1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert BATCH_TILE % 8 == 0 7$assert BATCH_TILE >= 8 8$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" 9#include <assert.h> 10 11$if SSE == 5: 12 #ifdef __GNUC__ 13 #include <x86intrin.h> 14 #else 15 #include <immintrin.h> 16 #include <ammintrin.h> 17 #endif 18$else: 19 #include <immintrin.h> 20 21#include <xnnpack/intrinsics-polyfill.h> 22#include <xnnpack/vadd.h> 23 24 25$ISA = {4: "sse41", 5: "xop"}[SSE] 26void xnn_qs8_vaddc_minmax_ukernel__${ISA}_mul32_ld32_x${BATCH_TILE}( 27 size_t n, 28 const int8_t* input_x, 29 const int8_t* input_y, 30 int8_t* output, 31 const union xnn_qs8_add_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN 32{ 33 const __m128i vx_multiplier = _mm_load_si128((const __m128i*) params->sse2.x_multiplier); 34 const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask); 35 const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold); 36 const __m128i vshift = _mm_cvtsi32_si128((int) params->sse2.shift); 37 const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point); 38 const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min); 39 const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max); 40 41 __m128i vzero_point_product = _mm_cvtsi32_si128(params->sse2.y_multiplier[0] * (int32_t) *input_y); 42 vzero_point_product = _mm_shuffle_epi32(vzero_point_product, _MM_SHUFFLE(0, 0, 0, 0)); 43 vzero_point_product = _mm_add_epi32(vzero_point_product, _mm_load_si128((const __m128i*) params->sse2.zero_point_product)); 44 for (; n >= ${BATCH_TILE} * sizeof(int8_t); n -= ${BATCH_TILE} * sizeof(int8_t)) { 45 const __m128i vx${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x)); 46 $for N in range(4, BATCH_TILE, 4): 47 const __m128i vx${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x + ${N})); 48 input_x += ${BATCH_TILE}; 49 input_y += ${BATCH_TILE}; 50 51 $if SSE == 5: 52 $for N in range(0, BATCH_TILE, 4): 53 __m128i vacc${ABC[N:N+4]} = _mm_macc_epi32(vx${ABC[N:N+4]}, vx_multiplier, vzero_point_product); 54 $else: 55 $for N in range(0, BATCH_TILE, 4): 56 __m128i vacc${ABC[N:N+4]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[N:N+4]}, vx_multiplier)); 57 58 $for N in range(0, BATCH_TILE, 4): 59 const __m128i vrem${ABC[N:N+4]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[N:N+4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[N:N+4]})); 60 61 $for N in range(0, BATCH_TILE, 4): 62 vacc${ABC[N:N+4]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[N:N+4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[N:N+4]}, vremainder_threshold)); 63 64 $for N in range(0, BATCH_TILE, 8): 65 __m128i vout${ABC[N:N+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[N:N+4]}, vacc${ABC[N+4:N+8]}), voutput_zero_point); 66 67 $for N in range(0, BATCH_TILE, 8): 68 vout${ABC[N:N+8]} = _mm_max_epi16(vout${ABC[N:N+8]}, voutput_min); 69 70 $for N in range(0, BATCH_TILE, 8): 71 vout${ABC[N:N+8]} = _mm_min_epi16(vout${ABC[N:N+8]}, voutput_max); 72 73 $for N in range(0, BATCH_TILE, 16): 74 $if N + 8 < BATCH_TILE: 75 const __m128i vout${ABC[N:N+16]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N+8:N+16]}); 76 $else: 77 const __m128i vout${ABC[N:N+8]}${ABC[N:N+8]} = _mm_packs_epi16(vout${ABC[N:N+8]}, vout${ABC[N:N+8]}); 78 79 $if BATCH_TILE >= 16: 80 _mm_storeu_si128((__m128i*) output, vout${ABC[0:16]}); 81 $else: 82 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 83 $for N in range(16, BATCH_TILE, 16): 84 $if N + 8 < BATCH_TILE: 85 _mm_storeu_si128((__m128i*) (output + ${N}), vout${ABC[N:N+16]}); 86 $else: 87 _mm_storel_epi64((__m128i*) (output + ${N}), vout${ABC[N:N+8]}${ABC[N:N+8]}); 88 output += ${BATCH_TILE}; 89 } 90 if XNN_UNLIKELY(n != 0) { 91 ${"do " if BATCH_TILE > 8 else ""}{ 92 const __m128i vx${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x)); 93 const __m128i vx${ABC[4:8]} = _mm_cvtepi8_epi32(_mm_loadu_si32(input_x + 4)); 94 $if BATCH_TILE > 8: 95 input_x += 8; 96 97 $if SSE == 5: 98 __m128i vacc${ABC[0:4]} = _mm_macc_epi32(vx${ABC[0:4]}, vx_multiplier, vzero_point_product); 99 __m128i vacc${ABC[4:8]} = _mm_macc_epi32(vx${ABC[4:8]}, vx_multiplier, vzero_point_product); 100 $else: 101 __m128i vacc${ABC[0:4]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[0:4]}, vx_multiplier)); 102 __m128i vacc${ABC[4:8]} = _mm_add_epi32(vzero_point_product, _mm_mullo_epi32(vx${ABC[4:8]}, vx_multiplier)); 103 104 const __m128i vrem${ABC[0:4]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[0:4]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]})); 105 const __m128i vrem${ABC[4:8]} = _mm_add_epi32(_mm_and_si128(vacc${ABC[4:8]}, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]})); 106 107 vacc${ABC[0:4]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[0:4]}, vshift), _mm_cmpgt_epi32(vrem${ABC[0:4]}, vremainder_threshold)); 108 vacc${ABC[4:8]} = _mm_sub_epi32(_mm_sra_epi32(vacc${ABC[4:8]}, vshift), _mm_cmpgt_epi32(vrem${ABC[4:8]}, vremainder_threshold)); 109 110 __m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point); 111 vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, voutput_min); 112 vout${ABC[0:8]} = _mm_min_epi16(vout${ABC[0:8]}, voutput_max); 113 114 __m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]}); 115 116 $if BATCH_TILE > 8: 117 if XNN_LIKELY(n >= (8 * sizeof(int8_t))) { 118 _mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]}); 119 output += 8; 120 n -= 8 * sizeof(int8_t); 121 } else { 122 if (n & (4 * sizeof(int8_t))) { 123 *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 124 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 125 output += 4; 126 } 127 if (n & (2 * sizeof(int8_t))) { 128 *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); 129 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 130 output += 2; 131 } 132 if (n & (1 * sizeof(int8_t))) { 133 $if SSE >= 4: 134 *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 135 $else: 136 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 137 } 138 n = 0; 139 } 140 $else: 141 if (n & (4 * sizeof(int8_t))) { 142 *((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 143 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32); 144 output += 4; 145 } 146 if (n & (2 * sizeof(int8_t))) { 147 *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0); 148 vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16); 149 output += 2; 150 } 151 if (n & (1 * sizeof(int8_t))) { 152 $if SSE >= 4: 153 *output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0); 154 $else: 155 *output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]}); 156 } 157 }${" while (n != 0);" if BATCH_TILE > 8 else ""} 158 } 159} 160