroup_id),	\
2414 	FN(get_local_storage),		\
2415 	FN(sk_select_reuseport),	\
2416 	FN(skb_ancestor_cgroup_id),	\
2417 	FN(sk_lookup_tcp),		\
2418 	FN(sk_lookup_udp),		\
2419 	FN(sk_release),			\
2420 	FN(map_push_elem),		\
2421 	FN(map_pop_elem),		\
2422 	FN(map_peek_elem),		\
2423 	FN(msg_push_data),		\
2424 	FN(msg_pop_data),		\
2425 	FN(rc_pointer_rel),
2426 
2427 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2428  * function eBPF program intends to call
2429  */
2430 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2431 enum bpf_func_id {
2432 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2433 	__BPF_FUNC_MAX_ID,
2434 };
2435 #undef __BPF_ENUM_FN
2436 
2437 /* All flags used by eBPF helper functions, placed here. */
2438 
2439 /* BPF_FUNC_skb_store_bytes flags. */
2440 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
2441 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
2442 
2443 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2444  * First 4 bits are for passing the header field size.
2445  */
2446 #define BPF_F_HDR_FIELD_MASK		0xfULL
2447 
2448 /* BPF_FUNC_l4_csum_replace flags. */
2449 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
2450 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
2451 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
2452 
2453 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2454 #define BPF_F_INGRESS			(1ULL << 0)
2455 
2456 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2457 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
2458 
2459 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2460 #define BPF_F_SKIP_FIELD_MASK		0xffULL
2461 #define BPF_F_USER_STACK		(1ULL << 8)
2462 /* flags used by BPF_FUNC_get_stackid only. */
2463 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
2464 #define BPF_F_REUSE_STACKID		(1ULL << 10)
2465 /* flags used by BPF_FUNC_get_stack only. */
2466 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
2467 
2468 /* BPF_FUNC_skb_set_tunnel_key flags. */
2469 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
2470 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
2471 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
2472 
2473 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2474  * BPF_FUNC_perf_event_read_value flags.
2475  */
2476 #define BPF_F_INDEX_MASK		0xffffffffULL
2477 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
2478 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2479 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
2480 
2481 /* Current network namespace */
2482 #define BPF_F_CURRENT_NETNS		(-1L)
2483 
2484 /* Mode for BPF_FUNC_skb_adjust_room helper. */
2485 enum bpf_adj_room_mode {
2486 	BPF_ADJ_ROOM_NET,
2487 };
2488 
2489 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2490 enum bpf_hdr_start_off {
2491 	BPF_HDR_START_MAC,
2492 	BPF_HDR_START_NET,
2493 };
2494 
2495 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2496 enum bpf_lwt_encap_mode {
2497 	BPF_LWT_ENCAP_SEG6,
2498 	BPF_LWT_ENCAP_SEG6_INLINE
2499 };
2500 
2501 #define __bpf_md_ptr(type, name)	\
2502 union {					\
2503 	type name;			\
2504 	__u64 :64;			\
2505 } __attribute__((aligned(8)))
2506 
2507 /* user accessible mirror of in-kernel sk_buff.
2508  * new fields can only be added to the end of this structure
2509  */
2510 struct __sk_buff {
2511 	__u32 len;
2512 	__u32 pkt_type;
2513 	__u32 mark;
2514 	__u32 queue_mapping;
2515 	__u32 protocol;
2516 	__u32 vlan_present;
2517 	__u32 vlan_tci;
2518 	__u32 vlan_proto;
2519 	__u32 priority;
2520 	__u32 ingress_ifindex;
2521 	__u32 ifindex;
2522 	__u32 tc_index;
2523 	__u32 cb[5];
2524 	__u32 hash;
2525 	__u32 tc_classid;
2526 	__u32 data;
2527 	__u32 data_end;
2528 	__u32 napi_id;
2529 
2530 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
2531 	__u32 family;
2532 	__u32 remote_ip4;	/* Stored in network byte order */
2533 	__u32 local_ip4;	/* Stored in network byte order */
2534 	__u32 remote_ip6[4];	/* Stored in network byte order */
2535 	__u32 local_ip6[4];	/* Stored in network byte order */
2536 	__u32 remote_port;	/* Stored in network byte order */
2537 	__u32 local_port;	/* stored in host byte order */
2538 	/* ... here. */
2539 
2540 	__u32 data_meta;
2541 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
2542 	__u64 tstamp;
2543 	__u32 wire_len;
2544 };
2545 
2546 struct bpf_tunnel_key {
2547 	__u32 tunnel_id;
2548 	union {
2549 		__u32 remote_ipv4;
2550 		__u32 remote_ipv6[4];
2551 	};
2552 	__u8 tunnel_tos;
2553 	__u8 tunnel_ttl;
2554 	__u16 tunnel_ext;	/* Padding, future use. */
2555 	__u32 tunnel_label;
2556 };
2557 
2558 /* user accessible mirror of in-kernel xfrm_state.
2559  * new fields can only be added to the end of this structure
2560  */
2561 struct bpf_xfrm_state {
2562 	__u32 reqid;
2563 	__u32 spi;	/* Stored in network byte order */
2564 	__u16 family;
2565 	__u16 ext;	/* Padding, future use. */
2566 	union {
2567 		__u32 remote_ipv4;	/* Stored in network byte order */
2568 		__u32 remote_ipv6[4];	/* Stored in network byte order */
2569 	};
2570 };
2571 
2572 /* Generic BPF return codes which all BPF program types may support.
2573  * The values are binary compatible with their TC_ACT_* counter-part to
2574  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2575  * programs.
2576  *
2577  * XDP is handled seprately, see XDP_*.
2578  */
2579 enum bpf_ret_code {
2580 	BPF_OK = 0,
2581 	/* 1 reserved */
2582 	BPF_DROP = 2,
2583 	/* 3-6 reserved */
2584 	BPF_REDIRECT = 7,
2585 	/* >127 are reserved for prog type specific return codes */
2586 };
2587 
2588 struct bpf_sock {
2589 	__u32 bound_dev_if;
2590 	__u32 family;
2591 	__u32 type;
2592 	__u32 protocol;
2593 	__u32 mark;
2594 	__u32 priority;
2595 	__u32 src_ip4;		/* Allows 1,2,4-byte read.
2596 				 * Stored in network byte order.
2597 				 */
2598 	__u32 src_ip6[4];	/* Allows 1,2,4-byte read.
2599 				 * Stored in network byte order.
2600 				 */
2601 	__u32 src_port;		/* Allows 4-byte read.
2602 				 * Stored in host byte order
2603 				 */
2604 };
2605 
2606 struct bpf_sock_tuple {
2607 	union {
2608 		struct {
2609 			__be32 saddr;
2610 			__be32 daddr;
2611 			__be16 sport;
2612 			__be16 dport;
2613 		} ipv4;
2614 		struct {
2615 			__be32 saddr[4];
2616 			__be32 daddr[4];
2617 			__be16 sport;
2618 			__be16 dport;
2619 		} ipv6;
2620 	};
2621 };
2622 
2623 #define XDP_PACKET_HEADROOM 256
2624 
2625 /* User return codes for XDP prog type.
2626  * A valid XDP program must return one of these defined values. All other
2627  * return codes are reserved for future use. Unknown return codes will
2628  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
2629  */
2630 enum xdp_action {
2631 	XDP_ABORTED = 0,
2632 	XDP_DROP,
2633 	XDP_PASS,
2634 	XDP_TX,
2635 	XDP_REDIRECT,
2636 };
2637 
2638 /* user accessible metadata for XDP packet hook
2639  * new fields must be added to the end of this structure
2640  */
2641 struct xdp_md {
2642 	__u32 data;
2643 	__u32 data_end;
2644 	__u32 data_meta;
2645 	/* Below access go through struct xdp_rxq_info */
2646 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
2647 	__u32 rx_queue_index;  /* rxq->queue_index  */
2648 };
2649 
2650 enum sk_action {
2651 	SK_DROP = 0,
2652 	SK_PASS,
2653 };
2654 
2655 /* user accessible metadata for SK_MSG packet hook, new fields must
2656  * be added to the end of this structure
2657  */
2658 struct sk_msg_md {
2659 	__bpf_md_ptr(void *, data);
2660 	__bpf_md_ptr(void *, data_end);
2661 
2662 	__u32 family;
2663 	__u32 remote_ip4;	/* Stored in network byte order */
2664 	__u32 local_ip4;	/* Stored in network byte order */
2665 	__u32 remote_ip6[4];	/* Stored in network byte order */
2666 	__u32 local_ip6[4];	/* Stored in network byte order */
2667 	__u32 remote_port;	/* Stored in network byte order */
2668 	__u32 local_port;	/* stored in host byte order */
2669 	__u32 size;		/* Total size of sk_msg */
2670 };
2671 
2672 struct sk_reuseport_md {
2673 	/*
2674 	 * Start of directly accessible data. It begins from
2675 	 * the tcp/udp header.
2676 	 */
2677 	__bpf_md_ptr(void *, data);
2678 	/* End of directly accessible data */
2679 	__bpf_md_ptr(void *, data_end);
2680 	/*
2681 	 * Total length of packet (starting from the tcp/udp header).
2682 	 * Note that the directly accessible bytes (data_end - data)
2683 	 * could be less than this "len".  Those bytes could be
2684 	 * indirectly read by a helper "bpf_skb_load_bytes()".
2685 	 */
2686 	__u32 len;
2687 	/*
2688 	 * Eth protocol in the mac header (network byte order). e.g.
2689 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
2690 	 */
2691 	__u32 eth_protocol;
2692 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
2693 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
2694 	__u32 hash;		/* A hash of the packet 4 tuples */
2695 };
2696 
2697 #define BPF_TAG_SIZE	8
2698 
2699 struct bpf_prog_info {
2700 	__u32 type;
2701 	__u32 id;
2702 	__u8  tag[BPF_TAG_SIZE];
2703 	__u32 jited_prog_len;
2704 	__u32 xlated_prog_len;
2705 	__aligned_u64 jited_prog_insns;
2706 	__aligned_u64 xlated_prog_insns;
2707 	__u64 load_time;	/* ns since boottime */
2708 	__u32 created_by_uid;
2709 	__u32 nr_map_ids;
2710 	__aligned_u64 map_ids;
2711 	char name[BPF_OBJ_NAME_LEN];
2712 	__u32 ifindex;
2713 	__u32 gpl_compatible:1;
2714 	__u64 netns_dev;
2715 	__u64 netns_ino;
2716 	__u32 nr_jited_ksyms;
2717 	__u32 nr_jited_func_lens;
2718 	__aligned_u64 jited_ksyms;
2719 	__aligned_u64 jited_func_lens;
2720 	__u32 btf_id;
2721 	__u32 func_info_rec_size;
2722 	__aligned_u64 func_info;
2723 	__u32 nr_func_info;
2724 	__u32 nr_line_info;
2725 	__aligned_u64 line_info;
2726 	__aligned_u64 jited_line_info;
2727 	__u32 nr_jited_line_info;
2728 	__u32 line_info_rec_size;
2729 	__u32 jited_line_info_rec_size;
2730 	__u32 nr_prog_tags;
2731 	__aligned_u64 prog_tags;
2732 } __attribute__((aligned(8)));
2733 
2734 struct bpf_map_info {
2735 	__u32 type;
2736 	__u32 id;
2737 	__u32 key_size;
2738 	__u32 value_size;
2739 	__u32 max_entries;
2740 	__u32 map_flags;
2741 	char  name[BPF_OBJ_NAME_LEN];
2742 	__u32 ifindex;
2743 	__u32 :32;
2744 	__u64 netns_dev;
2745 	__u64 netns_ino;
2746 	__u32 btf_id;
2747 	__u32 btf_key_type_id;
2748 	__u32 btf_value_type_id;
2749 } __attribute__((aligned(8)));
2750 
2751 struct bpf_btf_info {
2752 	__aligned_u64 btf;
2753 	__u32 btf_size;
2754 	__u32 id;
2755 } __attribute__((aligned(8)));
2756 
2757 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
2758  * by user and intended to be used by socket (e.g. to bind to, depends on
2759  * attach attach type).
2760  */
2761 struct bpf_sock_addr {
2762 	__u32 user_family;	/* Allows 4-byte read, but no write. */
2763 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
2764 				 * Stored in network byte order.
2765 				 */
2766 	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2767 				 * Stored in network byte order.
2768 				 */
2769 	__u32 user_port;	/* Allows 4-byte read and write.
2770 				 * Stored in network byte order
2771 				 */
2772 	__u32 family;		/* Allows 4-byte read, but no write */
2773 	__u32 type;		/* Allows 4-byte read, but no write */
2774 	__u32 protocol;		/* Allows 4-byte read, but no write */
2775 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read an 4-byte write.
2776 				 * Stored in network byte order.
2777 				 */
2778 	__u32 msg_src_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
2779 				 * Stored in network byte order.
2780 				 */
2781 };
2782 
2783 /* User bpf_sock_ops struct to access socket values and specify request ops
2784  * and their replies.
2785  * Some of this fields are in network (bigendian) byte order and may need
2786  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
2787  * New fields can only be added at the end of this structure
2788  */
2789 struct bpf_sock_ops {
2790 	__u32 op;
2791 	union {
2792 		__u32 args[4];		/* Optionally passed to bpf program */
2793 		__u32 reply;		/* Returned by bpf program	    */
2794 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
2795 	};
2796 	__u32 family;
2797 	__u32 remote_ip4;	/* Stored in network byte order */
2798 	__u32 local_ip4;	/* Stored in network byte order */
2799 	__u32 remote_ip6[4];	/* Stored in network byte order */
2800 	__u32 local_ip6[4];	/* Stored in network byte order */
2801 	__u32 remote_port;	/* Stored in network byte order */
2802 	__u32 local_port;	/* stored in host byte order */
2803 	__u32 is_fullsock;	/* Some TCP fields are only valid if
2804 				 * there is a full socket. If not, the
2805 				 * fields read as zero.
2806 				 */
2807 	__u32 snd_cwnd;
2808 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
2809 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
2810 	__u32 state;
2811 	__u32 rtt_min;
2812 	__u32 snd_ssthresh;
2813 	__u32 rcv_nxt;
2814 	__u32 snd_nxt;
2815 	__u32 snd_una;
2816 	__u32 mss_cache;
2817 	__u32 ecn_flags;
2818 	__u32 rate_delivered;
2819 	__u32 rate_interval_us;
2820 	__u32 packets_out;
2821 	__u32 retrans_out;
2822 	__u32 total_retrans;
2823 	__u32 segs_in;
2824 	__u32 data_segs_in;
2825 	__u32 segs_out;
2826 	__u32 data_segs_out;
2827 	__u32 lost_out;
2828 	__u32 sacked_out;
2829 	__u32 sk_txhash;
2830 	__u64 bytes_received;
2831 	__u64 bytes_acked;
2832 };
2833 
2834 /* Definitions for bpf_sock_ops_cb_flags */
2835 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
2836 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
2837 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
2838 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
2839 							 * supported cb flags
2840 							 */
2841 
2842 /* List of known BPF sock_ops operators.
2843  * New entries can only be added at the end
2844  */
2845 enum {
2846 	BPF_SOCK_OPS_VOID,
2847 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
2848 					 * -1 if default value should be used
2849 					 */
2850 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
2851 					 * window (in packets) or -1 if default
2852 					 * value should be used
2853 					 */
2854 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
2855 					 * active connection is initialized
2856 					 */
2857 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
2858 						 * active connection is
2859 						 * established
2860 						 */
2861 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
2862 						 * passive connection is
2863 						 * established
2864 						 */
2865 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
2866 					 * needs ECN
2867 					 */
2868 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
2869 					 * based on the path and may be
2870 					 * dependent on the congestion control
2871 					 * algorithm. In general it indicates
2872 					 * a congestion threshold. RTTs above
2873 					 * this indicate congestion
2874 					 */
2875 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
2876 					 * Arg1: value of icsk_retransmits
2877 					 * Arg2: value of icsk_rto
2878 					 * Arg3: whether RTO has expired
2879 					 */
2880 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
2881 					 * Arg1: sequence number of 1st byte
2882 					 * Arg2: # segments
2883 					 * Arg3: return value of
2884 					 *       tcp_transmit_skb (0 => success)
2885 					 */
2886 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
2887 					 * Arg1: old_state
2888 					 * Arg2: new_state
2889 					 */
2890 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
2891 					 * socket transition to LISTEN state.
2892 					 */
2893 };
2894 
2895 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
2896  * changes between the TCP and BPF versions. Ideally this should never happen.
2897  * If it does, we need to add code to convert them before calling
2898  * the BPF sock_ops function.
2899  */
2900 enum {
2901 	BPF_TCP_ESTABLISHED = 1,
2902 	BPF_TCP_SYN_SENT,
2903 	BPF_TCP_SYN_RECV,
2904 	BPF_TCP_FIN_WAIT1,
2905 	BPF_TCP_FIN_WAIT2,
2906 	BPF_TCP_TIME_WAIT,
2907 	BPF_TCP_CLOSE,
2908 	BPF_TCP_CLOSE_WAIT,
2909 	BPF_TCP_LAST_ACK,
2910 	BPF_TCP_LISTEN,
2911 	BPF_TCP_CLOSING,	/* Now a valid state */
2912 	BPF_TCP_NEW_SYN_RECV,
2913 
2914 	BPF_TCP_MAX_STATES	/* Leave at the end! */
2915 };
2916 
2917 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
2918 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
2919 
2920 struct bpf_perf_event_value {
2921 	__u64 counter;
2922 	__u64 enabled;
2923 	__u64 running;
2924 };
2925 
2926 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
2927 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
2928 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
2929 
2930 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
2931 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
2932 
2933 struct bpf_cgroup_dev_ctx {
2934 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
2935 	__u32 access_type;
2936 	__u32 major;
2937 	__u32 minor;
2938 };
2939 
2940 struct bpf_raw_tracepoint_args {
2941 	__u64 args[0];
2942 };
2943 
2944 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
2945  * OUTPUT:  Do lookup from egress perspective; default is ingress
2946  */
2947 #define BPF_FIB_LOOKUP_DIRECT  BIT(0)
2948 #define BPF_FIB_LOOKUP_OUTPUT  BIT(1)
2949 
2950 enum {
2951 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
2952 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
2953 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
2954 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
2955 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
2956 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
2957 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
2958 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
2959 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
2960 };
2961 
2962 struct bpf_fib_lookup {
2963 	/* input:  network family for lookup (AF_INET, AF_INET6)
2964 	 * output: network family of egress nexthop
2965 	 */
2966 	__u8	family;
2967 
2968 	/* set if lookup is to consider L4 data - e.g., FIB rules */
2969 	__u8	l4_protocol;
2970 	__be16	sport;
2971 	__be16	dport;
2972 
2973 	/* total length of packet from network header - used for MTU check */
2974 	__u16	tot_len;
2975 
2976 	/* input: L3 device index for lookup
2977 	 * output: device index from FIB lookup
2978 	 */
2979 	__u32	ifindex;
2980 
2981 	union {
2982 		/* inputs to lookup */
2983 		__u8	tos;		/* AF_INET  */
2984 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
2985 
2986 		/* output: metric of fib result (IPv4/IPv6 only) */
2987 		__u32	rt_metric;
2988 	};
2989 
2990 	union {
2991 		__be32		ipv4_src;
2992 		__u32		ipv6_src[4];  /* in6_addr; network order */
2993 	};
2994 
2995 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
2996 	 * network header. output: bpf_fib_lookup sets to gateway address
2997 	 * if FIB lookup returns gateway route
2998 	 */
2999 	union {
3000 		__be32		ipv4_dst;
3001 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3002 	};
3003 
3004 	/* output */
3005 	__be16	h_vlan_proto;
3006 	__be16	h_vlan_TCI;
3007 	__u8	smac[6];     /* ETH_ALEN */
3008 	__u8	dmac[6];     /* ETH_ALEN */
3009 };
3010 
3011 enum bpf_task_fd_type {
3012 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3013 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3014 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3015 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3016 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3017 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3018 };
3019 
3020 struct bpf_flow_keys {
3021 	__u16	nhoff;
3022 	__u16	thoff;
3023 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3024 	__u8	is_frag;
3025 	__u8	is_first_frag;
3026 	__u8	is_encap;
3027 	__u8	ip_proto;
3028 	__be16	n_proto;
3029 	__be16	sport;
3030 	__be16	dport;
3031 	union {
3032 		struct {
3033 			__be32	ipv4_src;
3034 			__be32	ipv4_dst;
3035 		};
3036 		struct {
3037 			__u32	ipv6_src[4];	/* in6_addr; network order */
3038 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3039 		};
3040 	};
3041 };
3042 
3043 struct bpf_func_info {
3044 	__u32	insn_off;
3045 	__u32	type_id;
3046 };
3047 
3048 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3049 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3050 
3051 struct bpf_line_info {
3052 	__u32	insn_off;
3053 	__u32	file_name_off;
3054 	__u32	line_off;
3055 	__u32	line_col;
3056 };
3057 
3058 #endif /* _UAPI__LINUX_BPF_H__ */
3059 )********"
3060