1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/tracing/core/trace_writer_impl.h"
18 
19 #include <string.h>
20 
21 #include <algorithm>
22 #include <type_traits>
23 #include <utility>
24 
25 #include "perfetto/base/logging.h"
26 #include "perfetto/ext/base/thread_annotations.h"
27 #include "perfetto/protozero/message.h"
28 #include "perfetto/protozero/proto_utils.h"
29 #include "perfetto/protozero/root_message.h"
30 #include "src/tracing/core/shared_memory_arbiter_impl.h"
31 
32 #include "protos/perfetto/trace/trace_packet.pbzero.h"
33 
34 using protozero::proto_utils::kMessageLengthFieldSize;
35 using protozero::proto_utils::WriteRedundantVarInt;
36 using ChunkHeader = perfetto::SharedMemoryABI::ChunkHeader;
37 
38 namespace perfetto {
39 
40 namespace {
41 constexpr size_t kPacketHeaderSize = SharedMemoryABI::kPacketHeaderSize;
42 uint8_t g_garbage_chunk[1024];
43 }  // namespace
44 
TraceWriterImpl(SharedMemoryArbiterImpl * shmem_arbiter,WriterID id,MaybeUnboundBufferID target_buffer,BufferExhaustedPolicy buffer_exhausted_policy)45 TraceWriterImpl::TraceWriterImpl(SharedMemoryArbiterImpl* shmem_arbiter,
46                                  WriterID id,
47                                  MaybeUnboundBufferID target_buffer,
48                                  BufferExhaustedPolicy buffer_exhausted_policy)
49     : shmem_arbiter_(shmem_arbiter),
50       id_(id),
51       target_buffer_(target_buffer),
52       buffer_exhausted_policy_(buffer_exhausted_policy),
53       protobuf_stream_writer_(this),
54       process_id_(base::GetProcessId()) {
55   // TODO(primiano): we could handle the case of running out of TraceWriterID(s)
56   // more gracefully and always return a no-op TracePacket in NewTracePacket().
57   PERFETTO_CHECK(id_ != 0);
58 
59   cur_packet_.reset(new protozero::RootMessage<protos::pbzero::TracePacket>());
60   cur_packet_->Finalize();  // To avoid the DCHECK in NewTracePacket().
61 }
62 
~TraceWriterImpl()63 TraceWriterImpl::~TraceWriterImpl() {
64   if (cur_chunk_.is_valid()) {
65     cur_packet_->Finalize();
66     Flush();
67   }
68   // This call may cause the shared memory arbiter (and the underlying memory)
69   // to get asynchronously deleted if this was the last trace writer targeting
70   // the arbiter and the arbiter was marked for shutdown.
71   shmem_arbiter_->ReleaseWriterID(id_);
72 }
73 
Flush(std::function<void ()> callback)74 void TraceWriterImpl::Flush(std::function<void()> callback) {
75   // Flush() cannot be called in the middle of a TracePacket.
76   PERFETTO_CHECK(cur_packet_->is_finalized());
77 
78   if (cur_chunk_.is_valid()) {
79     shmem_arbiter_->ReturnCompletedChunk(std::move(cur_chunk_), target_buffer_,
80                                          &patch_list_);
81   } else {
82     // When in stall mode, all patches should have been returned with the last
83     // chunk, since the last packet was completed. In drop_packets_ mode, this
84     // may not be the case because the packet may have been fragmenting when
85     // SMB exhaustion occurred and |cur_chunk_| became invalid. In this case,
86     // drop_packets_ should be true.
87     PERFETTO_DCHECK(patch_list_.empty() || drop_packets_);
88   }
89 
90   // Always issue the Flush request, even if there is nothing to flush, just
91   // for the sake of getting the callback posted back.
92   shmem_arbiter_->FlushPendingCommitDataRequests(callback);
93   protobuf_stream_writer_.Reset({nullptr, nullptr});
94 
95   // |last_packet_size_field_| might have pointed into the chunk we returned.
96   last_packet_size_field_ = nullptr;
97 }
98 
NewTracePacket()99 TraceWriterImpl::TracePacketHandle TraceWriterImpl::NewTracePacket() {
100   // If we hit this, the caller is calling NewTracePacket() without having
101   // finalized the previous packet.
102   PERFETTO_CHECK(cur_packet_->is_finalized());
103   // If we hit this, this trace writer was created in a different process. This
104   // likely means that the process forked while tracing was active, and the
105   // forked child process tried to emit a trace event. This is not supported, as
106   // it would lead to two processes writing to the same tracing SMB.
107   PERFETTO_DCHECK(process_id_ == base::GetProcessId());
108 
109   fragmenting_packet_ = false;
110 
111   // Reserve space for the size of the message. Note: this call might re-enter
112   // into this class invoking GetNewBuffer() if there isn't enough space or if
113   // this is the very first call to NewTracePacket().
114   static_assert(kPacketHeaderSize == kMessageLengthFieldSize,
115                 "The packet header must match the Message header size");
116 
117   bool was_dropping_packets = drop_packets_;
118 
119   // It doesn't make sense to begin a packet that is going to fragment
120   // immediately after (8 is just an arbitrary estimation on the minimum size of
121   // a realistic packet).
122   bool chunk_too_full =
123       protobuf_stream_writer_.bytes_available() < kPacketHeaderSize + 8;
124   if (chunk_too_full || reached_max_packets_per_chunk_ ||
125       retry_new_chunk_after_packet_) {
126     protobuf_stream_writer_.Reset(GetNewBuffer());
127   }
128 
129   // Send any completed patches to the service to facilitate trace data
130   // recovery by the service. This should only happen when we're completing
131   // the first packet in a chunk which was a continuation from the previous
132   // chunk, i.e. at most once per chunk.
133   if (!patch_list_.empty() && patch_list_.front().is_patched()) {
134     shmem_arbiter_->SendPatches(id_, target_buffer_, &patch_list_);
135   }
136 
137   cur_packet_->Reset(&protobuf_stream_writer_);
138   uint8_t* header = protobuf_stream_writer_.ReserveBytes(kPacketHeaderSize);
139   memset(header, 0, kPacketHeaderSize);
140   cur_packet_->set_size_field(header);
141   last_packet_size_field_ = header;
142 
143   TracePacketHandle handle(cur_packet_.get());
144   cur_fragment_start_ = protobuf_stream_writer_.write_ptr();
145   fragmenting_packet_ = true;
146 
147   if (PERFETTO_LIKELY(!drop_packets_)) {
148     uint16_t new_packet_count = cur_chunk_.IncrementPacketCount();
149     reached_max_packets_per_chunk_ =
150         new_packet_count == ChunkHeader::Packets::kMaxCount;
151 
152     if (PERFETTO_UNLIKELY(was_dropping_packets)) {
153       // We've succeeded to get a new chunk from the SMB after we entered
154       // drop_packets_ mode. Record a marker into the new packet to indicate the
155       // data loss.
156       cur_packet_->set_previous_packet_dropped(true);
157     }
158   }
159 
160   return handle;
161 }
162 
163 // Called by the Message. We can get here in two cases:
164 // 1. In the middle of writing a Message,
165 // when |fragmenting_packet_| == true. In this case we want to update the
166 // chunk header with a partial packet and start a new partial packet in the
167 // new chunk.
168 // 2. While calling ReserveBytes() for the packet header in NewTracePacket().
169 // In this case |fragmenting_packet_| == false and we just want a new chunk
170 // without creating any fragments.
GetNewBuffer()171 protozero::ContiguousMemoryRange TraceWriterImpl::GetNewBuffer() {
172   if (fragmenting_packet_ && drop_packets_) {
173     // We can't write the remaining data of the fragmenting packet to a new
174     // chunk, because we have already lost some of its data in the garbage
175     // chunk. Thus, we will wrap around in the garbage chunk, wait until the
176     // current packet was completed, and then attempt to get a new chunk from
177     // the SMB again. Instead, if |drop_packets_| is true and
178     // |fragmenting_packet_| is false, we try to acquire a valid chunk because
179     // the SMB exhaustion might be resolved.
180     retry_new_chunk_after_packet_ = true;
181     return protozero::ContiguousMemoryRange{
182         &g_garbage_chunk[0], &g_garbage_chunk[0] + sizeof(g_garbage_chunk)};
183   }
184 
185   // Attempt to grab the next chunk before finalizing the current one, so that
186   // we know whether we need to start dropping packets before writing the
187   // current packet fragment's header.
188   ChunkHeader::Packets packets = {};
189   if (fragmenting_packet_) {
190     packets.count = 1;
191     packets.flags = ChunkHeader::kFirstPacketContinuesFromPrevChunk;
192   }
193 
194   // The memory order of the stores below doesn't really matter. This |header|
195   // is just a local temporary object. The GetNewChunk() call below will copy it
196   // into the shared buffer with the proper barriers.
197   ChunkHeader header = {};
198   header.writer_id.store(id_, std::memory_order_relaxed);
199   header.chunk_id.store(next_chunk_id_, std::memory_order_relaxed);
200   header.packets.store(packets, std::memory_order_relaxed);
201 
202   SharedMemoryABI::Chunk new_chunk =
203       shmem_arbiter_->GetNewChunk(header, buffer_exhausted_policy_);
204   if (!new_chunk.is_valid()) {
205     // Shared memory buffer exhausted, switch into |drop_packets_| mode. We'll
206     // drop data until the garbage chunk has been filled once and then retry.
207 
208     // If we started a packet in one of the previous (valid) chunks, we need to
209     // tell the service to discard it.
210     if (fragmenting_packet_) {
211       // We can only end up here if the previous chunk was a valid chunk,
212       // because we never try to acquire a new chunk in |drop_packets_| mode
213       // while fragmenting.
214       PERFETTO_DCHECK(!drop_packets_);
215 
216       // Backfill the last fragment's header with an invalid size (too large),
217       // so that the service's TraceBuffer throws out the incomplete packet.
218       // It'll restart reading from the next chunk we submit.
219       WriteRedundantVarInt(SharedMemoryABI::kPacketSizeDropPacket,
220                            cur_packet_->size_field());
221 
222       // Reset the size field, since we should not write the current packet's
223       // size anymore after this.
224       cur_packet_->set_size_field(nullptr);
225 
226       // We don't set kLastPacketContinuesOnNextChunk or kChunkNeedsPatching on
227       // the last chunk, because its last fragment will be discarded anyway.
228       // However, the current packet fragment points to a valid |cur_chunk_| and
229       // may have non-finalized nested messages which will continue in the
230       // garbage chunk and currently still point into |cur_chunk_|. As we are
231       // about to return |cur_chunk_|, we need to invalidate the size fields of
232       // those nested messages. Normally we move them in the |patch_list_| (see
233       // below) but in this case, it doesn't make sense to send patches for a
234       // fragment that will be discarded for sure. Thus, we clean up any size
235       // field references into |cur_chunk_|.
236       for (auto* nested_msg = cur_packet_->nested_message(); nested_msg;
237            nested_msg = nested_msg->nested_message()) {
238         uint8_t* const cur_hdr = nested_msg->size_field();
239 
240         // If this is false the protozero Message has already been instructed to
241         // write, upon Finalize(), its size into the patch list.
242         bool size_field_points_within_chunk =
243             cur_hdr >= cur_chunk_.payload_begin() &&
244             cur_hdr + kMessageLengthFieldSize <= cur_chunk_.end();
245 
246         if (size_field_points_within_chunk)
247           nested_msg->set_size_field(nullptr);
248       }
249     } else if (!drop_packets_ && last_packet_size_field_) {
250       // If we weren't dropping packets before, we should indicate to the
251       // service that we're about to lose data. We do this by invalidating the
252       // size of the last packet in |cur_chunk_|. The service will record
253       // statistics about packets with kPacketSizeDropPacket size.
254       PERFETTO_DCHECK(cur_packet_->is_finalized());
255       PERFETTO_DCHECK(cur_chunk_.is_valid());
256 
257       // |last_packet_size_field_| should point within |cur_chunk_|'s payload.
258       PERFETTO_DCHECK(last_packet_size_field_ >= cur_chunk_.payload_begin() &&
259                       last_packet_size_field_ + kMessageLengthFieldSize <=
260                           cur_chunk_.end());
261 
262       WriteRedundantVarInt(SharedMemoryABI::kPacketSizeDropPacket,
263                            last_packet_size_field_);
264     }
265 
266     if (cur_chunk_.is_valid()) {
267       shmem_arbiter_->ReturnCompletedChunk(std::move(cur_chunk_),
268                                            target_buffer_, &patch_list_);
269     }
270 
271     drop_packets_ = true;
272     cur_chunk_ = SharedMemoryABI::Chunk();  // Reset to an invalid chunk.
273     reached_max_packets_per_chunk_ = false;
274     retry_new_chunk_after_packet_ = false;
275     last_packet_size_field_ = nullptr;
276 
277     PERFETTO_ANNOTATE_BENIGN_RACE_SIZED(&g_garbage_chunk,
278                                         sizeof(g_garbage_chunk),
279                                         "nobody reads the garbage chunk")
280     return protozero::ContiguousMemoryRange{
281         &g_garbage_chunk[0], &g_garbage_chunk[0] + sizeof(g_garbage_chunk)};
282   }  // if (!new_chunk.is_valid())
283 
284   PERFETTO_DCHECK(new_chunk.is_valid());
285 
286   if (fragmenting_packet_) {
287     // We should not be fragmenting a packet after we exited drop_packets_ mode,
288     // because we only retry to get a new chunk when a fresh packet is started.
289     PERFETTO_DCHECK(!drop_packets_);
290 
291     uint8_t* const wptr = protobuf_stream_writer_.write_ptr();
292     PERFETTO_DCHECK(wptr >= cur_fragment_start_);
293     uint32_t partial_size = static_cast<uint32_t>(wptr - cur_fragment_start_);
294     PERFETTO_DCHECK(partial_size < cur_chunk_.size());
295 
296     // Backfill the packet header with the fragment size.
297     PERFETTO_DCHECK(partial_size > 0);
298     cur_packet_->inc_size_already_written(partial_size);
299     cur_chunk_.SetFlag(ChunkHeader::kLastPacketContinuesOnNextChunk);
300     WriteRedundantVarInt(partial_size, cur_packet_->size_field());
301 
302     // Descend in the stack of non-finalized nested submessages (if any) and
303     // detour their |size_field| into the |patch_list_|. At this point we have
304     // to release the chunk and they cannot write anymore into that.
305     // TODO(primiano): add tests to cover this logic.
306     bool chunk_needs_patching = false;
307     for (auto* nested_msg = cur_packet_->nested_message(); nested_msg;
308          nested_msg = nested_msg->nested_message()) {
309       uint8_t* const cur_hdr = nested_msg->size_field();
310 
311       // If this is false the protozero Message has already been instructed to
312       // write, upon Finalize(), its size into the patch list.
313       bool size_field_points_within_chunk =
314           cur_hdr >= cur_chunk_.payload_begin() &&
315           cur_hdr + kMessageLengthFieldSize <= cur_chunk_.end();
316 
317       if (size_field_points_within_chunk) {
318         auto offset =
319             static_cast<uint16_t>(cur_hdr - cur_chunk_.payload_begin());
320         const ChunkID cur_chunk_id =
321             cur_chunk_.header()->chunk_id.load(std::memory_order_relaxed);
322         Patch* patch = patch_list_.emplace_back(cur_chunk_id, offset);
323         nested_msg->set_size_field(&patch->size_field[0]);
324         chunk_needs_patching = true;
325       } else {
326 #if PERFETTO_DCHECK_IS_ON()
327         // Ensure that the size field of the message points to an element of the
328         // patch list.
329         auto patch_it = std::find_if(
330             patch_list_.begin(), patch_list_.end(),
331             [cur_hdr](const Patch& p) { return &p.size_field[0] == cur_hdr; });
332         PERFETTO_DCHECK(patch_it != patch_list_.end());
333 #endif
334       }
335     }  // for(nested_msg
336 
337     if (chunk_needs_patching)
338       cur_chunk_.SetFlag(ChunkHeader::kChunkNeedsPatching);
339   }  // if(fragmenting_packet)
340 
341   if (cur_chunk_.is_valid()) {
342     // ReturnCompletedChunk will consume the first patched entries from
343     // |patch_list_| and shrink it.
344     shmem_arbiter_->ReturnCompletedChunk(std::move(cur_chunk_), target_buffer_,
345                                          &patch_list_);
346   }
347 
348   // Switch to the new chunk.
349   drop_packets_ = false;
350   reached_max_packets_per_chunk_ = false;
351   retry_new_chunk_after_packet_ = false;
352   next_chunk_id_++;
353   cur_chunk_ = std::move(new_chunk);
354   last_packet_size_field_ = nullptr;
355 
356   uint8_t* payload_begin = cur_chunk_.payload_begin();
357   if (fragmenting_packet_) {
358     cur_packet_->set_size_field(payload_begin);
359     last_packet_size_field_ = payload_begin;
360     memset(payload_begin, 0, kPacketHeaderSize);
361     payload_begin += kPacketHeaderSize;
362     cur_fragment_start_ = payload_begin;
363   }
364 
365   return protozero::ContiguousMemoryRange{payload_begin, cur_chunk_.end()};
366 }
367 
writer_id() const368 WriterID TraceWriterImpl::writer_id() const {
369   return id_;
370 }
371 
372 // Base class definitions.
373 TraceWriter::TraceWriter() = default;
374 TraceWriter::~TraceWriter() = default;
375 
376 }  // namespace perfetto
377