1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert BATCH_TILE % 8 == 0 7$assert BATCH_TILE >= 8 8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 9#include <assert.h> 10 11$if SSE == 5: 12 #ifdef __GNUC__ 13 #include <x86intrin.h> 14 #else 15 #include <immintrin.h> 16 #include <ammintrin.h> 17 #endif 18$else: 19 #include <immintrin.h> 20 21#include <xnnpack/intrinsics-polyfill.h> 22#include <xnnpack/vadd.h> 23 24 25$ISA = {4: "sse41", 5: "xop"}[SSE] 26void xnn_qs8_vadd_minmax_ukernel__${ISA}_mul32_ld32_x${BATCH_TILE}( 27 size_t n, 28 const int8_t* input_x, 29 const int8_t* input_y, 30 int8_t* output, 31 const union xnn_qs8_add_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN 32{ 33 const __m128i vzero_point_product = _mm_load_si128((const __m128i*) params->sse2.zero_point_product); 34 const __m128i vx_multiplier = _mm_load_si128((const __m128i*) params->sse2.x_multiplier); 35 const __m128i vy_multiplier = _mm_load_si128((const __m128i*) params->sse2.y_multiplier); 36 const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); 37 const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); 38 const __m128i vshift = _mm_cvtsi32_si128((int) params->sse2.shift); 39 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); 40 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); 41 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); 42 43 for (; n >= ${BATCH_TILE} * sizeof(int8_t); n -= ${BATCH_TILE} * sizeof(int8_t)) { 44 const __m128i vx${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x)); 45 const __m128i vy${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_y)); 46 $for N in range(4, BATCH_TILE, 4): 47 const __m128i vx${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x + ${N})); 48 const __m128i vy${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_y + ${N})); 49 input_x += ${BATCH_TILE}; 50 input_y += ${BATCH_TILE}; 51 52 $if SSE == 5: 53 $for N in range(0, BATCH_TILE, 4): 54 __m128i vacc${ABC[N:N+4]} = _mm_macc_epi32(vx${ABC[N:N+4]}, vx_multiplier, vzero_point_product); 55 56 $for N in range(0, BATCH_TILE, 4): 57 vacc${ABC[N:N+4]} = _mm_macc_epi32(vy${ABC[N:N+4]}, vy_multiplier, vacc${ABC[N:N+4]}); 58 $else: 59 $for N in range(0, BATCH_TILE, 4): 60 __m128i vacc${ABC[N:N+4]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[N:N+4]}, vx_multiplier)); 61 62 $for N in range(0, BATCH_TILE, 4): 63 vacc${ABC[N:N+4]} = _mm_add_epi32(vacc${ABC[N:N+4]}, _mm_mullo_epi32(vy${ABC[N:N+4]}, vy_multiplier)); 64 65 $for N in range(0, BATCH_TILE, 4): 66 const __m128i vrem${ABC[N:N+4]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[N:N+4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[N:N+4]})); 67 68 $for N in range(0, BATCH_TILE, 4): 69 vacc${ABC[N:N+4]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[N:N+4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[N:N+4]}, vremainder_threshold)); 70 71 $for N in range(0, BATCH_TILE, 8): 72 __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point); 73 74 $for N in range(0, BATCH_TILE, 8): 75 vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min); 76 77 $for N in range(0, BATCH_TILE, 8): 78 vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max); 79 80 $for N in range(0, BATCH_TILE, 16): 81 $if N + 8 < BATCH_TILE: 82 const __m128i vout${ABC[N:N+16]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]}); 83 $else: 84 const __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); 85 86 $if BATCH_TILE >= 16: 87 _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); 88 $else: 89 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 90 $for N in range(16, BATCH_TILE, 16): 91 $if N + 8 < BATCH_TILE: 92 _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); 93 $else: 94 _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); 95 output += ${BATCH_TILE}; 96 } 97 if XNN_UNLIKELY(n != 0) { 98 ${"do " if BATCH_TILE > 8 else ""}{ 99 const __m128i vx${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x)); 100 const __m128i vy${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_y)); 101 const __m128i vx${ABC[4:8]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x + 4)); 102 const __m128i vy${ABC[4:8]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_y + 4)); 103 $if BATCH_TILE > 8: 104 input_x += 8; 105 input_y += 8; 106 107 $if SSE == 5: 108 __m128i vacc${ABC[0:4]} = _mm_macc_epi32(vx${ABC[0:4]}, vx_multiplier, vzero_point_product); 109 __m128i vacc${ABC[4:8]} = _mm_macc_epi32(vx${ABC[4:8]}, vx_multiplier, vzero_point_product); 110 111 vacc${ABC[0:4]} = _mm_macc_epi32(vy${ABC[0:4]}, vy_multiplier, vacc${ABC[0:4]}); 112 vacc${ABC[4:8]} = _mm_macc_epi32(vy${ABC[4:8]}, vy_multiplier, vacc${ABC[4:8]}); 113 $else: 114 __m128i vacc${ABC[0:4]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[0:4]}, vx_multiplier)); 115 __m128i vacc${ABC[4:8]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[4:8]}, vx_multiplier)); 116 117 vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_mullo_epi32(vy${ABC[0:4]}, vy_multiplier)); 118 vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_mullo_epi32(vy${ABC[4:8]}, vy_multiplier)); 119 120 const __m128i vrem${ABC[0:4]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[0:4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]})); 121 const __m128i vrem${ABC[4:8]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[4:8]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]})); 122 123 vacc${ABC[0:4]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[0:4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[0:4]}, vremainder_threshold)); 124 vacc${ABC[4:8]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[4:8]}, vshift), _mm_cmpgt_epi32(vrem${ABC[4:8]}, vremainder_threshold)); 125 126 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); 127 vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min); 128 vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max); 129 130 __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); 131 132 $if BATCH_TILE > 8: 133 if XNN_LIKELY(n >= (8 * sizeof(int8_t))) { 134 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 135 output += 8; 136 n -= 8 * sizeof(int8_t); 137 } else { 138 if (n & (4 * sizeof(int8_t))) { 139 *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 140 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 141 output += 4; 142 } 143 if (n & (2 * sizeof(int8_t))) { 144 *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); 145 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 146 output += 2; 147 } 148 if (n & (1 * sizeof(int8_t))) { 149 $if SSE >= 4: 150 *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 151 $else: 152 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 153 } 154 n = 0; 155 } 156 $else: 157 if (n & (4 * sizeof(int8_t))) { 158 *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 159 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 160 output += 4; 161 } 162 if (n & (2 * sizeof(int8_t))) { 163 *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); 164 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 165 output += 2; 166 } 167 if (n & (1 * sizeof(int8_t))) { 168 $if SSE >= 4: 169 *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 170 $else: 171 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 172 } 173 }${" while (n != 0);" if BATCH_TILE > 8 else ""} 174 } 175} 176