1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 7$SSE_HEADER = {2: "emmintrin.h", 3: "tmmintrin.h", 4: "smmintrin.h"}[SSE] 8$assert CHANNEL_TILE % 8 == 0 9$assert CHANNEL_TILE >= 8 10$assert KERNEL_TILE >= 2 11#include <assert.h> 12 13#include <${SSE_HEADER}> 14 15#include <xnnpack/dwconv.h> 16 17 18$ISA = {2: "sse2", 3: "ssse3", 4: "sse41"}[SSE] 19void xnn_qs8_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}_mul16( 20 size_t channels, 21 size_t output_width, 22 const int8_t** input, 23 const void* weights, 24 int8_t* output, 25 size_t input_stride, 26 size_t output_increment, 27 size_t input_offset, 28 const int8_t* zero, 29 const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN 30{ 31 assert(channels != 0); 32 assert(output_width != 0); 33 34 do { 35 $for K in range(KERNEL_TILE): 36 const int8_t* i${K} = input[${K}]; 37 assert(i${K} != NULL); 38 if XNN_UNPREDICTABLE(i${K} != zero) { 39 i${K} = (const int8_t*) ((uintptr_t) i${K} + input_offset); 40 } 41 input = (const int8_t**) ((uintptr_t) input + input_stride); 42 43 size_t c = channels; 44 const void* w = weights; 45 for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { 46 __m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w); 47 $for C in range(4, CHANNEL_TILE, 4): 48 __m128i vacc${ABC[C:C+4]} = _mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${C} * sizeof(int32_t))); 49 50 $for K in range(KERNEL_TILE): 51 52 $for C in range(0, CHANNEL_TILE, 8): 53 $if C == 0: 54 const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K}); 55 $else: 56 const __m128i vi${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${K} + ${C})); 57 $if SSE >= 4: 58 const __m128i vxi${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[C:C+8]}); 59 const __m128i vk${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(int8_t))); 60 $if SSE >= 4: 61 const __m128i vxk${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[C:C+8]}); 62 i${K} += ${CHANNEL_TILE}; 63 64 $if SSE < 4: 65 $for C in range(0, CHANNEL_TILE, 8): 66 const __m128i vxi${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${K}x${ABC[C:C+8]})); 67 const __m128i vxk${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vk${K}x${ABC[C:C+8]})); 68 69 $for C in range(0, CHANNEL_TILE, 8): 70 const __m128i vp${K}x${ABC[C:C+8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); 71 const __m128i vp${K}x${ABC[C:C+8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}); 72 73 $for C in range(0, CHANNEL_TILE, 8): 74 vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vp${K}x${ABC[C:C+8]}lo, vp${K}x${ABC[C:C+8]}hi)); 75 vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vp${K}x${ABC[C:C+8]}lo, vp${K}x${ABC[C:C+8]}hi)); 76 77 w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(int8_t)); 78 79 const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier); 80 const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding); 81 82 $if SSE >= 4: 83 $for C in range(0, CHANNEL_TILE, 4): 84 const __m128i vacc${ABC[C+1:C+4:2]} = _mm_shuffle_epi32(vacc${ABC[C:C+4]}, _MM_SHUFFLE(3, 3, 1, 1)); 85 const __m128i vprod${ABC[C:C+4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[C:C+4]}, vmultiplier), vrounding); 86 const __m128i vprod${ABC[C+1:C+4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[C+1:C+4:2]}, vmultiplier), vrounding); 87 88 $for C in range(0, CHANNEL_TILE, 4): 89 const __m128i vq31prod${ABC[C:C+4:2]} = _mm_srli_epi64(vprod${ABC[C:C+4:2]}, 31); 90 const __m128i vq31prod${ABC[C+1:C+4:2]} = _mm_add_epi64(vprod${ABC[C+1:C+4:2]}, vprod${ABC[C+1:C+4:2]}); 91 92 $for C in range(0, CHANNEL_TILE, 4): 93 const __m128i vq31prod${ABC[C:C+4]} = _mm_blend_epi16(vq31prod${ABC[C:C+4:2]}, vq31prod${ABC[C+1:C+4:2]}, 0xCC); 94 $else: 95 $for C in range(0, CHANNEL_TILE, 4): 96 const __m128i vnmask${ABC[C:C+4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[C:C+4]}); 97 98 $for C in range(0, CHANNEL_TILE, 4): 99 $if SSE >= 3: 100 const __m128i vabsacc${ABC[C:C+4]} = _mm_abs_epi32(vacc${ABC[C:C+4]}); 101 $else: 102 const __m128i vabsacc${ABC[C:C+4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[C:C+4]}, vnmask${ABC[C:C+4]}), vnmask${ABC[C:C+4]}); 103 104 $for C in range(0, CHANNEL_TILE, 4): 105 const __m128i vabsacc${ABC[C+1:C+4:2]} = _mm_shuffle_epi32(vabsacc${ABC[C:C+4]}, _MM_SHUFFLE(3, 3, 1, 1)); 106 const __m128i vabsprod${ABC[C:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C:C+4]}, vmultiplier); 107 const __m128i vabsprod${ABC[C+1:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C+1:C+4:2]}, vmultiplier); 108 109 $for C in range(0, CHANNEL_TILE, 4): 110 const __m128i vnmask${ABC[C:C+4:2]} = _mm_shuffle_epi32(vnmask${ABC[C:C+4]}, _MM_SHUFFLE(2, 2, 0, 0)); 111 const __m128i vnmask${ABC[C+1:C+4:2]} = _mm_shuffle_epi32(vnmask${ABC[C:C+4]}, _MM_SHUFFLE(3, 3, 1, 1)); 112 113 $for C in range(0, CHANNEL_TILE, 4): 114 const __m128i vprod${ABC[C:C+4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[C:C+4:2]}, vnmask${ABC[C:C+4:2]}), vnmask${ABC[C:C+4:2]}); 115 const __m128i vprod${ABC[C+1:C+4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[C+1:C+4:2]}, vnmask${ABC[C+1:C+4:2]}), vnmask${ABC[C+1:C+4:2]}); 116 117 $for C in range(0, CHANNEL_TILE, 4): 118 const __m128i vq31prod${ABC[C:C+4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[C:C+4:2]}, vrounding), 31); 119 const __m128i vq31prod${ABC[C+1:C+4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[C+1:C+4:2]}, vrounding), 31); 120 121 $for C in range(0, CHANNEL_TILE, 4): 122 const __m128i vq31prod${ABC[C:C+4:2]}${ABC[C+1:C+4:2]} = _mm_castps_si128(_mm_shuffle_ps( 123 _mm_castsi128_ps(vq31prod${ABC[C:C+4:2]}), _mm_castsi128_ps(vq31prod${ABC[C+1:C+4:2]}), _MM_SHUFFLE(2, 0, 2, 0))); 124 125 $for C in range(0, CHANNEL_TILE, 4): 126 const __m128i vq31prod${ABC[C:C+4]} = _mm_shuffle_epi32(vq31prod${ABC[C:C+4:2]}${ABC[C+1:C+4:2]}, _MM_SHUFFLE(3, 1, 2, 0)); 127 128 const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); 129 $for C in range(0, CHANNEL_TILE, 4): 130 const __m128i vrem${ABC[C:C+4]} = 131 _mm_add_epi32(_mm_and_si128(vq31prod${ABC[C:C+4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[C:C+4]})); 132 133 const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); 134 const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); 135 $for C in range(0, CHANNEL_TILE, 4): 136 vacc${ABC[C:C+4]} = 137 _mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[C:C+4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[C:C+4]}, vremainder_threshold)); 138 139 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); 140 $for C in range(0, CHANNEL_TILE, 8): 141 __m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[C:C+4]}, vacc${ABC[C+4:C+8]}), voutput_zero_point); 142 143 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); 144 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); 145 $for C in range(0, CHANNEL_TILE, 8): 146 vout${ABC[C:C+8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[C:C+8]}, voutput_min), voutput_max); 147 148 $for C in range(0, CHANNEL_TILE, 16): 149 $if C + 8 < CHANNEL_TILE: 150 __m128i vout${ABC[C:C+16]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]}); 151 $else: 152 __m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]}); 153 154 $if CHANNEL_TILE > 8: 155 _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); 156 $else: 157 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 158 $for C in range(16, CHANNEL_TILE, 16): 159 $if C + 8 < CHANNEL_TILE: 160 _mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]}); 161 $else: 162 _mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]}); 163 output += ${CHANNEL_TILE}; 164 } 165 if XNN_UNLIKELY(c != 0) { 166 $if CHANNEL_TILE > 8: 167 const int8_t* k = (const int8_t*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)); 168 ${"do " if CHANNEL_TILE > 8 else ""}{ 169 __m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w); 170 __m128i vacc${ABC[4:8]} = _mm_loadu_si128((const __m128i*) ((uintptr_t) w + 4 * sizeof(int32_t))); 171 172 $for K in range(KERNEL_TILE): 173 174 const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K}); 175 $if SSE >= 4: 176 const __m128i vxi${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[0:8]}); 177 $if CHANNEL_TILE > 8: 178 $if K == 0: 179 const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) k); 180 $else: 181 const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE})); 182 $else: 183 const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(int8_t))); 184 $if SSE >= 4: 185 const __m128i vxk${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[0:8]}); 186 $if CHANNEL_TILE > 8: 187 i${K} += 8; 188 189 $if SSE < 4: 190 const __m128i vxi${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${K}x${ABC[0:8]})); 191 const __m128i vxk${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vk${K}x${ABC[0:8]})); 192 193 const __m128i vp${K}x${ABC[0:8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); 194 const __m128i vp${K}x${ABC[0:8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}); 195 196 vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vp${K}x${ABC[0:8]}lo, vp${K}x${ABC[0:8]}hi)); 197 vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vp${K}x${ABC[0:8]}lo, vp${K}x${ABC[0:8]}hi)); 198 199 $if CHANNEL_TILE > 8: 200 w = (const void*) ((uintptr_t) w + 8 * sizeof(int32_t)); 201 k += 8; 202 203 const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier); 204 const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding); 205 206 $if SSE >= 4: 207 const __m128i vacc${ABC[1:4:2]} = _mm_shuffle_epi32(vacc${ABC[0:4]}, _MM_SHUFFLE(3, 3, 1, 1)); 208 const __m128i vacc${ABC[5:8:2]} = _mm_shuffle_epi32(vacc${ABC[4:8]}, _MM_SHUFFLE(3, 3, 1, 1)); 209 210 const __m128i vprod${ABC[0:4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[0:4]}, vmultiplier), vrounding); 211 const __m128i vprod${ABC[4:8:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[4:8]}, vmultiplier), vrounding); 212 213 const __m128i vprod${ABC[1:4:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[1:4:2]}, vmultiplier), vrounding); 214 const __m128i vprod${ABC[5:8:2]} = _mm_add_epi64(_mm_mul_epi32(vacc${ABC[5:8:2]}, vmultiplier), vrounding); 215 216 const __m128i vq31prod${ABC[0:4:2]} = _mm_srli_epi64(vprod${ABC[0:4:2]}, 31); 217 const __m128i vq31prod${ABC[1:4:2]} = _mm_add_epi64(vprod${ABC[1:4:2]}, vprod${ABC[1:4:2]}); 218 const __m128i vq31prod${ABC[4:8:2]} = _mm_srli_epi64(vprod${ABC[4:8:2]}, 31); 219 const __m128i vq31prod${ABC[5:8:2]} = _mm_add_epi64(vprod${ABC[5:8:2]}, vprod${ABC[5:8:2]}); 220 221 const __m128i vq31prod${ABC[0:4]} = _mm_blend_epi16(vq31prod${ABC[0:4:2]}, vq31prod${ABC[1:4:2]}, 0xCC); 222 const __m128i vq31prod${ABC[4:8]} = _mm_blend_epi16(vq31prod${ABC[4:8:2]}, vq31prod${ABC[5:8:2]}, 0xCC); 223 $else: 224 const __m128i vnmask${ABC[0:4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]}); 225 const __m128i vnmask${ABC[4:8]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]}); 226 227 $if SSE >= 3: 228 const __m128i vabsacc${ABC[0:4]} = _mm_abs_epi32(vacc${ABC[0:4]}); 229 const __m128i vabsacc${ABC[4:8]} = _mm_abs_epi32(vacc${ABC[4:8]}); 230 $else: 231 const __m128i vabsacc${ABC[0:4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[0:4]}, vnmask${ABC[0:4]}), vnmask${ABC[0:4]}); 232 const __m128i vabsacc${ABC[4:8]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[4:8]}, vnmask${ABC[4:8]}), vnmask${ABC[4:8]}); 233 234 const __m128i vabsacc${ABC[1:4:2]} = _mm_shuffle_epi32(vabsacc${ABC[0:4]}, _MM_SHUFFLE(3, 3, 1, 1)); 235 const __m128i vabsacc${ABC[5:8:2]} = _mm_shuffle_epi32(vabsacc${ABC[4:8]}, _MM_SHUFFLE(3, 3, 1, 1)); 236 237 const __m128i vabsprod${ABC[0:4:2]} = _mm_mul_epu32(vabsacc${ABC[0:4]}, vmultiplier); 238 const __m128i vabsprod${ABC[1:4:2]} = _mm_mul_epu32(vabsacc${ABC[1:4:2]}, vmultiplier); 239 const __m128i vabsprod${ABC[4:8:2]} = _mm_mul_epu32(vabsacc${ABC[4:8]}, vmultiplier); 240 const __m128i vabsprod${ABC[5:8:2]} = _mm_mul_epu32(vabsacc${ABC[5:8:2]}, vmultiplier); 241 242 const __m128i vnmask${ABC[0:4:2]} = _mm_shuffle_epi32(vnmask${ABC[0:4]}, _MM_SHUFFLE(2, 2, 0, 0)); 243 const __m128i vnmask${ABC[1:4:2]} = _mm_shuffle_epi32(vnmask${ABC[0:4]}, _MM_SHUFFLE(3, 3, 1, 1)); 244 const __m128i vnmask${ABC[4:8:2]} = _mm_shuffle_epi32(vnmask${ABC[4:8]}, _MM_SHUFFLE(2, 2, 0, 0)); 245 const __m128i vnmask${ABC[5:8:2]} = _mm_shuffle_epi32(vnmask${ABC[4:8]}, _MM_SHUFFLE(3, 3, 1, 1)); 246 247 const __m128i vprod${ABC[0:4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[0:4:2]}, vnmask${ABC[0:4:2]}), vnmask${ABC[0:4:2]}); 248 const __m128i vprod${ABC[1:4:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[1:4:2]}, vnmask${ABC[1:4:2]}), vnmask${ABC[1:4:2]}); 249 const __m128i vprod${ABC[4:8:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[4:8:2]}, vnmask${ABC[4:8:2]}), vnmask${ABC[4:8:2]}); 250 const __m128i vprod${ABC[5:8:2]} = _mm_sub_epi64(_mm_xor_si128(vabsprod${ABC[5:8:2]}, vnmask${ABC[5:8:2]}), vnmask${ABC[5:8:2]}); 251 252 const __m128i vq31prod${ABC[0:4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[0:4:2]}, vrounding), 31); 253 const __m128i vq31prod${ABC[1:4:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[1:4:2]}, vrounding), 31); 254 const __m128i vq31prod${ABC[4:8:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[4:8:2]}, vrounding), 31); 255 const __m128i vq31prod${ABC[5:8:2]} = _mm_srli_epi64(_mm_add_epi64(vprod${ABC[5:8:2]}, vrounding), 31); 256 257 const __m128i vq31prod${ABC[0:4:2]}${ABC[1:4:2]} = _mm_castps_si128(_mm_shuffle_ps( 258 _mm_castsi128_ps(vq31prod${ABC[0:4:2]}), _mm_castsi128_ps(vq31prod${ABC[1:4:2]}), _MM_SHUFFLE(2, 0, 2, 0))); 259 const __m128i vq31prod${ABC[4:8:2]}${ABC[5:8:2]} = _mm_castps_si128(_mm_shuffle_ps( 260 _mm_castsi128_ps(vq31prod${ABC[4:8:2]}), _mm_castsi128_ps(vq31prod${ABC[5:8:2]}), _MM_SHUFFLE(2, 0, 2, 0))); 261 262 const __m128i vq31prod${ABC[0:4]} = _mm_shuffle_epi32(vq31prod${ABC[0:4:2]}${ABC[1:4:2]}, _MM_SHUFFLE(3, 1, 2, 0)); 263 const __m128i vq31prod${ABC[4:8]} = _mm_shuffle_epi32(vq31prod${ABC[4:8:2]}${ABC[5:8:2]}, _MM_SHUFFLE(3, 1, 2, 0)); 264 265 const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); 266 const __m128i vrem${ABC[0:4]} = 267 _mm_add_epi32(_mm_and_si128(vq31prod${ABC[0:4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[0:4]})); 268 const __m128i vrem${ABC[4:8]} = 269 _mm_add_epi32(_mm_and_si128(vq31prod${ABC[4:8]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${ABC[4:8]})); 270 271 const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); 272 const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); 273 vacc${ABC[0:4]} = 274 _mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[0:4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[0:4]}, vremainder_threshold)); 275 vacc${ABC[4:8]} = 276 _mm_sub_epi32(_mm_sra_epi32(vq31prod${ABC[4:8]}, vshift), _mm_cmpgt_epi32(vrem${ABC[4:8]}, vremainder_threshold)); 277 278 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); 279 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); 280 281 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); 282 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); 283 vout${ABC[0:8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[0:8]}, voutput_min), voutput_max); 284 285 __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); 286 287 $if CHANNEL_TILE > 8: 288 if XNN_LIKELY(c >= 8) { 289 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 290 output += 8; 291 c -= 8; 292 } else { 293 if (c & 4) { 294 *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 295 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 296 output += 4; 297 } 298 if (c & 2) { 299 *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); 300 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 301 output += 2; 302 } 303 if (c & 1) { 304 $if SSE >= 4: 305 *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 306 $else: 307 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 308 output += 1; 309 } 310 c = 0; 311 } 312 $else: 313 if (c & 4) { 314 *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 315 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 316 output += 4; 317 } 318 if (c & 2) { 319 *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); 320 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 321 output += 2; 322 } 323 if (c & 1) { 324 $if SSE >= 4: 325 *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 326 $else: 327 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 328 output += 1; 329 } 330 }${" while (c != 0);" if CHANNEL_TILE > 8 else ""} 331 } 332 333 output = (int8_t*) ((uintptr_t) output + output_increment); 334 } while (--output_width != 0); 335} 336