1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program Tester Core
3  * ----------------------------------------
4  *
5  * Copyright 2016 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief ASTC Utilities.
22  *//*--------------------------------------------------------------------*/
23 
24 #include "tcuAstcUtil.hpp"
25 #include "deFloat16.h"
26 #include "deRandom.hpp"
27 #include "deMeta.hpp"
28 
29 #include <algorithm>
30 
31 namespace tcu
32 {
33 namespace astc
34 {
35 
36 using std::vector;
37 
38 namespace
39 {
40 
41 // Common utilities
42 
43 enum
44 {
45 	MAX_BLOCK_WIDTH		= 12,
46 	MAX_BLOCK_HEIGHT	= 12
47 };
48 
getBit(deUint32 src,int ndx)49 inline deUint32 getBit (deUint32 src, int ndx)
50 {
51 	DE_ASSERT(de::inBounds(ndx, 0, 32));
52 	return (src >> ndx) & 1;
53 }
54 
getBits(deUint32 src,int low,int high)55 inline deUint32 getBits (deUint32 src, int low, int high)
56 {
57 	const int numBits = (high-low) + 1;
58 
59 	DE_ASSERT(de::inRange(numBits, 1, 32));
60 
61 	if (numBits < 32)
62 		return (deUint32)((src >> low) & ((1u<<numBits)-1));
63 	else
64 		return (deUint32)((src >> low) & 0xFFFFFFFFu);
65 }
66 
isBitSet(deUint32 src,int ndx)67 inline bool isBitSet (deUint32 src, int ndx)
68 {
69 	return getBit(src, ndx) != 0;
70 }
71 
reverseBits(deUint32 src,int numBits)72 inline deUint32 reverseBits (deUint32 src, int numBits)
73 {
74 	DE_ASSERT(de::inRange(numBits, 0, 32));
75 	deUint32 result = 0;
76 	for (int i = 0; i < numBits; i++)
77 		result |= ((src >> i) & 1) << (numBits-1-i);
78 	return result;
79 }
80 
bitReplicationScale(deUint32 src,int numSrcBits,int numDstBits)81 inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
82 {
83 	DE_ASSERT(numSrcBits <= numDstBits);
84 	DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
85 	deUint32 dst = 0;
86 	for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
87 		dst |= shift >= 0 ? src << shift : src >> -shift;
88 	return dst;
89 }
90 
signExtend(deInt32 src,int numSrcBits)91 inline deInt32 signExtend (deInt32 src, int numSrcBits)
92 {
93 	DE_ASSERT(de::inRange(numSrcBits, 2, 31));
94 	const bool negative = (src & (1 << (numSrcBits-1))) != 0;
95 	return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
96 }
97 
isFloat16InfOrNan(deFloat16 v)98 inline bool isFloat16InfOrNan (deFloat16 v)
99 {
100 	return getBits(v, 10, 14) == 31;
101 }
102 
103 enum ISEMode
104 {
105 	ISEMODE_TRIT = 0,
106 	ISEMODE_QUINT,
107 	ISEMODE_PLAIN_BIT,
108 
109 	ISEMODE_LAST
110 };
111 
112 struct ISEParams
113 {
114 	ISEMode		mode;
115 	int			numBits;
116 
ISEParamstcu::astc::__anon1989e5c50111::ISEParams117 	ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
118 };
119 
computeNumRequiredBits(const ISEParams & iseParams,int numValues)120 inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
121 {
122 	switch (iseParams.mode)
123 	{
124 		case ISEMODE_TRIT:			return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
125 		case ISEMODE_QUINT:			return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
126 		case ISEMODE_PLAIN_BIT:		return numValues*iseParams.numBits;
127 		default:
128 			DE_ASSERT(false);
129 			return -1;
130 	}
131 }
132 
computeMaximumRangeISEParams(int numAvailableBits,int numValuesInSequence)133 ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
134 {
135 	int curBitsForTritMode		= 6;
136 	int curBitsForQuintMode		= 5;
137 	int curBitsForPlainBitMode	= 8;
138 
139 	while (true)
140 	{
141 		DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
142 
143 		const int tritRange			= curBitsForTritMode > 0		? (3 << curBitsForTritMode) - 1			: -1;
144 		const int quintRange		= curBitsForQuintMode > 0		? (5 << curBitsForQuintMode) - 1		: -1;
145 		const int plainBitRange		= curBitsForPlainBitMode > 0	? (1 << curBitsForPlainBitMode) - 1		: -1;
146 		const int maxRange			= de::max(de::max(tritRange, quintRange), plainBitRange);
147 
148 		if (maxRange == tritRange)
149 		{
150 			const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
151 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
152 				return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
153 			curBitsForTritMode--;
154 		}
155 		else if (maxRange == quintRange)
156 		{
157 			const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
158 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
159 				return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
160 			curBitsForQuintMode--;
161 		}
162 		else
163 		{
164 			const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
165 			DE_ASSERT(maxRange == plainBitRange);
166 			if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
167 				return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
168 			curBitsForPlainBitMode--;
169 		}
170 	}
171 }
172 
computeNumColorEndpointValues(deUint32 endpointMode)173 inline int computeNumColorEndpointValues (deUint32 endpointMode)
174 {
175 	DE_ASSERT(endpointMode < 16);
176 	return (endpointMode/4 + 1) * 2;
177 }
178 
179 // Decompression utilities
180 
181 enum DecompressResult
182 {
183 	DECOMPRESS_RESULT_VALID_BLOCK	= 0,	//!< Decompressed valid block
184 	DECOMPRESS_RESULT_ERROR,				//!< Encountered error while decompressing, error color written
185 
186 	DECOMPRESS_RESULT_LAST
187 };
188 
189 // A helper for getting bits from a 128-bit block.
190 class Block128
191 {
192 private:
193 	typedef deUint64 Word;
194 
195 	enum
196 	{
197 		WORD_BYTES	= sizeof(Word),
198 		WORD_BITS	= 8*WORD_BYTES,
199 		NUM_WORDS	= 128 / WORD_BITS
200 	};
201 
202 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
203 
204 public:
Block128(const deUint8 * src)205 	Block128 (const deUint8* src)
206 	{
207 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
208 		{
209 			m_words[wordNdx] = 0;
210 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
211 				m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
212 		}
213 	}
214 
getBit(int ndx) const215 	deUint32 getBit (int ndx) const
216 	{
217 		DE_ASSERT(de::inBounds(ndx, 0, 128));
218 		return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
219 	}
220 
getBits(int low,int high) const221 	deUint32 getBits (int low, int high) const
222 	{
223 		DE_ASSERT(de::inBounds(low, 0, 128));
224 		DE_ASSERT(de::inBounds(high, 0, 128));
225 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
226 
227 		if (high-low+1 == 0)
228 			return 0;
229 
230 		const int word0Ndx = low / WORD_BITS;
231 		const int word1Ndx = high / WORD_BITS;
232 
233 		// \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
234 
235 		if (word0Ndx == word1Ndx)
236 			return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
237 		else
238 		{
239 			DE_ASSERT(word1Ndx == word0Ndx + 1);
240 
241 			return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
242 				   (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
243 		}
244 	}
245 
isBitSet(int ndx) const246 	bool isBitSet (int ndx) const
247 	{
248 		DE_ASSERT(de::inBounds(ndx, 0, 128));
249 		return getBit(ndx) != 0;
250 	}
251 
252 private:
253 	Word m_words[NUM_WORDS];
254 };
255 
256 // A helper for sequential access into a Block128.
257 class BitAccessStream
258 {
259 public:
BitAccessStream(const Block128 & src,int startNdxInSrc,int length,bool forward)260 	BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
261 		: m_src				(src)
262 		, m_startNdxInSrc	(startNdxInSrc)
263 		, m_length			(length)
264 		, m_forward			(forward)
265 		, m_ndx				(0)
266 	{
267 	}
268 
269 	// Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
getNext(int num)270 	deUint32 getNext (int num)
271 	{
272 		if (num == 0 || m_ndx >= m_length)
273 			return 0;
274 
275 		const int end				= m_ndx + num;
276 		const int numBitsFromSrc	= de::max(0, de::min(m_length, end) - m_ndx);
277 		const int low				= m_ndx;
278 		const int high				= m_ndx + numBitsFromSrc - 1;
279 
280 		m_ndx += num;
281 
282 		return m_forward ?			   m_src.getBits(m_startNdxInSrc + low,  m_startNdxInSrc + high)
283 						 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
284 	}
285 
286 private:
287 	const Block128&		m_src;
288 	const int			m_startNdxInSrc;
289 	const int			m_length;
290 	const bool			m_forward;
291 
292 	int					m_ndx;
293 };
294 
295 struct ISEDecodedResult
296 {
297 	deUint32 m;
298 	deUint32 tq; //!< Trit or quint value, depending on ISE mode.
299 	deUint32 v;
300 };
301 
302 // Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
303 struct ASTCBlockMode
304 {
305 	bool		isError;
306 	// \note Following fields only relevant if !isError.
307 	bool		isVoidExtent;
308 	// \note Following fields only relevant if !isVoidExtent.
309 	bool		isDualPlane;
310 	int			weightGridWidth;
311 	int			weightGridHeight;
312 	ISEParams	weightISEParams;
313 
ASTCBlockModetcu::astc::__anon1989e5c50111::ASTCBlockMode314 	ASTCBlockMode (void)
315 		: isError			(true)
316 		, isVoidExtent		(true)
317 		, isDualPlane		(true)
318 		, weightGridWidth	(-1)
319 		, weightGridHeight	(-1)
320 		, weightISEParams	(ISEMODE_LAST, -1)
321 	{
322 	}
323 };
324 
computeNumWeights(const ASTCBlockMode & mode)325 inline int computeNumWeights (const ASTCBlockMode& mode)
326 {
327 	return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
328 }
329 
330 struct ColorEndpointPair
331 {
332 	UVec4 e0;
333 	UVec4 e1;
334 };
335 
336 struct TexelWeightPair
337 {
338 	deUint32 w[2];
339 };
340 
getASTCBlockMode(deUint32 blockModeData)341 ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
342 {
343 	ASTCBlockMode blockMode;
344 	blockMode.isError = true; // \note Set to false later, if not error.
345 
346 	blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
347 
348 	if (!blockMode.isVoidExtent)
349 	{
350 		if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
351 			return blockMode; // Invalid ("reserved").
352 
353 		deUint32 r = (deUint32)-1; // \note Set in the following branches.
354 
355 		if (getBits(blockModeData, 0, 1) == 0)
356 		{
357 			const deUint32 r0	= getBit(blockModeData, 4);
358 			const deUint32 r1	= getBit(blockModeData, 2);
359 			const deUint32 r2	= getBit(blockModeData, 3);
360 			const deUint32 i78	= getBits(blockModeData, 7, 8);
361 
362 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
363 
364 			if (i78 == 3)
365 			{
366 				const bool i5 = isBitSet(blockModeData, 5);
367 				blockMode.weightGridWidth	= i5 ? 10 : 6;
368 				blockMode.weightGridHeight	= i5 ? 6  : 10;
369 			}
370 			else
371 			{
372 				const deUint32 a = getBits(blockModeData, 5, 6);
373 				switch (i78)
374 				{
375 					case 0:		blockMode.weightGridWidth = 12;		blockMode.weightGridHeight = a + 2;									break;
376 					case 1:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = 12;									break;
377 					case 2:		blockMode.weightGridWidth = a + 6;	blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6;		break;
378 					default: DE_ASSERT(false);
379 				}
380 			}
381 		}
382 		else
383 		{
384 			const deUint32 r0	= getBit(blockModeData, 4);
385 			const deUint32 r1	= getBit(blockModeData, 0);
386 			const deUint32 r2	= getBit(blockModeData, 1);
387 			const deUint32 i23	= getBits(blockModeData, 2, 3);
388 			const deUint32 a	= getBits(blockModeData, 5, 6);
389 
390 			r = (r2 << 2) | (r1 << 1) | (r0 << 0);
391 
392 			if (i23 == 3)
393 			{
394 				const deUint32	b	= getBit(blockModeData, 7);
395 				const bool		i8	= isBitSet(blockModeData, 8);
396 				blockMode.weightGridWidth	= i8 ? b+2 : a+2;
397 				blockMode.weightGridHeight	= i8 ? a+2 : b+6;
398 			}
399 			else
400 			{
401 				const deUint32 b = getBits(blockModeData, 7, 8);
402 
403 				switch (i23)
404 				{
405 					case 0:		blockMode.weightGridWidth = b + 4;	blockMode.weightGridHeight = a + 2;	break;
406 					case 1:		blockMode.weightGridWidth = b + 8;	blockMode.weightGridHeight = a + 2;	break;
407 					case 2:		blockMode.weightGridWidth = a + 2;	blockMode.weightGridHeight = b + 8;	break;
408 					default: DE_ASSERT(false);
409 				}
410 			}
411 		}
412 
413 		const bool	zeroDH		= getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
414 		const bool	h			= zeroDH ? 0 : isBitSet(blockModeData, 9);
415 		blockMode.isDualPlane	= zeroDH ? 0 : isBitSet(blockModeData, 10);
416 
417 		{
418 			ISEMode&	m	= blockMode.weightISEParams.mode;
419 			int&		b	= blockMode.weightISEParams.numBits;
420 			m = ISEMODE_PLAIN_BIT;
421 			b = 0;
422 
423 			if (h)
424 			{
425 				switch (r)
426 				{
427 					case 2:							m = ISEMODE_QUINT;	b = 1;	break;
428 					case 3:		m = ISEMODE_TRIT;						b = 2;	break;
429 					case 4:												b = 4;	break;
430 					case 5:							m = ISEMODE_QUINT;	b = 2;	break;
431 					case 6:		m = ISEMODE_TRIT;						b = 3;	break;
432 					case 7:												b = 5;	break;
433 					default:	DE_ASSERT(false);
434 				}
435 			}
436 			else
437 			{
438 				switch (r)
439 				{
440 					case 2:												b = 1;	break;
441 					case 3:		m = ISEMODE_TRIT;								break;
442 					case 4:												b = 2;	break;
443 					case 5:							m = ISEMODE_QUINT;			break;
444 					case 6:		m = ISEMODE_TRIT;						b = 1;	break;
445 					case 7:												b = 3;	break;
446 					default:	DE_ASSERT(false);
447 				}
448 			}
449 		}
450 	}
451 
452 	blockMode.isError = false;
453 	return blockMode;
454 }
455 
setASTCErrorColorBlock(void * dst,int blockWidth,int blockHeight,bool isSRGB)456 inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
457 {
458 	if (isSRGB)
459 	{
460 		deUint8* const dstU = (deUint8*)dst;
461 
462 		for (int i = 0; i < blockWidth*blockHeight; i++)
463 		{
464 			dstU[4*i + 0] = 0xff;
465 			dstU[4*i + 1] = 0;
466 			dstU[4*i + 2] = 0xff;
467 			dstU[4*i + 3] = 0xff;
468 		}
469 	}
470 	else
471 	{
472 		float* const dstF = (float*)dst;
473 
474 		for (int i = 0; i < blockWidth*blockHeight; i++)
475 		{
476 			dstF[4*i + 0] = 1.0f;
477 			dstF[4*i + 1] = 0.0f;
478 			dstF[4*i + 2] = 1.0f;
479 			dstF[4*i + 3] = 1.0f;
480 		}
481 	}
482 }
483 
decodeVoidExtentBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode)484 DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
485 {
486 	const deUint32	minSExtent			= blockData.getBits(12, 24);
487 	const deUint32	maxSExtent			= blockData.getBits(25, 37);
488 	const deUint32	minTExtent			= blockData.getBits(38, 50);
489 	const deUint32	maxTExtent			= blockData.getBits(51, 63);
490 	const bool		allExtentsAllOnes	= minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
491 	const bool		isHDRBlock			= blockData.isBitSet(9);
492 
493 	if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
494 	{
495 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
496 		return DECOMPRESS_RESULT_ERROR;
497 	}
498 
499 	const deUint32 rgba[4] =
500 	{
501 		blockData.getBits(64,  79),
502 		blockData.getBits(80,  95),
503 		blockData.getBits(96,  111),
504 		blockData.getBits(112, 127)
505 	};
506 
507 	if (isSRGB)
508 	{
509 		deUint8* const dstU = (deUint8*)dst;
510 		for (int i = 0; i < blockWidth*blockHeight; i++)
511 		for (int c = 0; c < 4; c++)
512 			dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
513 	}
514 	else
515 	{
516 		float* const dstF = (float*)dst;
517 
518 		if (isHDRBlock)
519 		{
520 			for (int c = 0; c < 4; c++)
521 			{
522 				if (isFloat16InfOrNan((deFloat16)rgba[c]))
523 					throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
524 			}
525 
526 			for (int i = 0; i < blockWidth*blockHeight; i++)
527 			for (int c = 0; c < 4; c++)
528 				dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
529 		}
530 		else
531 		{
532 			for (int i = 0; i < blockWidth*blockHeight; i++)
533 			for (int c = 0; c < 4; c++)
534 				dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
535 		}
536 	}
537 
538 	return DECOMPRESS_RESULT_VALID_BLOCK;
539 }
540 
decodeColorEndpointModes(deUint32 * endpointModesDst,const Block128 & blockData,int numPartitions,int extraCemBitsStart)541 void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
542 {
543 	if (numPartitions == 1)
544 		endpointModesDst[0] = blockData.getBits(13, 16);
545 	else
546 	{
547 		const deUint32 highLevelSelector = blockData.getBits(23, 24);
548 
549 		if (highLevelSelector == 0)
550 		{
551 			const deUint32 mode = blockData.getBits(25, 28);
552 			for (int i = 0; i < numPartitions; i++)
553 				endpointModesDst[i] = mode;
554 		}
555 		else
556 		{
557 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
558 			{
559 				const deUint32 cemClass		= highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
560 				const deUint32 lowBit0Ndx	= numPartitions + 2*partNdx;
561 				const deUint32 lowBit1Ndx	= numPartitions + 2*partNdx + 1;
562 				const deUint32 lowBit0		= blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
563 				const deUint32 lowBit1		= blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
564 
565 				endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
566 			}
567 		}
568 	}
569 }
570 
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions)571 int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
572 {
573 	int result = 0;
574 	for (int i = 0; i < numPartitions; i++)
575 		result += computeNumColorEndpointValues(endpointModes[i]);
576 	return result;
577 }
578 
decodeISETritBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)579 void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
580 {
581 	DE_ASSERT(de::inRange(numValues, 1, 5));
582 
583 	deUint32 m[5];
584 
585 	m[0]			= data.getNext(numBits);
586 	deUint32 T01	= data.getNext(2);
587 	m[1]			= data.getNext(numBits);
588 	deUint32 T23	= data.getNext(2);
589 	m[2]			= data.getNext(numBits);
590 	deUint32 T4		= data.getNext(1);
591 	m[3]			= data.getNext(numBits);
592 	deUint32 T56	= data.getNext(2);
593 	m[4]			= data.getNext(numBits);
594 	deUint32 T7		= data.getNext(1);
595 
596 	switch (numValues)
597 	{
598 		case 1:
599 			T23	= 0;
600 		// Fallthrough
601 		case 2:
602 			T4	= 0;
603 		// Fallthrough
604 		case 3:
605 			T56	= 0;
606 		// Fallthrough
607 		case 4:
608 			T7	= 0;
609 		// Fallthrough
610 		case 5:
611 			break;
612 		default:
613 			DE_ASSERT(false);
614 	}
615 
616 	const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
617 
618 	static const deUint32 tritsFromT[256][5] =
619 	{
620 		{ 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
621 		{ 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
622 		{ 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
623 		{ 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
624 		{ 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
625 		{ 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
626 		{ 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
627 		{ 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
628 		{ 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
629 		{ 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
630 		{ 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
631 		{ 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
632 		{ 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
633 		{ 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
634 		{ 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
635 		{ 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
636 	};
637 
638 	const deUint32 (& trits)[5] = tritsFromT[T];
639 
640 	for (int i = 0; i < numValues; i++)
641 	{
642 		dst[i].m	= m[i];
643 		dst[i].tq	= trits[i];
644 		dst[i].v	= (trits[i] << numBits) + m[i];
645 	}
646 }
647 
decodeISEQuintBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)648 void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
649 {
650 	DE_ASSERT(de::inRange(numValues, 1, 3));
651 
652 	deUint32 m[3];
653 
654 	m[0]			= data.getNext(numBits);
655 	deUint32 Q012	= data.getNext(3);
656 	m[1]			= data.getNext(numBits);
657 	deUint32 Q34	= data.getNext(2);
658 	m[2]			= data.getNext(numBits);
659 	deUint32 Q56	= data.getNext(2);
660 
661 	switch (numValues)
662 	{
663 		case 1:
664 			Q34	= 0;
665 		// Fallthrough
666 		case 2:
667 			Q56	= 0;
668 		// Fallthrough
669 		case 3:
670 			break;
671 		default:
672 			DE_ASSERT(false);
673 	}
674 
675 	const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
676 
677 	static const deUint32 quintsFromQ[256][3] =
678 	{
679 		{ 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
680 		{ 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
681 		{ 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
682 		{ 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
683 		{ 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
684 		{ 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
685 		{ 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
686 		{ 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
687 	};
688 
689 	const deUint32 (& quints)[3] = quintsFromQ[Q];
690 
691 	for (int i = 0; i < numValues; i++)
692 	{
693 		dst[i].m	= m[i];
694 		dst[i].tq	= quints[i];
695 		dst[i].v	= (quints[i] << numBits) + m[i];
696 	}
697 }
698 
decodeISEBitBlock(ISEDecodedResult * dst,BitAccessStream & data,int numBits)699 inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
700 {
701 	dst[0].m = data.getNext(numBits);
702 	dst[0].v = dst[0].m;
703 }
704 
decodeISE(ISEDecodedResult * dst,int numValues,BitAccessStream & data,const ISEParams & params)705 void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
706 {
707 	if (params.mode == ISEMODE_TRIT)
708 	{
709 		const int numBlocks = deDivRoundUp32(numValues, 5);
710 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
711 		{
712 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
713 			decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
714 		}
715 	}
716 	else if (params.mode == ISEMODE_QUINT)
717 	{
718 		const int numBlocks = deDivRoundUp32(numValues, 3);
719 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
720 		{
721 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
722 			decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
723 		}
724 	}
725 	else
726 	{
727 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
728 		for (int i = 0; i < numValues; i++)
729 			decodeISEBitBlock(&dst[i], data, params.numBits);
730 	}
731 }
732 
unquantizeColorEndpoints(deUint32 * dst,const ISEDecodedResult * iseResults,int numEndpoints,const ISEParams & iseParams)733 void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
734 {
735 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
736 	{
737 		const int rangeCase				= iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
738 		DE_ASSERT(de::inRange(rangeCase, 0, 10));
739 		static const deUint32	Ca[11]	= { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
740 		const deUint32			C		= Ca[rangeCase];
741 
742 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
743 		{
744 			const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
745 			const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
746 			const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
747 			const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
748 			const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
749 			const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
750 
751 			const deUint32 A = a == 0 ? 0 : (1<<9)-1;
752 			const deUint32 B = rangeCase == 0	? 0
753 							 : rangeCase == 1	? 0
754 							 : rangeCase == 2	? (b << 8) |									(b << 4) |				(b << 2) |	(b << 1)
755 							 : rangeCase == 3	? (b << 8) |												(b << 3) |	(b << 2)
756 							 : rangeCase == 4	? (c << 8) | (b << 7) |										(c << 3) |	(b << 2) |	(c << 1) |	(b << 0)
757 							 : rangeCase == 5	? (c << 8) | (b << 7) |													(c << 2) |	(b << 1) |	(c << 0)
758 							 : rangeCase == 6	? (d << 8) | (c << 7) | (b << 6) |										(d << 2) |	(c << 1) |	(b << 0)
759 							 : rangeCase == 7	? (d << 8) | (c << 7) | (b << 6) |													(d << 1) |	(c << 0)
760 							 : rangeCase == 8	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |										(e << 1) |	(d << 0)
761 							 : rangeCase == 9	? (e << 8) | (d << 7) | (c << 6) | (b << 5) |													(e << 0)
762 							 : rangeCase == 10	? (f << 8) | (e << 7) | (d << 6) | (c << 5) |	(b << 4) |										(f << 0)
763 							 : (deUint32)-1;
764 			DE_ASSERT(B != (deUint32)-1);
765 
766 			dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
767 		}
768 	}
769 	else
770 	{
771 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
772 
773 		for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
774 			dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
775 	}
776 }
777 
bitTransferSigned(deInt32 & a,deInt32 & b)778 inline void bitTransferSigned (deInt32& a, deInt32& b)
779 {
780 	b >>= 1;
781 	b |= a & 0x80;
782 	a >>= 1;
783 	a &= 0x3f;
784 	if (isBitSet(a, 5))
785 		a -= 0x40;
786 }
787 
clampedRGBA(const IVec4 & rgba)788 inline UVec4 clampedRGBA (const IVec4& rgba)
789 {
790 	return UVec4(de::clamp(rgba.x(), 0, 0xff),
791 				 de::clamp(rgba.y(), 0, 0xff),
792 				 de::clamp(rgba.z(), 0, 0xff),
793 				 de::clamp(rgba.w(), 0, 0xff));
794 }
795 
blueContract(int r,int g,int b,int a)796 inline IVec4 blueContract (int r, int g, int b, int a)
797 {
798 	return IVec4((r+b)>>1, (g+b)>>1, b, a);
799 }
800 
isColorEndpointModeHDR(deUint32 mode)801 inline bool isColorEndpointModeHDR (deUint32 mode)
802 {
803 	return mode == 2	||
804 		   mode == 3	||
805 		   mode == 7	||
806 		   mode == 11	||
807 		   mode == 14	||
808 		   mode == 15;
809 }
810 
decodeHDREndpointMode7(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3)811 void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
812 {
813 	const deUint32 m10		= getBit(v1, 7) | (getBit(v2, 7) << 1);
814 	const deUint32 m23		= getBits(v0, 6, 7);
815 	const deUint32 majComp	= m10 != 3	? m10
816 							: m23 != 3	? m23
817 							:			  0;
818 	const deUint32 mode		= m10 != 3	? m23
819 							: m23 != 3	? 4
820 							:			  5;
821 
822 	deInt32			red		= (deInt32)getBits(v0, 0, 5);
823 	deInt32			green	= (deInt32)getBits(v1, 0, 4);
824 	deInt32			blue	= (deInt32)getBits(v2, 0, 4);
825 	deInt32			scale	= (deInt32)getBits(v3, 0, 4);
826 
827 	{
828 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
829 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
830 
831 		const deUint32	x0	= getBit(v1, 6);
832 		const deUint32	x1	= getBit(v1, 5);
833 		const deUint32	x2	= getBit(v2, 6);
834 		const deUint32	x3	= getBit(v2, 5);
835 		const deUint32	x4	= getBit(v3, 7);
836 		const deUint32	x5	= getBit(v3, 6);
837 		const deUint32	x6	= getBit(v3, 5);
838 
839 		deInt32&		R	= red;
840 		deInt32&		G	= green;
841 		deInt32&		B	= blue;
842 		deInt32&		S	= scale;
843 
844 		switch (mode)
845 		{
846 			case 0: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,10,  R,6,  S,6,   S,5); break;
847 			case 1: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  R,10,  R,9); break;
848 			case 2: ASSIGN_X_BITS(R,9,  R,8,  R,7,  R,6,   S,7,  S,6,   S,5); break;
849 			case 3: ASSIGN_X_BITS(R,8,  G,5,  R,7,  B,5,   R,6,  S,6,   S,5); break;
850 			case 4: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  R,7,   S,5); break;
851 			case 5: ASSIGN_X_BITS(G,6,  G,5,  B,6,  B,5,   R,6,  S,6,   S,5); break;
852 			default:
853 				DE_ASSERT(false);
854 		}
855 
856 #undef ASSIGN_X_BITS
857 #undef SHOR
858 	}
859 
860 	static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
861 	DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
862 
863 	red		<<= shiftAmounts[mode];
864 	green	<<= shiftAmounts[mode];
865 	blue	<<= shiftAmounts[mode];
866 	scale	<<= shiftAmounts[mode];
867 
868 	if (mode != 5)
869 	{
870 		green	= red - green;
871 		blue	= red - blue;
872 	}
873 
874 	if (majComp == 1)
875 		std::swap(red, green);
876 	else if (majComp == 2)
877 		std::swap(red, blue);
878 
879 	e0 = UVec4(de::clamp(red	- scale,	0, 0xfff),
880 			   de::clamp(green	- scale,	0, 0xfff),
881 			   de::clamp(blue	- scale,	0, 0xfff),
882 			   0x780);
883 
884 	e1 = UVec4(de::clamp(red,				0, 0xfff),
885 			   de::clamp(green,				0, 0xfff),
886 			   de::clamp(blue,				0, 0xfff),
887 			   0x780);
888 }
889 
decodeHDREndpointMode11(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5)890 void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
891 {
892 	const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
893 
894 	if (major == 3)
895 	{
896 		e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
897 		e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
898 	}
899 	else
900 	{
901 		const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
902 
903 		deInt32 a	= (deInt32)((getBit(v1, 6) << 8) | v0);
904 		deInt32 c	= (deInt32)(getBits(v1, 0, 5));
905 		deInt32 b0	= (deInt32)(getBits(v2, 0, 5));
906 		deInt32 b1	= (deInt32)(getBits(v3, 0, 5));
907 		deInt32 d0	= (deInt32)(getBits(v4, 0, 4));
908 		deInt32 d1	= (deInt32)(getBits(v5, 0, 4));
909 
910 		{
911 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
912 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
913 
914 			const deUint32 x0 = getBit(v2, 6);
915 			const deUint32 x1 = getBit(v3, 6);
916 			const deUint32 x2 = getBit(v4, 6);
917 			const deUint32 x3 = getBit(v5, 6);
918 			const deUint32 x4 = getBit(v4, 5);
919 			const deUint32 x5 = getBit(v5, 5);
920 
921 			switch (mode)
922 			{
923 				case 0: ASSIGN_X_BITS(b0,6,  b1,6,   d0,6,  d1,6,  d0,5,  d1,5); break;
924 				case 1: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  d0,5,  d1,5); break;
925 				case 2: ASSIGN_X_BITS(a,9,   c,6,    d0,6,  d1,6,  d0,5,  d1,5); break;
926 				case 3: ASSIGN_X_BITS(b0,6,  b1,6,   a,9,   c,6,   d0,5,  d1,5); break;
927 				case 4: ASSIGN_X_BITS(b0,6,  b1,6,   b0,7,  b1,7,  a,9,   a,10); break;
928 				case 5: ASSIGN_X_BITS(a,9,   a,10,   c,7,   c,6,   d0,5,  d1,5); break;
929 				case 6: ASSIGN_X_BITS(b0,6,  b1,6,   a,11,  c,6,   a,9,   a,10); break;
930 				case 7: ASSIGN_X_BITS(a,9,   a,10,   a,11,  c,6,   d0,5,  d1,5); break;
931 				default:
932 					DE_ASSERT(false);
933 			}
934 
935 #undef ASSIGN_X_BITS
936 #undef SHOR
937 		}
938 
939 		static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
940 		DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
941 
942 		d0 = signExtend(d0, numDBits[mode]);
943 		d1 = signExtend(d1, numDBits[mode]);
944 
945 		const int shiftAmount = (mode >> 1) ^ 3;
946 		a	<<= shiftAmount;
947 		c	<<= shiftAmount;
948 		b0	<<= shiftAmount;
949 		b1	<<= shiftAmount;
950 		d0	<<= shiftAmount;
951 		d1	<<= shiftAmount;
952 
953 		e0 = UVec4(de::clamp(a-c,			0, 0xfff),
954 				   de::clamp(a-b0-c-d0,		0, 0xfff),
955 				   de::clamp(a-b1-c-d1,		0, 0xfff),
956 				   0x780);
957 
958 		e1 = UVec4(de::clamp(a,				0, 0xfff),
959 				   de::clamp(a-b0,			0, 0xfff),
960 				   de::clamp(a-b1,			0, 0xfff),
961 				   0x780);
962 
963 		if (major == 1)
964 		{
965 			std::swap(e0.x(), e0.y());
966 			std::swap(e1.x(), e1.y());
967 		}
968 		else if (major == 2)
969 		{
970 			std::swap(e0.x(), e0.z());
971 			std::swap(e1.x(), e1.z());
972 		}
973 	}
974 }
975 
decodeHDREndpointMode15(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5,deUint32 v6In,deUint32 v7In)976 void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
977 {
978 	decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
979 
980 	const deUint32	mode	= (getBit(v7In, 7) << 1) | getBit(v6In, 7);
981 	deInt32			v6		= (deInt32)getBits(v6In, 0, 6);
982 	deInt32			v7		= (deInt32)getBits(v7In, 0, 6);
983 
984 	if (mode == 3)
985 	{
986 		e0.w() = v6 << 5;
987 		e1.w() = v7 << 5;
988 	}
989 	else
990 	{
991 		v6 |= (v7 << (mode+1)) & 0x780;
992 		v7 &= (0x3f >> mode);
993 		v7 ^= 0x20 >> mode;
994 		v7 -= 0x20 >> mode;
995 		v6 <<= 4-mode;
996 		v7 <<= 4-mode;
997 
998 		v7 += v6;
999 		v7 = de::clamp(v7, 0, 0xfff);
1000 		e0.w() = v6;
1001 		e1.w() = v7;
1002 	}
1003 }
1004 
decodeColorEndpoints(ColorEndpointPair * dst,const deUint32 * unquantizedEndpoints,const deUint32 * endpointModes,int numPartitions)1005 void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
1006 {
1007 	int unquantizedNdx = 0;
1008 
1009 	for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
1010 	{
1011 		const deUint32		endpointMode	= endpointModes[partitionNdx];
1012 		const deUint32*		v				= &unquantizedEndpoints[unquantizedNdx];
1013 		UVec4&				e0				= dst[partitionNdx].e0;
1014 		UVec4&				e1				= dst[partitionNdx].e1;
1015 
1016 		unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1017 
1018 		switch (endpointMode)
1019 		{
1020 			case 0:
1021 				e0 = UVec4(v[0], v[0], v[0], 0xff);
1022 				e1 = UVec4(v[1], v[1], v[1], 0xff);
1023 				break;
1024 
1025 			case 1:
1026 			{
1027 				const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1028 				const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1029 				e0 = UVec4(L0, L0, L0, 0xff);
1030 				e1 = UVec4(L1, L1, L1, 0xff);
1031 				break;
1032 			}
1033 
1034 			case 2:
1035 			{
1036 				const deUint32 v1Gr		= v[1] >= v[0];
1037 				const deUint32 y0		= v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1038 				const deUint32 y1		= v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1039 
1040 				e0 = UVec4(y0, y0, y0, 0x780);
1041 				e1 = UVec4(y1, y1, y1, 0x780);
1042 				break;
1043 			}
1044 
1045 			case 3:
1046 			{
1047 				const bool		m	= isBitSet(v[0], 7);
1048 				const deUint32	y0	= m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1049 										: (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1050 				const deUint32	d	= m ? getBits(v[1], 0, 4) << 2
1051 										: getBits(v[1], 0, 3) << 1;
1052 				const deUint32	y1	= de::min(0xfffu, y0+d);
1053 
1054 				e0 = UVec4(y0, y0, y0, 0x780);
1055 				e1 = UVec4(y1, y1, y1, 0x780);
1056 				break;
1057 			}
1058 
1059 			case 4:
1060 				e0 = UVec4(v[0], v[0], v[0], v[2]);
1061 				e1 = UVec4(v[1], v[1], v[1], v[3]);
1062 				break;
1063 
1064 			case 5:
1065 			{
1066 				deInt32 v0 = (deInt32)v[0];
1067 				deInt32 v1 = (deInt32)v[1];
1068 				deInt32 v2 = (deInt32)v[2];
1069 				deInt32 v3 = (deInt32)v[3];
1070 				bitTransferSigned(v1, v0);
1071 				bitTransferSigned(v3, v2);
1072 
1073 				e0 = clampedRGBA(IVec4(v0,		v0,		v0,		v2));
1074 				e1 = clampedRGBA(IVec4(v0+v1,	v0+v1,	v0+v1,	v2+v3));
1075 				break;
1076 			}
1077 
1078 			case 6:
1079 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	0xff);
1080 				e1 = UVec4(v[0],				v[1],				v[2],				0xff);
1081 				break;
1082 
1083 			case 7:
1084 				decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1085 				break;
1086 
1087 			case 8:
1088 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1089 				{
1090 					e0 = UVec4(v[0], v[2], v[4], 0xff);
1091 					e1 = UVec4(v[1], v[3], v[5], 0xff);
1092 				}
1093 				else
1094 				{
1095 					e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1096 					e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1097 				}
1098 				break;
1099 
1100 			case 9:
1101 			{
1102 				deInt32 v0 = (deInt32)v[0];
1103 				deInt32 v1 = (deInt32)v[1];
1104 				deInt32 v2 = (deInt32)v[2];
1105 				deInt32 v3 = (deInt32)v[3];
1106 				deInt32 v4 = (deInt32)v[4];
1107 				deInt32 v5 = (deInt32)v[5];
1108 				bitTransferSigned(v1, v0);
1109 				bitTransferSigned(v3, v2);
1110 				bitTransferSigned(v5, v4);
1111 
1112 				if (v1+v3+v5 >= 0)
1113 				{
1114 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		0xff));
1115 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	0xff));
1116 				}
1117 				else
1118 				{
1119 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	0xff));
1120 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		0xff));
1121 				}
1122 				break;
1123 			}
1124 
1125 			case 10:
1126 				e0 = UVec4((v[0]*v[3]) >> 8,	(v[1]*v[3]) >> 8,	(v[2]*v[3]) >> 8,	v[4]);
1127 				e1 = UVec4(v[0],				v[1],				v[2],				v[5]);
1128 				break;
1129 
1130 			case 11:
1131 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1132 				break;
1133 
1134 			case 12:
1135 				if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1136 				{
1137 					e0 = UVec4(v[0], v[2], v[4], v[6]);
1138 					e1 = UVec4(v[1], v[3], v[5], v[7]);
1139 				}
1140 				else
1141 				{
1142 					e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1143 					e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1144 				}
1145 				break;
1146 
1147 			case 13:
1148 			{
1149 				deInt32 v0 = (deInt32)v[0];
1150 				deInt32 v1 = (deInt32)v[1];
1151 				deInt32 v2 = (deInt32)v[2];
1152 				deInt32 v3 = (deInt32)v[3];
1153 				deInt32 v4 = (deInt32)v[4];
1154 				deInt32 v5 = (deInt32)v[5];
1155 				deInt32 v6 = (deInt32)v[6];
1156 				deInt32 v7 = (deInt32)v[7];
1157 				bitTransferSigned(v1, v0);
1158 				bitTransferSigned(v3, v2);
1159 				bitTransferSigned(v5, v4);
1160 				bitTransferSigned(v7, v6);
1161 
1162 				if (v1+v3+v5 >= 0)
1163 				{
1164 					e0 = clampedRGBA(IVec4(v0,		v2,		v4,		v6));
1165 					e1 = clampedRGBA(IVec4(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1166 				}
1167 				else
1168 				{
1169 					e0 = clampedRGBA(blueContract(v0+v1,	v2+v3,	v4+v5,	v6+v7));
1170 					e1 = clampedRGBA(blueContract(v0,		v2,		v4,		v6));
1171 				}
1172 
1173 				break;
1174 			}
1175 
1176 			case 14:
1177 				decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1178 				e0.w() = v[6];
1179 				e1.w() = v[7];
1180 				break;
1181 
1182 			case 15:
1183 				decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1184 				break;
1185 
1186 			default:
1187 				DE_ASSERT(false);
1188 		}
1189 	}
1190 }
1191 
computeColorEndpoints(ColorEndpointPair * dst,const Block128 & blockData,const deUint32 * endpointModes,int numPartitions,int numColorEndpointValues,const ISEParams & iseParams,int numBitsAvailable)1192 void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1193 {
1194 	const int			colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
1195 	ISEDecodedResult	colorEndpointData[18];
1196 
1197 	{
1198 		BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1199 		decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1200 	}
1201 
1202 	{
1203 		deUint32 unquantizedEndpoints[18];
1204 		unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1205 		decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1206 	}
1207 }
1208 
unquantizeWeights(deUint32 dst[64],const ISEDecodedResult * weightGrid,const ASTCBlockMode & blockMode)1209 void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1210 {
1211 	const int			numWeights	= computeNumWeights(blockMode);
1212 	const ISEParams&	iseParams	= blockMode.weightISEParams;
1213 
1214 	if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1215 	{
1216 		const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1217 
1218 		if (rangeCase == 0 || rangeCase == 1)
1219 		{
1220 			static const deUint32 map0[3]	= { 0, 32, 63 };
1221 			static const deUint32 map1[5]	= { 0, 16, 32, 47, 63 };
1222 			const deUint32* const map		= rangeCase == 0 ? &map0[0] : &map1[0];
1223 			for (int i = 0; i < numWeights; i++)
1224 			{
1225 				DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1226 				dst[i] = map[weightGrid[i].v];
1227 			}
1228 		}
1229 		else
1230 		{
1231 			DE_ASSERT(rangeCase <= 6);
1232 			static const deUint32	Ca[5]	= { 50, 28, 23, 13, 11 };
1233 			const deUint32			C		= Ca[rangeCase-2];
1234 
1235 			for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1236 			{
1237 				const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1238 				const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1239 				const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1240 
1241 				const deUint32 A = a == 0 ? 0 : (1<<7)-1;
1242 				const deUint32 B = rangeCase == 2 ? 0
1243 								 : rangeCase == 3 ? 0
1244 								 : rangeCase == 4 ? (b << 6) |					(b << 2) |				(b << 0)
1245 								 : rangeCase == 5 ? (b << 6) |								(b << 1)
1246 								 : rangeCase == 6 ? (c << 6) | (b << 5) |					(c << 1) |	(b << 0)
1247 								 : (deUint32)-1;
1248 
1249 				dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1250 			}
1251 		}
1252 	}
1253 	else
1254 	{
1255 		DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1256 
1257 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1258 			dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1259 	}
1260 
1261 	for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1262 		dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1263 
1264 	// Initialize nonexistent weights to poison values
1265 	for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1266 		dst[weightNdx] = ~0u;
1267 
1268 }
1269 
interpolateWeights(TexelWeightPair * dst,const deUint32 (& unquantizedWeights)[64],int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1270 void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1271 {
1272 	const int		numWeightsPerTexel	= blockMode.isDualPlane ? 2 : 1;
1273 	const deUint32	scaleX				= (1024 + blockWidth/2) / (blockWidth-1);
1274 	const deUint32	scaleY				= (1024 + blockHeight/2) / (blockHeight-1);
1275 
1276 	DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights));
1277 
1278 	for (int texelY = 0; texelY < blockHeight; texelY++)
1279 	{
1280 		for (int texelX = 0; texelX < blockWidth; texelX++)
1281 		{
1282 			const deUint32 gX	= (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1283 			const deUint32 gY	= (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1284 			const deUint32 jX	= gX >> 4;
1285 			const deUint32 jY	= gY >> 4;
1286 			const deUint32 fX	= gX & 0xf;
1287 			const deUint32 fY	= gY & 0xf;
1288 
1289 			const deUint32 w11	= (fX*fY + 8) >> 4;
1290 			const deUint32 w10	= fY - w11;
1291 			const deUint32 w01	= fX - w11;
1292 			const deUint32 w00	= 16 - fX - fY + w11;
1293 
1294 			const deUint32 i00	= jY*blockMode.weightGridWidth + jX;
1295 			const deUint32 i01	= i00 + 1;
1296 			const deUint32 i10	= i00 + blockMode.weightGridWidth;
1297 			const deUint32 i11	= i00 + blockMode.weightGridWidth + 1;
1298 
1299 			// These addresses can be out of bounds, but respective weights will be 0 then.
1300 			DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
1301 			DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
1302 			DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
1303 			DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
1304 
1305 			for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1306 			{
1307 				// & 0x3f clamps address to bounds of unquantizedWeights
1308 				const deUint32 p00	= unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1309 				const deUint32 p01	= unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1310 				const deUint32 p10	= unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1311 				const deUint32 p11	= unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1312 
1313 				dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1314 			}
1315 		}
1316 	}
1317 }
1318 
computeTexelWeights(TexelWeightPair * dst,const Block128 & blockData,int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1319 void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1320 {
1321 	ISEDecodedResult weightGrid[64];
1322 
1323 	{
1324 		BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1325 		decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1326 	}
1327 
1328 	{
1329 		deUint32 unquantizedWeights[64];
1330 		unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1331 		interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
1332 	}
1333 }
1334 
hash52(deUint32 v)1335 inline deUint32 hash52 (deUint32 v)
1336 {
1337 	deUint32 p = v;
1338 	p ^= p >> 15;	p -= p << 17;	p += p << 7;	p += p << 4;
1339 	p ^= p >>  5;	p += p << 16;	p ^= p >> 7;	p ^= p >> 3;
1340 	p ^= p <<  6;	p ^= p >> 17;
1341 	return p;
1342 }
1343 
computeTexelPartition(deUint32 seedIn,deUint32 xIn,deUint32 yIn,deUint32 zIn,int numPartitions,bool smallBlock)1344 int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1345 {
1346 	DE_ASSERT(zIn == 0);
1347 	const deUint32	x		= smallBlock ? xIn << 1 : xIn;
1348 	const deUint32	y		= smallBlock ? yIn << 1 : yIn;
1349 	const deUint32	z		= smallBlock ? zIn << 1 : zIn;
1350 	const deUint32	seed	= seedIn + 1024*(numPartitions-1);
1351 	const deUint32	rnum	= hash52(seed);
1352 	deUint8			seed1	= (deUint8)( rnum							& 0xf);
1353 	deUint8			seed2	= (deUint8)((rnum >>  4)					& 0xf);
1354 	deUint8			seed3	= (deUint8)((rnum >>  8)					& 0xf);
1355 	deUint8			seed4	= (deUint8)((rnum >> 12)					& 0xf);
1356 	deUint8			seed5	= (deUint8)((rnum >> 16)					& 0xf);
1357 	deUint8			seed6	= (deUint8)((rnum >> 20)					& 0xf);
1358 	deUint8			seed7	= (deUint8)((rnum >> 24)					& 0xf);
1359 	deUint8			seed8	= (deUint8)((rnum >> 28)					& 0xf);
1360 	deUint8			seed9	= (deUint8)((rnum >> 18)					& 0xf);
1361 	deUint8			seed10	= (deUint8)((rnum >> 22)					& 0xf);
1362 	deUint8			seed11	= (deUint8)((rnum >> 26)					& 0xf);
1363 	deUint8			seed12	= (deUint8)(((rnum >> 30) | (rnum << 2))	& 0xf);
1364 
1365 	seed1  = (deUint8)(seed1  * seed1 );
1366 	seed2  = (deUint8)(seed2  * seed2 );
1367 	seed3  = (deUint8)(seed3  * seed3 );
1368 	seed4  = (deUint8)(seed4  * seed4 );
1369 	seed5  = (deUint8)(seed5  * seed5 );
1370 	seed6  = (deUint8)(seed6  * seed6 );
1371 	seed7  = (deUint8)(seed7  * seed7 );
1372 	seed8  = (deUint8)(seed8  * seed8 );
1373 	seed9  = (deUint8)(seed9  * seed9 );
1374 	seed10 = (deUint8)(seed10 * seed10);
1375 	seed11 = (deUint8)(seed11 * seed11);
1376 	seed12 = (deUint8)(seed12 * seed12);
1377 
1378 	const int shA = (seed & 2) != 0		? 4		: 5;
1379 	const int shB = numPartitions == 3	? 6		: 5;
1380 	const int sh1 = (seed & 1) != 0		? shA	: shB;
1381 	const int sh2 = (seed & 1) != 0		? shB	: shA;
1382 	const int sh3 = (seed & 0x10) != 0	? sh1	: sh2;
1383 
1384 	seed1  = (deUint8)(seed1  >> sh1);
1385 	seed2  = (deUint8)(seed2  >> sh2);
1386 	seed3  = (deUint8)(seed3  >> sh1);
1387 	seed4  = (deUint8)(seed4  >> sh2);
1388 	seed5  = (deUint8)(seed5  >> sh1);
1389 	seed6  = (deUint8)(seed6  >> sh2);
1390 	seed7  = (deUint8)(seed7  >> sh1);
1391 	seed8  = (deUint8)(seed8  >> sh2);
1392 	seed9  = (deUint8)(seed9  >> sh3);
1393 	seed10 = (deUint8)(seed10 >> sh3);
1394 	seed11 = (deUint8)(seed11 >> sh3);
1395 	seed12 = (deUint8)(seed12 >> sh3);
1396 
1397 	const int a =						0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1398 	const int b =						0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1399 	const int c = numPartitions >= 3 ?	0x3f & (seed5*x + seed6*y + seed9*z  + (rnum >>  6))	: 0;
1400 	const int d = numPartitions >= 4 ?	0x3f & (seed7*x + seed8*y + seed10*z + (rnum >>  2))	: 0;
1401 
1402 	return a >= b && a >= c && a >= d	? 0
1403 		 : b >= c && b >= d				? 1
1404 		 : c >= d						? 2
1405 		 :								  3;
1406 }
1407 
setTexelColors(void * dst,ColorEndpointPair * colorEndpoints,TexelWeightPair * texelWeights,int ccs,deUint32 partitionIndexSeed,int numPartitions,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode,const deUint32 * colorEndpointModes)1408 DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1409 								 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1410 {
1411 	const bool			smallBlock	= blockWidth*blockHeight < 31;
1412 	DecompressResult	result		= DECOMPRESS_RESULT_VALID_BLOCK;
1413 	bool				isHDREndpoint[4];
1414 
1415 	for (int i = 0; i < numPartitions; i++)
1416 		isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1417 
1418 	for (int texelY = 0; texelY < blockHeight; texelY++)
1419 	for (int texelX = 0; texelX < blockWidth; texelX++)
1420 	{
1421 		const int				texelNdx			= texelY*blockWidth + texelX;
1422 		const int				colorEndpointNdx	= numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1423 		DE_ASSERT(colorEndpointNdx < numPartitions);
1424 		const UVec4&			e0					= colorEndpoints[colorEndpointNdx].e0;
1425 		const UVec4&			e1					= colorEndpoints[colorEndpointNdx].e1;
1426 		const TexelWeightPair&	weight				= texelWeights[texelNdx];
1427 
1428 		if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1429 		{
1430 			if (isSRGB)
1431 			{
1432 				((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
1433 				((deUint8*)dst)[texelNdx*4 + 1] = 0;
1434 				((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
1435 				((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
1436 			}
1437 			else
1438 			{
1439 				((float*)dst)[texelNdx*4 + 0] = 1.0f;
1440 				((float*)dst)[texelNdx*4 + 1] = 0;
1441 				((float*)dst)[texelNdx*4 + 2] = 1.0f;
1442 				((float*)dst)[texelNdx*4 + 3] = 1.0f;
1443 			}
1444 
1445 			result = DECOMPRESS_RESULT_ERROR;
1446 		}
1447 		else
1448 		{
1449 			for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1450 			{
1451 				if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1452 				{
1453 					const deUint32 c0	= (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1454 					const deUint32 c1	= (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1455 					const deUint32 w	= weight.w[ccs == channelNdx ? 1 : 0];
1456 					const deUint32 c	= (c0*(64-w) + c1*w + 32) / 64;
1457 
1458 					if (isSRGB)
1459 						((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1460 					else
1461 						((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
1462 				}
1463 				else
1464 				{
1465 					DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1466 					const deUint32		c0	= e0[channelNdx] << 4;
1467 					const deUint32		c1	= e1[channelNdx] << 4;
1468 					const deUint32		w	= weight.w[ccs == channelNdx ? 1 : 0];
1469 					const deUint32		c	= (c0*(64-w) + c1*w + 32) / 64;
1470 					const deUint32		e	= getBits(c, 11, 15);
1471 					const deUint32		m	= getBits(c, 0, 10);
1472 					const deUint32		mt	= m < 512		? 3*m
1473 											: m >= 1536		? 5*m - 2048
1474 											:				  4*m - 512;
1475 					const deFloat16		cf	= (deFloat16)((e << 10) + (mt >> 3));
1476 
1477 					((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1478 				}
1479 			}
1480 		}
1481 	}
1482 
1483 	return result;
1484 }
1485 
decompressBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDR)1486 DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1487 {
1488 	DE_ASSERT(isLDR || !isSRGB);
1489 
1490 	// Decode block mode.
1491 
1492 	const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1493 
1494 	// Check for block mode errors.
1495 
1496 	if (blockMode.isError)
1497 	{
1498 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1499 		return DECOMPRESS_RESULT_ERROR;
1500 	}
1501 
1502 	// Separate path for void-extent.
1503 
1504 	if (blockMode.isVoidExtent)
1505 		return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1506 
1507 	// Compute weight grid values.
1508 
1509 	const int numWeights			= computeNumWeights(blockMode);
1510 	const int numWeightDataBits		= computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1511 	const int numPartitions			= (int)blockData.getBits(11, 12) + 1;
1512 
1513 	// Check for errors in weight grid, partition and dual-plane parameters.
1514 
1515 	if (numWeights > 64								||
1516 		numWeightDataBits > 96						||
1517 		numWeightDataBits < 24						||
1518 		blockMode.weightGridWidth > blockWidth		||
1519 		blockMode.weightGridHeight > blockHeight	||
1520 		(numPartitions == 4 && blockMode.isDualPlane))
1521 	{
1522 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1523 		return DECOMPRESS_RESULT_ERROR;
1524 	}
1525 
1526 	// Compute number of bits available for color endpoint data.
1527 
1528 	const bool	isSingleUniqueCem			= numPartitions == 1 || blockData.getBits(23, 24) == 0;
1529 	const int	numConfigDataBits			= (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1530 											  (blockMode.isDualPlane ? 2 : 0);
1531 	const int	numBitsForColorEndpoints	= 128 - numWeightDataBits - numConfigDataBits;
1532 	const int	extraCemBitsStart			= 127 - numWeightDataBits - (isSingleUniqueCem		? -1
1533 																		: numPartitions == 4	? 7
1534 																		: numPartitions == 3	? 4
1535 																		: numPartitions == 2	? 1
1536 																		: 0);
1537 	// Decode color endpoint modes.
1538 
1539 	deUint32 colorEndpointModes[4];
1540 	decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1541 
1542 	const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1543 
1544 	// Check for errors in color endpoint value count.
1545 
1546 	if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
1547 	{
1548 		setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1549 		return DECOMPRESS_RESULT_ERROR;
1550 	}
1551 
1552 	// Compute color endpoints.
1553 
1554 	ColorEndpointPair colorEndpoints[4];
1555 	computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1556 						  computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1557 
1558 	// Compute texel weights.
1559 
1560 	TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1561 	computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1562 
1563 	// Set texel colors.
1564 
1565 	const int		ccs						= blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1566 	const deUint32	partitionIndexSeed		= numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
1567 
1568 	return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1569 }
1570 
decompress(const PixelBufferAccess & dst,const deUint8 * data,bool isSRGB,bool isLDR)1571 void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
1572 {
1573 	DE_ASSERT(isLDR || !isSRGB);
1574 
1575 	const int blockWidth = dst.getWidth();
1576 	const int blockHeight = dst.getHeight();
1577 
1578 	union
1579 	{
1580 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1581 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1582 	} decompressedBuffer;
1583 
1584 	const Block128 blockData(data);
1585 	decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
1586 					blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
1587 
1588 	if (isSRGB)
1589 	{
1590 		for (int i = 0; i < blockHeight; i++)
1591 		for (int j = 0; j < blockWidth; j++)
1592 		{
1593 			dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
1594 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
1595 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
1596 							   decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
1597 		}
1598 	}
1599 	else
1600 	{
1601 		for (int i = 0; i < blockHeight; i++)
1602 		for (int j = 0; j < blockWidth; j++)
1603 		{
1604 			dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
1605 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
1606 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
1607 							  decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
1608 		}
1609 	}
1610 }
1611 
1612 // Helper class for setting bits in a 128-bit block.
1613 class AssignBlock128
1614 {
1615 private:
1616 	typedef deUint64 Word;
1617 
1618 	enum
1619 	{
1620 		WORD_BYTES	= sizeof(Word),
1621 		WORD_BITS	= 8*WORD_BYTES,
1622 		NUM_WORDS	= 128 / WORD_BITS
1623 	};
1624 
1625 	DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1626 
1627 public:
AssignBlock128(void)1628 	AssignBlock128 (void)
1629 	{
1630 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1631 			m_words[wordNdx] = 0;
1632 	}
1633 
setBit(int ndx,deUint32 val)1634 	void setBit (int ndx, deUint32 val)
1635 	{
1636 		DE_ASSERT(de::inBounds(ndx, 0, 128));
1637 		DE_ASSERT((val & 1) == val);
1638 		const int wordNdx	= ndx / WORD_BITS;
1639 		const int bitNdx	= ndx % WORD_BITS;
1640 		m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
1641 	}
1642 
setBits(int low,int high,deUint32 bits)1643 	void setBits (int low, int high, deUint32 bits)
1644 	{
1645 		DE_ASSERT(de::inBounds(low, 0, 128));
1646 		DE_ASSERT(de::inBounds(high, 0, 128));
1647 		DE_ASSERT(de::inRange(high-low+1, 0, 32));
1648 		DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
1649 
1650 		if (high-low+1 == 0)
1651 			return;
1652 
1653 		const int word0Ndx		= low / WORD_BITS;
1654 		const int word1Ndx		= high / WORD_BITS;
1655 		const int lowNdxInW0	= low % WORD_BITS;
1656 
1657 		if (word0Ndx == word1Ndx)
1658 			m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
1659 		else
1660 		{
1661 			DE_ASSERT(word1Ndx == word0Ndx + 1);
1662 
1663 			const int	highNdxInW1			= high % WORD_BITS;
1664 			const int	numBitsToSetInW0	= WORD_BITS - lowNdxInW0;
1665 			const Word	bitsLowMask			= ((Word)1 << numBitsToSetInW0) - 1;
1666 
1667 			m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1))			| (((Word)bits & bitsLowMask) << lowNdxInW0);
1668 			m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1))	| (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
1669 		}
1670 	}
1671 
assignToMemory(deUint8 * dst) const1672 	void assignToMemory (deUint8* dst) const
1673 	{
1674 		for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1675 		{
1676 			for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1677 				dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
1678 		}
1679 	}
1680 
pushBytesToVector(vector<deUint8> & dst) const1681 	void pushBytesToVector (vector<deUint8>& dst) const
1682 	{
1683 		const int assignStartIndex = (int)dst.size();
1684 		dst.resize(dst.size() + BLOCK_SIZE_BYTES);
1685 		assignToMemory(&dst[assignStartIndex]);
1686 	}
1687 
1688 private:
1689 	Word m_words[NUM_WORDS];
1690 };
1691 
1692 // A helper for sequential access into a AssignBlock128.
1693 class BitAssignAccessStream
1694 {
1695 public:
BitAssignAccessStream(AssignBlock128 & dst,int startNdxInSrc,int length,bool forward)1696 	BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
1697 		: m_dst				(dst)
1698 		, m_startNdxInSrc	(startNdxInSrc)
1699 		, m_length			(length)
1700 		, m_forward			(forward)
1701 		, m_ndx				(0)
1702 	{
1703 	}
1704 
1705 	// Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
setNext(int num,deUint32 bits)1706 	void setNext (int num, deUint32 bits)
1707 	{
1708 		DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
1709 
1710 		if (num == 0 || m_ndx >= m_length)
1711 			return;
1712 
1713 		const int		end				= m_ndx + num;
1714 		const int		numBitsToDst	= de::max(0, de::min(m_length, end) - m_ndx);
1715 		const int		low				= m_ndx;
1716 		const int		high			= m_ndx + numBitsToDst - 1;
1717 		const deUint32	actualBits		= getBits(bits, 0, numBitsToDst-1);
1718 
1719 		m_ndx += num;
1720 
1721 		return m_forward ? m_dst.setBits(m_startNdxInSrc + low,  m_startNdxInSrc + high, actualBits)
1722 						 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
1723 	}
1724 
1725 private:
1726 	AssignBlock128&		m_dst;
1727 	const int			m_startNdxInSrc;
1728 	const int			m_length;
1729 	const bool			m_forward;
1730 
1731 	int					m_ndx;
1732 };
1733 
1734 struct VoidExtentParams
1735 {
1736 	DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1737 	bool		isHDR;
1738 	deUint16	r;
1739 	deUint16	g;
1740 	deUint16	b;
1741 	deUint16	a;
1742 	// \note Currently extent coordinates are all set to all-ones.
1743 
VoidExtentParamstcu::astc::__anon1989e5c50111::VoidExtentParams1744 	VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
1745 };
1746 
generateVoidExtentBlock(const VoidExtentParams & params)1747 static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
1748 {
1749 	AssignBlock128 block;
1750 
1751 	block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
1752 	block.setBit(9, params.isHDR);
1753 	block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
1754 
1755 	// Extent coordinates - currently all-ones.
1756 	block.setBits(12, 24, 0x1fff);
1757 	block.setBits(25, 37, 0x1fff);
1758 	block.setBits(38, 50, 0x1fff);
1759 	block.setBits(51, 63, 0x1fff);
1760 
1761 	DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
1762 								!isFloat16InfOrNan(params.g) &&
1763 								!isFloat16InfOrNan(params.b) &&
1764 								!isFloat16InfOrNan(params.a)));
1765 
1766 	block.setBits(64,  79,  params.r);
1767 	block.setBits(80,  95,  params.g);
1768 	block.setBits(96,  111, params.b);
1769 	block.setBits(112, 127, params.a);
1770 
1771 	return block;
1772 }
1773 
1774 // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
1775 // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
1776 // so we can test all possible values of T and Q in a block, since multiple T or Q values may map
1777 // to the same set of decoded values.
1778 struct ISEInput
1779 {
1780 	struct Block
1781 	{
1782 		deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
1783 		deUint32 bitValues[5];
1784 	};
1785 
1786 	bool isGivenInBlockForm;
1787 	union
1788 	{
1789 		//!< \note 64 comes from the maximum number of weight values in an ASTC block.
1790 		deUint32	plain[64];
1791 		Block		block[64];
1792 	} value;
1793 
ISEInputtcu::astc::__anon1989e5c50111::ISEInput1794 	ISEInput (void)
1795 		: isGivenInBlockForm (false)
1796 	{
1797 	}
1798 };
1799 
computeISERangeMax(const ISEParams & iseParams)1800 static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
1801 {
1802 	switch (iseParams.mode)
1803 	{
1804 		case ISEMODE_TRIT:			return (1u << iseParams.numBits) * 3 - 1;
1805 		case ISEMODE_QUINT:			return (1u << iseParams.numBits) * 5 - 1;
1806 		case ISEMODE_PLAIN_BIT:		return (1u << iseParams.numBits)     - 1;
1807 		default:
1808 			DE_ASSERT(false);
1809 			return -1;
1810 	}
1811 }
1812 
1813 struct NormalBlockParams
1814 {
1815 	int					weightGridWidth;
1816 	int					weightGridHeight;
1817 	ISEParams			weightISEParams;
1818 	bool				isDualPlane;
1819 	deUint32			ccs; //! \note Irrelevant if !isDualPlane.
1820 	int					numPartitions;
1821 	deUint32			colorEndpointModes[4];
1822 	// \note Below members are irrelevant if numPartitions == 1.
1823 	bool				isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
1824 	deUint32			partitionSeed;
1825 
NormalBlockParamstcu::astc::__anon1989e5c50111::NormalBlockParams1826 	NormalBlockParams (void)
1827 		: weightGridWidth			(-1)
1828 		, weightGridHeight			(-1)
1829 		, weightISEParams			(ISEMODE_LAST, -1)
1830 		, isDualPlane				(true)
1831 		, ccs						((deUint32)-1)
1832 		, numPartitions				(-1)
1833 		, isMultiPartSingleCemMode	(false)
1834 		, partitionSeed				((deUint32)-1)
1835 	{
1836 		colorEndpointModes[0] = 0;
1837 		colorEndpointModes[1] = 0;
1838 		colorEndpointModes[2] = 0;
1839 		colorEndpointModes[3] = 0;
1840 	}
1841 };
1842 
1843 struct NormalBlockISEInputs
1844 {
1845 	ISEInput weight;
1846 	ISEInput endpoint;
1847 
NormalBlockISEInputstcu::astc::__anon1989e5c50111::NormalBlockISEInputs1848 	NormalBlockISEInputs (void)
1849 		: weight	()
1850 		, endpoint	()
1851 	{
1852 	}
1853 };
1854 
computeNumWeights(const NormalBlockParams & params)1855 static inline int computeNumWeights (const NormalBlockParams& params)
1856 {
1857 	return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
1858 }
1859 
computeNumBitsForColorEndpoints(const NormalBlockParams & params)1860 static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
1861 {
1862 	const int numWeightBits			= computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
1863 	const int numConfigDataBits		= (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
1864 									  (params.isDualPlane ? 2 : 0);
1865 
1866 	return 128 - numWeightBits - numConfigDataBits;
1867 }
1868 
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions,bool isMultiPartSingleCemMode)1869 static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
1870 {
1871 	if (isMultiPartSingleCemMode)
1872 		return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
1873 	else
1874 	{
1875 		int result = 0;
1876 		for (int i = 0; i < numPartitions; i++)
1877 			result += computeNumColorEndpointValues(endpointModes[i]);
1878 		return result;
1879 	}
1880 }
1881 
isValidBlockParams(const NormalBlockParams & params,int blockWidth,int blockHeight)1882 static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
1883 {
1884 	const int numWeights				= computeNumWeights(params);
1885 	const int numWeightBits				= computeNumRequiredBits(params.weightISEParams, numWeights);
1886 	const int numColorEndpointValues	= computeNumColorEndpointValues(&params.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
1887 	const int numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(params);
1888 
1889 	return numWeights <= 64										&&
1890 		   de::inRange(numWeightBits, 24, 96)					&&
1891 		   params.weightGridWidth <= blockWidth					&&
1892 		   params.weightGridHeight <= blockHeight				&&
1893 		   !(params.numPartitions == 4 && params.isDualPlane)	&&
1894 		   numColorEndpointValues <= 18							&&
1895 		   numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
1896 }
1897 
1898 // Write bits 0 to 10 of an ASTC block.
writeBlockMode(AssignBlock128 & dst,const NormalBlockParams & blockParams)1899 static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
1900 {
1901 	const deUint32	d = blockParams.isDualPlane != 0;
1902 	// r and h initialized in switch below.
1903 	deUint32		r;
1904 	deUint32		h;
1905 	// a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
1906 	deUint32		a = (deUint32)-1;
1907 	deUint32		b = (deUint32)-1;
1908 	int				blockModeLayoutNdx;
1909 
1910 	// Find the values of r and h (ISE range).
1911 	switch (computeISERangeMax(blockParams.weightISEParams))
1912 	{
1913 		case 1:		r = 2; h = 0;	break;
1914 		case 2:		r = 3; h = 0;	break;
1915 		case 3:		r = 4; h = 0;	break;
1916 		case 4:		r = 5; h = 0;	break;
1917 		case 5:		r = 6; h = 0;	break;
1918 		case 7:		r = 7; h = 0;	break;
1919 
1920 		case 9:		r = 2; h = 1;	break;
1921 		case 11:	r = 3; h = 1;	break;
1922 		case 15:	r = 4; h = 1;	break;
1923 		case 19:	r = 5; h = 1;	break;
1924 		case 23:	r = 6; h = 1;	break;
1925 		case 31:	r = 7; h = 1;	break;
1926 
1927 		default:
1928 			DE_ASSERT(false);
1929 			r = (deUint32)-1;
1930 			h = (deUint32)-1;
1931 	}
1932 
1933 	// Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
1934 
1935 	{
1936 		enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
1937 
1938 		static const struct BlockModeLayout
1939 		{
1940 			int							aNumBits;
1941 			int							bNumBits;
1942 			BlockModeLayoutABVariable	gridWidthVariableTerm;
1943 			int							gridWidthConstantTerm;
1944 			BlockModeLayoutABVariable	gridHeightVariableTerm;
1945 			int							gridHeightConstantTerm;
1946 		} blockModeLayouts[] =
1947 		{
1948 			{ 2, 2,   B,  4,   A,  2},
1949 			{ 2, 2,   B,  8,   A,  2},
1950 			{ 2, 2,   A,  2,   B,  8},
1951 			{ 2, 1,   A,  2,   B,  6},
1952 			{ 2, 1,   B,  2,   A,  2},
1953 			{ 2, 0,   Z, 12,   A,  2},
1954 			{ 2, 0,   A,  2,   Z, 12},
1955 			{ 0, 0,   Z,  6,   Z, 10},
1956 			{ 0, 0,   Z, 10,   Z,  6},
1957 			{ 2, 2,   A,  6,   B,  6}
1958 		};
1959 
1960 		for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
1961 		{
1962 			const BlockModeLayout&	layout					= blockModeLayouts[blockModeLayoutNdx];
1963 			const int				aMax					= (1 << layout.aNumBits) - 1;
1964 			const int				bMax					= (1 << layout.bNumBits) - 1;
1965 			const int				variableOffsetsMax[3]	= { 0, aMax, bMax };
1966 			const int				widthMin				= layout.gridWidthConstantTerm;
1967 			const int				heightMin				= layout.gridHeightConstantTerm;
1968 			const int				widthMax				= widthMin  + variableOffsetsMax[layout.gridWidthVariableTerm];
1969 			const int				heightMax				= heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
1970 
1971 			DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
1972 
1973 			if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
1974 				de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
1975 			{
1976 				deUint32	dummy			= 0;
1977 				deUint32&	widthVariable	= layout.gridWidthVariableTerm == A  ? a : layout.gridWidthVariableTerm == B  ? b : dummy;
1978 				deUint32&	heightVariable	= layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
1979 
1980 				widthVariable	= blockParams.weightGridWidth  - layout.gridWidthConstantTerm;
1981 				heightVariable	= blockParams.weightGridHeight - layout.gridHeightConstantTerm;
1982 
1983 				break;
1984 			}
1985 		}
1986 	}
1987 
1988 	// Set block mode bits.
1989 
1990 	const deUint32 a0 = getBit(a, 0);
1991 	const deUint32 a1 = getBit(a, 1);
1992 	const deUint32 b0 = getBit(b, 0);
1993 	const deUint32 b1 = getBit(b, 1);
1994 	const deUint32 r0 = getBit(r, 0);
1995 	const deUint32 r1 = getBit(r, 1);
1996 	const deUint32 r2 = getBit(r, 2);
1997 
1998 #define SB(NDX, VAL) dst.setBit((NDX), (VAL))
1999 #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
2000 
2001 	switch (blockModeLayoutNdx)
2002 	{
2003 		case 0: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  0,  r2, r1);									break;
2004 		case 1: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 0,  1,  r2, r1);									break;
2005 		case 2: ASSIGN_BITS(d,  h,  b1, b0, a1, a0, r0, 1,  0,  r2, r1);									break;
2006 		case 3: ASSIGN_BITS(d,  h,   0,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
2007 		case 4: ASSIGN_BITS(d,  h,   1,  b, a1, a0, r0, 1,  1,  r2, r1);									break;
2008 		case 5: ASSIGN_BITS(d,  h,   0,  0, a1, a0, r0, r2, r1,  0,  0);									break;
2009 		case 6: ASSIGN_BITS(d,  h,   0,  1, a1, a0, r0, r2, r1,  0,  0);									break;
2010 		case 7: ASSIGN_BITS(d,  h,   1,  1,  0,  0, r0, r2, r1,  0,  0);									break;
2011 		case 8: ASSIGN_BITS(d,  h,   1,  1,  0,  1, r0, r2, r1,  0,  0);									break;
2012 		case 9: ASSIGN_BITS(b1, b0,  1,  0, a1, a0, r0, r2, r1,  0,  0); DE_ASSERT(d == 0 && h == 0);		break;
2013 		default:
2014 			DE_ASSERT(false);
2015 	}
2016 
2017 #undef ASSIGN_BITS
2018 #undef SB
2019 }
2020 
2021 // Write color endpoint mode data of an ASTC block.
writeColorEndpointModes(AssignBlock128 & dst,const deUint32 * colorEndpointModes,bool isMultiPartSingleCemMode,int numPartitions,int extraCemBitsStart)2022 static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
2023 {
2024 	if (numPartitions == 1)
2025 		dst.setBits(13, 16, colorEndpointModes[0]);
2026 	else
2027 	{
2028 		if (isMultiPartSingleCemMode)
2029 		{
2030 			dst.setBits(23, 24, 0);
2031 			dst.setBits(25, 28, colorEndpointModes[0]);
2032 		}
2033 		else
2034 		{
2035 			DE_ASSERT(numPartitions > 0);
2036 			const deUint32 minCem				= *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2037 			const deUint32 maxCem				= *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2038 			const deUint32 minCemClass			= minCem/4;
2039 			const deUint32 maxCemClass			= maxCem/4;
2040 			DE_ASSERT(maxCemClass - minCemClass <= 1);
2041 			DE_UNREF(minCemClass); // \note For non-debug builds.
2042 			const deUint32 highLevelSelector	= de::max(1u, maxCemClass);
2043 
2044 			dst.setBits(23, 24, highLevelSelector);
2045 
2046 			for (int partNdx = 0; partNdx < numPartitions; partNdx++)
2047 			{
2048 				const deUint32 c			= colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
2049 				const deUint32 m			= colorEndpointModes[partNdx] % 4;
2050 				const deUint32 lowMBit0Ndx	= numPartitions + 2*partNdx;
2051 				const deUint32 lowMBit1Ndx	= numPartitions + 2*partNdx + 1;
2052 				dst.setBit(25 + partNdx, c);
2053 				dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
2054 				dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
2055 			}
2056 		}
2057 	}
2058 }
2059 
encodeISETritBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2060 static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2061 {
2062 	// tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
2063 	static const deUint32 tritBlockTValue[3][3][3][3][3] =
2064 	{
2065 		{
2066 			{{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
2067 			{{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
2068 			{{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
2069 		},
2070 		{
2071 			{{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
2072 			{{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
2073 			{{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
2074 		},
2075 		{
2076 			{{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
2077 			{{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
2078 			{{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
2079 		}
2080 	};
2081 
2082 	DE_ASSERT(de::inRange(numValues, 1, 5));
2083 
2084 	deUint32 tritParts[5];
2085 	deUint32 bitParts[5];
2086 
2087 	for (int i = 0; i < 5; i++)
2088 	{
2089 		if (i < numValues)
2090 		{
2091 			if (fromExplicitInputBlock)
2092 			{
2093 				bitParts[i]		= blockInput.bitValues[i];
2094 				tritParts[i]	= -1; // \note Won't be used, but silences warning.
2095 			}
2096 			else
2097 			{
2098 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2099 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2100 				tritParts[i]	= nonBlockInput[i] >> numBits;
2101 			}
2102 		}
2103 		else
2104 		{
2105 			bitParts[i]		= 0;
2106 			tritParts[i]	= 0;
2107 		}
2108 	}
2109 
2110 	const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
2111 																					  [tritParts[1]]
2112 																					  [tritParts[2]]
2113 																					  [tritParts[3]]
2114 																					  [tritParts[4]];
2115 
2116 	dst.setNext(numBits,	bitParts[0]);
2117 	dst.setNext(2,			getBits(T, 0, 1));
2118 	dst.setNext(numBits,	bitParts[1]);
2119 	dst.setNext(2,			getBits(T, 2, 3));
2120 	dst.setNext(numBits,	bitParts[2]);
2121 	dst.setNext(1,			getBit(T, 4));
2122 	dst.setNext(numBits,	bitParts[3]);
2123 	dst.setNext(2,			getBits(T, 5, 6));
2124 	dst.setNext(numBits,	bitParts[4]);
2125 	dst.setNext(1,			getBit(T, 7));
2126 }
2127 
encodeISEQuintBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2128 static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2129 {
2130 	// quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
2131 	static const deUint32 quintBlockQValue[5][5][5] =
2132 	{
2133 		{{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
2134 		{{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
2135 		{{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
2136 		{{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
2137 		{{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
2138 	};
2139 
2140 	DE_ASSERT(de::inRange(numValues, 1, 3));
2141 
2142 	deUint32 quintParts[3];
2143 	deUint32 bitParts[3];
2144 
2145 	for (int i = 0; i < 3; i++)
2146 	{
2147 		if (i < numValues)
2148 		{
2149 			if (fromExplicitInputBlock)
2150 			{
2151 				bitParts[i]		= blockInput.bitValues[i];
2152 				quintParts[i]	= -1; // \note Won't be used, but silences warning.
2153 			}
2154 			else
2155 			{
2156 				// \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2157 				bitParts[i]		= numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2158 				quintParts[i]	= nonBlockInput[i] >> numBits;
2159 			}
2160 		}
2161 		else
2162 		{
2163 			bitParts[i]		= 0;
2164 			quintParts[i]	= 0;
2165 		}
2166 	}
2167 
2168 	const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
2169 																					   [quintParts[1]]
2170 																					   [quintParts[2]];
2171 
2172 	dst.setNext(numBits,	bitParts[0]);
2173 	dst.setNext(3,			getBits(Q, 0, 2));
2174 	dst.setNext(numBits,	bitParts[1]);
2175 	dst.setNext(2,			getBits(Q, 3, 4));
2176 	dst.setNext(numBits,	bitParts[2]);
2177 	dst.setNext(2,			getBits(Q, 5, 6));
2178 }
2179 
encodeISEBitBlock(BitAssignAccessStream & dst,int numBits,deUint32 value)2180 static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
2181 {
2182 	DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
2183 	dst.setNext(numBits, value);
2184 }
2185 
encodeISE(BitAssignAccessStream & dst,const ISEParams & params,const ISEInput & input,int numValues)2186 static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
2187 {
2188 	if (params.mode == ISEMODE_TRIT)
2189 	{
2190 		const int numBlocks = deDivRoundUp32(numValues, 5);
2191 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2192 		{
2193 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
2194 			encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
2195 							   input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2196 							   input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[5*blockNdx],
2197 							   numValuesInBlock);
2198 		}
2199 	}
2200 	else if (params.mode == ISEMODE_QUINT)
2201 	{
2202 		const int numBlocks = deDivRoundUp32(numValues, 3);
2203 		for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2204 		{
2205 			const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
2206 			encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
2207 								input.isGivenInBlockForm ? input.value.block[blockNdx]	: ISEInput::Block(),
2208 								input.isGivenInBlockForm ? DE_NULL						: &input.value.plain[3*blockNdx],
2209 								numValuesInBlock);
2210 		}
2211 	}
2212 	else
2213 	{
2214 		DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
2215 		for (int i = 0; i < numValues; i++)
2216 			encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
2217 	}
2218 }
2219 
writeWeightData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numWeights)2220 static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
2221 {
2222 	const int				numWeightBits	= computeNumRequiredBits(iseParams, numWeights);
2223 	BitAssignAccessStream	access			(dst, 127, numWeightBits, false);
2224 	encodeISE(access, iseParams, input, numWeights);
2225 }
2226 
writeColorEndpointData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numEndpoints,int numBitsForColorEndpoints,int colorEndpointDataStartNdx)2227 static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
2228 {
2229 	BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
2230 	encodeISE(access, iseParams, input, numEndpoints);
2231 }
2232 
generateNormalBlock(const NormalBlockParams & blockParams,int blockWidth,int blockHeight,const NormalBlockISEInputs & iseInputs)2233 static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
2234 {
2235 	DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
2236 	DE_UNREF(blockWidth);	// \note For non-debug builds.
2237 	DE_UNREF(blockHeight);	// \note For non-debug builds.
2238 
2239 	AssignBlock128	block;
2240 	const int		numWeights		= computeNumWeights(blockParams);
2241 	const int		numWeightBits	= computeNumRequiredBits(blockParams.weightISEParams, numWeights);
2242 
2243 	writeBlockMode(block, blockParams);
2244 
2245 	block.setBits(11, 12, blockParams.numPartitions - 1);
2246 	if (blockParams.numPartitions > 1)
2247 		block.setBits(13, 22, blockParams.partitionSeed);
2248 
2249 	{
2250 		const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode		? -1
2251 															: blockParams.numPartitions == 4											? 7
2252 															: blockParams.numPartitions == 3											? 4
2253 															: blockParams.numPartitions == 2											? 1
2254 															: 0);
2255 
2256 		writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
2257 
2258 		if (blockParams.isDualPlane)
2259 			block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
2260 	}
2261 
2262 	writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
2263 
2264 	{
2265 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2266 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2267 		const int			colorEndpointDataStartNdx	= blockParams.numPartitions == 1 ? 17 : 29;
2268 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2269 
2270 		writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
2271 	}
2272 
2273 	return block;
2274 }
2275 
2276 // Generate default ISE inputs for weight and endpoint data - gradient-ish values.
generateDefaultISEInputs(const NormalBlockParams & blockParams)2277 static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
2278 {
2279 	NormalBlockISEInputs result;
2280 
2281 	{
2282 		result.weight.isGivenInBlockForm = false;
2283 
2284 		const int numWeights		= computeNumWeights(blockParams);
2285 		const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2286 
2287 		if (blockParams.isDualPlane)
2288 		{
2289 			for (int i = 0; i < numWeights; i += 2)
2290 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2291 
2292 			for (int i = 1; i < numWeights; i += 2)
2293 				result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2294 		}
2295 		else
2296 		{
2297 			for (int i = 0; i < numWeights; i++)
2298 				result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2299 		}
2300 	}
2301 
2302 	{
2303 		result.endpoint.isGivenInBlockForm = false;
2304 
2305 		const int			numColorEndpointValues		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2306 		const int			numBitsForColorEndpoints	= computeNumBitsForColorEndpoints(blockParams);
2307 		const ISEParams&	colorEndpointISEParams		= computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2308 		const int			colorEndpointRangeMax		= computeISERangeMax(colorEndpointISEParams);
2309 
2310 		for (int i = 0; i < numColorEndpointValues; i++)
2311 			result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
2312 	}
2313 
2314 	return result;
2315 }
2316 
2317 static const ISEParams s_weightISEParamsCandidates[] =
2318 {
2319 	ISEParams(ISEMODE_PLAIN_BIT,	1),
2320 	ISEParams(ISEMODE_TRIT,			0),
2321 	ISEParams(ISEMODE_PLAIN_BIT,	2),
2322 	ISEParams(ISEMODE_QUINT,		0),
2323 	ISEParams(ISEMODE_TRIT,			1),
2324 	ISEParams(ISEMODE_PLAIN_BIT,	3),
2325 	ISEParams(ISEMODE_QUINT,		1),
2326 	ISEParams(ISEMODE_TRIT,			2),
2327 	ISEParams(ISEMODE_PLAIN_BIT,	4),
2328 	ISEParams(ISEMODE_QUINT,		2),
2329 	ISEParams(ISEMODE_TRIT,			3),
2330 	ISEParams(ISEMODE_PLAIN_BIT,	5)
2331 };
2332 
generateRandomBlock(deUint8 * dst,const IVec3 & blockSize,de::Random & rnd)2333 void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
2334 {
2335 	DE_ASSERT(blockSize.z() == 1);
2336 
2337 	if (rnd.getFloat() < 0.1f)
2338 	{
2339 		// Void extent block.
2340 		const bool		isVoidExtentHDR		= rnd.getBool();
2341 		const deUint16	r					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2342 		const deUint16	g					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2343 		const deUint16	b					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2344 		const deUint16	a					= isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2345 		generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
2346 	}
2347 	else
2348 	{
2349 		// Not void extent block.
2350 
2351 		// Generate block params.
2352 
2353 		NormalBlockParams blockParams;
2354 
2355 		do
2356 		{
2357 			blockParams.weightGridWidth				= rnd.getInt(2, blockSize.x());
2358 			blockParams.weightGridHeight			= rnd.getInt(2, blockSize.y());
2359 			blockParams.weightISEParams				= s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
2360 			blockParams.numPartitions				= rnd.getInt(1, 4);
2361 			blockParams.isMultiPartSingleCemMode	= rnd.getFloat() < 0.25f;
2362 			blockParams.isDualPlane					= blockParams.numPartitions != 4 && rnd.getBool();
2363 			blockParams.ccs							= rnd.getInt(0, 3);
2364 			blockParams.partitionSeed				= rnd.getInt(0, 1023);
2365 
2366 			blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
2367 
2368 			{
2369 				const int cemDiff = blockParams.isMultiPartSingleCemMode		? 0
2370 									: blockParams.colorEndpointModes[0] == 0	? 1
2371 									: blockParams.colorEndpointModes[0] == 15	? -1
2372 									: rnd.getBool()								? 1 : -1;
2373 
2374 				for (int i = 1; i < blockParams.numPartitions; i++)
2375 					blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
2376 			}
2377 		} while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
2378 
2379 		// Generate ISE inputs for both weight and endpoint data.
2380 
2381 		NormalBlockISEInputs iseInputs;
2382 
2383 		for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
2384 		{
2385 			const bool			setWeights	= weightOrEndpoints == 0;
2386 			const int			numValues	= setWeights ? computeNumWeights(blockParams) :
2387 												computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2388 			const ISEParams		iseParams	= setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
2389 			ISEInput&			iseInput	= setWeights ? iseInputs.weight : iseInputs.endpoint;
2390 
2391 			iseInput.isGivenInBlockForm = rnd.getBool();
2392 
2393 			if (iseInput.isGivenInBlockForm)
2394 			{
2395 				const int numValuesPerISEBlock	= iseParams.mode == ISEMODE_TRIT	? 5
2396 												: iseParams.mode == ISEMODE_QUINT	? 3
2397 												:									  1;
2398 				const int iseBitMax				= (1 << iseParams.numBits) - 1;
2399 				const int numISEBlocks			= deDivRoundUp32(numValues, numValuesPerISEBlock);
2400 
2401 				for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
2402 				{
2403 					iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
2404 					for (int i = 0; i < numValuesPerISEBlock; i++)
2405 						iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
2406 				}
2407 			}
2408 			else
2409 			{
2410 				const int rangeMax = computeISERangeMax(iseParams);
2411 
2412 				for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
2413 					iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
2414 			}
2415 		}
2416 
2417 		generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
2418 	}
2419 }
2420 
2421 } // anonymous
2422 
2423 // Generate block data for a given BlockTestType and format.
generateBlockCaseTestData(vector<deUint8> & dst,CompressedTexFormat format,BlockTestType testType)2424 void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
2425 {
2426 	DE_ASSERT(isAstcFormat(format));
2427 	DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
2428 
2429 	const IVec3 blockSize = getBlockPixelSize(format);
2430 	DE_ASSERT(blockSize.z() == 1);
2431 
2432 	switch (testType)
2433 	{
2434 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
2435 		// Generate a gradient-like set of LDR void-extent blocks.
2436 		{
2437 			const int			numBlocks	= 1<<13;
2438 			const deUint32		numValues	= 1<<16;
2439 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2440 
2441 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2442 			{
2443 				const deUint32 baseValue	= blockNdx*(numValues-1) / (numBlocks-1);
2444 				const deUint16 r			= (deUint16)((baseValue + numValues*0/4) % numValues);
2445 				const deUint16 g			= (deUint16)((baseValue + numValues*1/4) % numValues);
2446 				const deUint16 b			= (deUint16)((baseValue + numValues*2/4) % numValues);
2447 				const deUint16 a			= (deUint16)((baseValue + numValues*3/4) % numValues);
2448 				AssignBlock128 block;
2449 
2450 				generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
2451 			}
2452 
2453 			break;
2454 		}
2455 
2456 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
2457 		// Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
2458 		{
2459 			const float		minValue	= -65504.0f;
2460 			const float		maxValue	= +65504.0f;
2461 			const int		numBlocks	= 1<<13;
2462 			dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2463 
2464 			for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2465 			{
2466 				const int			rNdx	= (blockNdx + numBlocks*0/4) % numBlocks;
2467 				const int			gNdx	= (blockNdx + numBlocks*1/4) % numBlocks;
2468 				const int			bNdx	= (blockNdx + numBlocks*2/4) % numBlocks;
2469 				const int			aNdx	= (blockNdx + numBlocks*3/4) % numBlocks;
2470 				const deFloat16		r		= deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
2471 				const deFloat16		g		= deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
2472 				const deFloat16		b		= deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
2473 				const deFloat16		a		= deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
2474 
2475 				generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
2476 			}
2477 
2478 			break;
2479 		}
2480 
2481 		case BLOCK_TEST_TYPE_WEIGHT_GRID:
2482 		// Generate different combinations of plane count, weight ISE params, and grid size.
2483 		{
2484 			for (int isDualPlane = 0;		isDualPlane <= 1;												isDualPlane++)
2485 			for (int iseParamsNdx = 0;		iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2486 			for (int weightGridWidth = 2;	weightGridWidth <= 12;											weightGridWidth++)
2487 			for (int weightGridHeight = 2;	weightGridHeight <= 12;											weightGridHeight++)
2488 			{
2489 				NormalBlockParams		blockParams;
2490 				NormalBlockISEInputs	iseInputs;
2491 
2492 				blockParams.weightGridWidth			= weightGridWidth;
2493 				blockParams.weightGridHeight		= weightGridHeight;
2494 				blockParams.isDualPlane				= isDualPlane != 0;
2495 				blockParams.weightISEParams			= s_weightISEParamsCandidates[iseParamsNdx];
2496 				blockParams.ccs						= 0;
2497 				blockParams.numPartitions			= 1;
2498 				blockParams.colorEndpointModes[0]	= 0;
2499 
2500 				if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2501 					generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2502 			}
2503 
2504 			break;
2505 		}
2506 
2507 		case BLOCK_TEST_TYPE_WEIGHT_ISE:
2508 		// For each weight ISE param set, generate blocks that cover:
2509 		// - each single value of the ISE's range, at each position inside an ISE block
2510 		// - for trit and quint ISEs, each single T or Q value of an ISE block
2511 		{
2512 			for (int iseParamsNdx = 0;	iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	iseParamsNdx++)
2513 			{
2514 				const ISEParams&	iseParams = s_weightISEParamsCandidates[iseParamsNdx];
2515 				NormalBlockParams	blockParams;
2516 
2517 				blockParams.weightGridWidth			= 4;
2518 				blockParams.weightGridHeight		= 4;
2519 				blockParams.weightISEParams			= iseParams;
2520 				blockParams.numPartitions			= 1;
2521 				blockParams.isDualPlane				= blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
2522 				blockParams.ccs						= 0;
2523 				blockParams.colorEndpointModes[0]	= 0;
2524 
2525 				while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2526 				{
2527 					blockParams.weightGridWidth--;
2528 					blockParams.weightGridHeight--;
2529 				}
2530 
2531 				const int numValuesInISEBlock	= iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
2532 				const int numWeights			= computeNumWeights(blockParams);
2533 
2534 				{
2535 					const int				numWeightValues		= (int)computeISERangeMax(iseParams) + 1;
2536 					const int				numBlocks			= deDivRoundUp32(numWeightValues, numWeights);
2537 					NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2538 					iseInputs.weight.isGivenInBlockForm = false;
2539 
2540 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2541 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2542 					{
2543 						for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2544 							iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
2545 
2546 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2547 					}
2548 				}
2549 
2550 				if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2551 				{
2552 					NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2553 					iseInputs.weight.isGivenInBlockForm = true;
2554 
2555 					const int numTQValues			= 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
2556 					const int numISEBlocksPerBlock	= deDivRoundUp32(numWeights, numValuesInISEBlock);
2557 					const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2558 
2559 					for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2560 					for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2561 					{
2562 						for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2563 						{
2564 							for (int i = 0; i < numValuesInISEBlock; i++)
2565 								iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
2566 							iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2567 						}
2568 
2569 						generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2570 					}
2571 				}
2572 			}
2573 
2574 			break;
2575 		}
2576 
2577 		case BLOCK_TEST_TYPE_CEMS:
2578 		// For each plane count & partition count combination, generate all color endpoint mode combinations.
2579 		{
2580 			for (int isDualPlane = 0;		isDualPlane <= 1;								isDualPlane++)
2581 			for (int numPartitions = 1;		numPartitions <= (isDualPlane != 0 ? 3 : 4);	numPartitions++)
2582 			{
2583 				// Multi-partition, single-CEM mode.
2584 				if (numPartitions > 1)
2585 				{
2586 					for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
2587 					{
2588 						NormalBlockParams blockParams;
2589 						blockParams.weightGridWidth				= 4;
2590 						blockParams.weightGridHeight			= 4;
2591 						blockParams.isDualPlane					= isDualPlane != 0;
2592 						blockParams.ccs							= 0;
2593 						blockParams.numPartitions				= numPartitions;
2594 						blockParams.isMultiPartSingleCemMode	= true;
2595 						blockParams.colorEndpointModes[0]		= singleCem;
2596 						blockParams.partitionSeed				= 634;
2597 
2598 						for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2599 						{
2600 							blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2601 							if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2602 							{
2603 								generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2604 								break;
2605 							}
2606 						}
2607 					}
2608 				}
2609 
2610 				// Separate-CEM mode.
2611 				for (deUint32 cem0 = 0; cem0 < 16; cem0++)
2612 				for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
2613 				for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
2614 				for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
2615 				{
2616 					NormalBlockParams blockParams;
2617 					blockParams.weightGridWidth				= 4;
2618 					blockParams.weightGridHeight			= 4;
2619 					blockParams.isDualPlane					= isDualPlane != 0;
2620 					blockParams.ccs							= 0;
2621 					blockParams.numPartitions				= numPartitions;
2622 					blockParams.isMultiPartSingleCemMode	= false;
2623 					blockParams.colorEndpointModes[0]		= cem0;
2624 					blockParams.colorEndpointModes[1]		= cem1;
2625 					blockParams.colorEndpointModes[2]		= cem2;
2626 					blockParams.colorEndpointModes[3]		= cem3;
2627 					blockParams.partitionSeed				= 634;
2628 
2629 					{
2630 						const deUint32 minCem		= *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2631 						const deUint32 maxCem		= *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2632 						const deUint32 minCemClass	= minCem/4;
2633 						const deUint32 maxCemClass	= maxCem/4;
2634 
2635 						if (maxCemClass - minCemClass > 1)
2636 							continue;
2637 					}
2638 
2639 					for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2640 					{
2641 						blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2642 						if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2643 						{
2644 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2645 							break;
2646 						}
2647 					}
2648 				}
2649 			}
2650 
2651 			break;
2652 		}
2653 
2654 		case BLOCK_TEST_TYPE_PARTITION_SEED:
2655 		// Test all partition seeds ("partition pattern indices").
2656 		{
2657 			for (int		numPartitions = 2;	numPartitions <= 4;		numPartitions++)
2658 			for (deUint32	partitionSeed = 0;	partitionSeed < 1<<10;	partitionSeed++)
2659 			{
2660 				NormalBlockParams blockParams;
2661 				blockParams.weightGridWidth				= 4;
2662 				blockParams.weightGridHeight			= 4;
2663 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2664 				blockParams.isDualPlane					= false;
2665 				blockParams.numPartitions				= numPartitions;
2666 				blockParams.isMultiPartSingleCemMode	= true;
2667 				blockParams.colorEndpointModes[0]		= 0;
2668 				blockParams.partitionSeed				= partitionSeed;
2669 
2670 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2671 			}
2672 
2673 			break;
2674 		}
2675 
2676 		// \note Fall-through.
2677 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
2678 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
2679 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
2680 		// For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
2681 		// \note Separate modes for HDR and mode 15 due to different color scales and biases.
2682 		{
2683 			for (deUint32 cem = 0; cem < 16; cem++)
2684 			{
2685 				const bool isHDRCem = cem == 2		||
2686 									  cem == 3		||
2687 									  cem == 7		||
2688 									  cem == 11		||
2689 									  cem == 14		||
2690 									  cem == 15;
2691 
2692 				if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR			&& isHDRCem)					||
2693 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15		&& (!isHDRCem || cem == 15))	||
2694 					(testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15		&& cem != 15))
2695 					continue;
2696 
2697 				NormalBlockParams blockParams;
2698 				blockParams.weightGridWidth			= 3;
2699 				blockParams.weightGridHeight		= 4;
2700 				blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 2);
2701 				blockParams.isDualPlane				= false;
2702 				blockParams.numPartitions			= 1;
2703 				blockParams.colorEndpointModes[0]	= cem;
2704 
2705 				{
2706 					const int			numBitsForEndpoints		= computeNumBitsForColorEndpoints(blockParams);
2707 					const int			numEndpointParts		= computeNumColorEndpointValues(cem);
2708 					const ISEParams		endpointISE				= computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
2709 					const int			endpointISERangeMax		= computeISERangeMax(endpointISE);
2710 
2711 					for (int endpointPartNdx0 = 0;						endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
2712 					for (int endpointPartNdx1 = endpointPartNdx0+1;		endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
2713 					{
2714 						NormalBlockISEInputs	iseInputs			= generateDefaultISEInputs(blockParams);
2715 						const int				numEndpointValues	= de::min(10, endpointISERangeMax+1);
2716 
2717 						for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
2718 						for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
2719 						{
2720 							const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
2721 							const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
2722 
2723 							iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
2724 							iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
2725 
2726 							generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2727 						}
2728 					}
2729 				}
2730 			}
2731 
2732 			break;
2733 		}
2734 
2735 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:
2736 		// Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
2737 		{
2738 			static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
2739 
2740 			for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
2741 			{
2742 				bool validCaseGenerated = false;
2743 
2744 				for (int numPartitions = 1;			!validCaseGenerated && numPartitions <= 4;														numPartitions++)
2745 				for (int isDual = 0;				!validCaseGenerated && isDual <= 1;																isDual++)
2746 				for (int weightISEParamsNdx = 0;	!validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates);	weightISEParamsNdx++)
2747 				for (int weightGridWidth = 2;		!validCaseGenerated && weightGridWidth <= 12;													weightGridWidth++)
2748 				for (int weightGridHeight = 2;		!validCaseGenerated && weightGridHeight <= 12;													weightGridHeight++)
2749 				{
2750 					NormalBlockParams blockParams;
2751 					blockParams.weightGridWidth				= weightGridWidth;
2752 					blockParams.weightGridHeight			= weightGridHeight;
2753 					blockParams.weightISEParams				= s_weightISEParamsCandidates[weightISEParamsNdx];
2754 					blockParams.isDualPlane					= isDual != 0;
2755 					blockParams.ccs							= 0;
2756 					blockParams.numPartitions				= numPartitions;
2757 					blockParams.isMultiPartSingleCemMode	= true;
2758 					blockParams.colorEndpointModes[0]		= 12;
2759 					blockParams.partitionSeed				= 634;
2760 
2761 					if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2762 					{
2763 						const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
2764 																						 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
2765 
2766 						if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
2767 						{
2768 							validCaseGenerated = true;
2769 
2770 							const int numColorEndpoints		= computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
2771 							const int numValuesInISEBlock	= endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
2772 
2773 							{
2774 								const int				numColorEndpointValues	= (int)computeISERangeMax(endpointISEParams) + 1;
2775 								const int				numBlocks				= deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
2776 								NormalBlockISEInputs	iseInputs				= generateDefaultISEInputs(blockParams);
2777 								iseInputs.endpoint.isGivenInBlockForm = false;
2778 
2779 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2780 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2781 								{
2782 									for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
2783 										iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
2784 
2785 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2786 								}
2787 							}
2788 
2789 							if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
2790 							{
2791 								NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2792 								iseInputs.endpoint.isGivenInBlockForm = true;
2793 
2794 								const int numTQValues			= 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
2795 								const int numISEBlocksPerBlock	= deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
2796 								const int numBlocks				= deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2797 
2798 								for (int offset = 0;	offset < numValuesInISEBlock;	offset++)
2799 								for (int blockNdx = 0;	blockNdx < numBlocks;			blockNdx++)
2800 								{
2801 									for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2802 									{
2803 										for (int i = 0; i < numValuesInISEBlock; i++)
2804 											iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
2805 										iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2806 									}
2807 
2808 									generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2809 								}
2810 							}
2811 						}
2812 					}
2813 				}
2814 
2815 				DE_ASSERT(validCaseGenerated);
2816 			}
2817 
2818 			break;
2819 		}
2820 
2821 		case BLOCK_TEST_TYPE_CCS:
2822 		// For all partition counts, test all values of the CCS (color component selector).
2823 		{
2824 			for (int		numPartitions = 1;		numPartitions <= 3;		numPartitions++)
2825 			for (deUint32	ccs = 0;				ccs < 4;				ccs++)
2826 			{
2827 				NormalBlockParams blockParams;
2828 				blockParams.weightGridWidth				= 3;
2829 				blockParams.weightGridHeight			= 3;
2830 				blockParams.weightISEParams				= ISEParams(ISEMODE_PLAIN_BIT, 2);
2831 				blockParams.isDualPlane					= true;
2832 				blockParams.ccs							= ccs;
2833 				blockParams.numPartitions				= numPartitions;
2834 				blockParams.isMultiPartSingleCemMode	= true;
2835 				blockParams.colorEndpointModes[0]		= 8;
2836 				blockParams.partitionSeed				= 634;
2837 
2838 				generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2839 			}
2840 
2841 			break;
2842 		}
2843 
2844 		case BLOCK_TEST_TYPE_RANDOM:
2845 		// Generate a number of random (including invalid) blocks.
2846 		{
2847 			const int		numBlocks	= 16384;
2848 			const deUint32	seed		= 1;
2849 
2850 			dst.resize(numBlocks*BLOCK_SIZE_BYTES);
2851 
2852 			generateRandomBlocks(&dst[0], numBlocks, format, seed);
2853 
2854 			break;
2855 		}
2856 
2857 		default:
2858 			DE_ASSERT(false);
2859 	}
2860 }
2861 
generateRandomBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,deUint32 seed)2862 void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
2863 {
2864 	const IVec3		blockSize			= getBlockPixelSize(format);
2865 	de::Random		rnd					(seed);
2866 	size_t			numBlocksGenerated	= 0;
2867 
2868 	DE_ASSERT(isAstcFormat(format));
2869 	DE_ASSERT(blockSize.z() == 1);
2870 
2871 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2872 	{
2873 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2874 
2875 		generateRandomBlock(curBlockPtr, blockSize, rnd);
2876 	}
2877 }
2878 
generateRandomValidBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,TexDecompressionParams::AstcMode mode,deUint32 seed)2879 void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
2880 {
2881 	const IVec3		blockSize			= getBlockPixelSize(format);
2882 	de::Random		rnd					(seed);
2883 	size_t			numBlocksGenerated	= 0;
2884 
2885 	DE_ASSERT(isAstcFormat(format));
2886 	DE_ASSERT(blockSize.z() == 1);
2887 
2888 	for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2889 	{
2890 		deUint8* const	curBlockPtr		= dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2891 
2892 		do
2893 		{
2894 			generateRandomBlock(curBlockPtr, blockSize, rnd);
2895 		} while (!isValidBlock(curBlockPtr, format, mode));
2896 	}
2897 }
2898 
2899 // Generate a number of trivial dummy blocks to fill unneeded space in a texture.
generateDummyVoidExtentBlocks(deUint8 * dst,size_t numBlocks)2900 void generateDummyVoidExtentBlocks (deUint8* dst, size_t numBlocks)
2901 {
2902 	AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
2903 	for (size_t ndx = 0; ndx < numBlocks; ndx++)
2904 		block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
2905 }
2906 
generateDummyNormalBlocks(deUint8 * dst,size_t numBlocks,int blockWidth,int blockHeight)2907 void generateDummyNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
2908 {
2909 	NormalBlockParams blockParams;
2910 
2911 	blockParams.weightGridWidth			= 3;
2912 	blockParams.weightGridHeight		= 3;
2913 	blockParams.weightISEParams			= ISEParams(ISEMODE_PLAIN_BIT, 5);
2914 	blockParams.isDualPlane				= false;
2915 	blockParams.numPartitions			= 1;
2916 	blockParams.colorEndpointModes[0]	= 8;
2917 
2918 	NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2919 	iseInputs.weight.isGivenInBlockForm = false;
2920 
2921 	const int numWeights		= computeNumWeights(blockParams);
2922 	const int weightRangeMax	= computeISERangeMax(blockParams.weightISEParams);
2923 
2924 	for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2925 	{
2926 		for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2927 			iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
2928 
2929 		generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
2930 	}
2931 }
2932 
isValidBlock(const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2933 bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2934 {
2935 	const tcu::IVec3		blockPixelSize	= getBlockPixelSize(format);
2936 	const bool				isSRGB			= isAstcSRGBFormat(format);
2937 	const bool				isLDR			= isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
2938 
2939 	// sRGB is not supported in HDR mode
2940 	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB));
2941 
2942 	union
2943 	{
2944 		deUint8		sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2945 		float		linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2946 	} tmpBuffer;
2947 	const Block128			blockData		(data);
2948 	const DecompressResult	result			= decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
2949 															  blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
2950 
2951 	return result == DECOMPRESS_RESULT_VALID_BLOCK;
2952 }
2953 
decompress(const PixelBufferAccess & dst,const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2954 void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2955 {
2956 	const bool			isSRGBFormat	= isAstcSRGBFormat(format);
2957 
2958 #if defined(DE_DEBUG)
2959 	const tcu::IVec3	blockPixelSize	= getBlockPixelSize(format);
2960 
2961 	DE_ASSERT(dst.getWidth()	== blockPixelSize.x() &&
2962 			  dst.getHeight()	== blockPixelSize.y() &&
2963 			  dst.getDepth()	== blockPixelSize.z());
2964 	DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
2965 #endif
2966 
2967 	// sRGB is not supported in HDR mode
2968 	DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat));
2969 
2970 	decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
2971 }
2972 
getBlockTestTypeName(BlockTestType testType)2973 const char* getBlockTestTypeName (BlockTestType testType)
2974 {
2975 	switch (testType)
2976 	{
2977 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "void_extent_ldr";
2978 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "void_extent_hdr";
2979 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "weight_grid";
2980 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "weight_ise";
2981 		case BLOCK_TEST_TYPE_CEMS:						return "color_endpoint_modes";
2982 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "partition_pattern_index";
2983 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "endpoint_value_ldr";
2984 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "endpoint_value_hdr_cem_not_15";
2985 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "endpoint_value_hdr_cem_15";
2986 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "endpoint_ise";
2987 		case BLOCK_TEST_TYPE_CCS:						return "color_component_selector";
2988 		case BLOCK_TEST_TYPE_RANDOM:					return "random";
2989 		default:
2990 			DE_ASSERT(false);
2991 			return DE_NULL;
2992 	}
2993 }
2994 
getBlockTestTypeDescription(BlockTestType testType)2995 const char* getBlockTestTypeDescription (BlockTestType testType)
2996 {
2997 	switch (testType)
2998 	{
2999 		case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:			return "Test void extent block, LDR mode";
3000 		case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return "Test void extent block, HDR mode";
3001 		case BLOCK_TEST_TYPE_WEIGHT_GRID:				return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
3002 		case BLOCK_TEST_TYPE_WEIGHT_ISE:				return "Test different integer sequence encoding block values for weight grid";
3003 		case BLOCK_TEST_TYPE_CEMS:						return "Test different color endpoint mode combinations, combined with different plane and partition counts";
3004 		case BLOCK_TEST_TYPE_PARTITION_SEED:			return "Test different partition pattern indices";
3005 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:		return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
3006 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
3007 		case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
3008 		case BLOCK_TEST_TYPE_ENDPOINT_ISE:				return "Test different integer sequence encoding block values for color endpoints";
3009 		case BLOCK_TEST_TYPE_CCS:						return "Test color component selector, for different partition counts";
3010 		case BLOCK_TEST_TYPE_RANDOM:					return "Random block test";
3011 		default:
3012 			DE_ASSERT(false);
3013 			return DE_NULL;
3014 	}
3015 }
3016 
isBlockTestTypeHDROnly(BlockTestType testType)3017 bool isBlockTestTypeHDROnly (BlockTestType testType)
3018 {
3019 	return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR			||
3020 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15	||
3021 		   testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
3022 }
3023 
getBlockTestTypeColorScale(BlockTestType testType)3024 Vec4 getBlockTestTypeColorScale (BlockTestType testType)
3025 {
3026 	switch (testType)
3027 	{
3028 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:			return Vec4(0.5f/65504.0f);
3029 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:	return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
3030 		case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:		return Vec4(1.0f/65504.0f);
3031 		default:													return Vec4(1.0f);
3032 	}
3033 }
3034 
getBlockTestTypeColorBias(BlockTestType testType)3035 Vec4 getBlockTestTypeColorBias (BlockTestType testType)
3036 {
3037 	switch (testType)
3038 	{
3039 		case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR:	return Vec4(0.5f);
3040 		default:											return Vec4(0.0f);
3041 	}
3042 }
3043 
3044 } // astc
3045 } // tcu
3046