1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_CORE_GRAPH_COSTMODEL_H_
17 #define TENSORFLOW_CORE_GRAPH_COSTMODEL_H_
18 
19 #include <unordered_map>
20 #include <vector>
21 
22 #include "tensorflow/core/framework/cost_graph.pb.h"
23 #include "tensorflow/core/framework/step_stats.pb.h"
24 #include "tensorflow/core/framework/tensor_shape.pb.h"
25 #include "tensorflow/core/graph/graph.h"
26 #include "tensorflow/core/graph/types.h"
27 #include "tensorflow/core/lib/core/stringpiece.h"
28 #include "tensorflow/core/lib/gtl/array_slice.h"
29 #include "tensorflow/core/platform/macros.h"
30 #include "tensorflow/core/platform/protobuf.h"
31 
32 namespace tensorflow {
33 typedef std::unordered_map<StringPiece, int32, StringPieceHasher>
34     NodeNameToCostIdMap;
35 
36 class StepStats;
37 
38 // CostModel keeps track of the following runtime statistics for nodes
39 // of a single Graph:
40 //    * The total number of times a node has executed.
41 //    * The accumulated execution time (in microseconds) of a node.
42 //    * The accumulated size (in bytes) of each node's output.
43 //
44 // This class is NOT thread-safe.
45 class CostModel {
46  public:
47   // If "global" is true, maintains costs based on Node::cost_id, otherwise
48   // maintains costs based on Node::id.
CostModel(bool is_global)49   explicit CostModel(bool is_global) : is_global_(is_global) {
50     unknown_shape_.set_unknown_rank(true);
51   }
52 
53   // Assigns min_count_ as a function of the median count for a Node.
54   // This value is then used for suppressing the time/size costs of
55   // infrequent operations.
56   // NOTE(tucker): Maybe this should move to a subclass of CostModel.
57   void SuppressInfrequent();
58 
is_global()59   bool is_global() const { return is_global_; }
60 
Id(const Node * n)61   inline int Id(const Node* n) const {
62     if (is_global_) {
63       return n->cost_id();
64     } else {
65       return n->id();
66     }
67   }
68 
GlobalId(const Node * n,int offset)69   inline int GlobalId(const Node* n, int offset) const {
70     if (is_global_) {
71       return n->cost_id();
72     } else {
73       return n->id() + offset;
74     }
75   }
76 
77   // Initializes cost model for 'g'.
78   void InitFromGraph(const Graph& g);
79 
80   // Merges costs from cm.
81   // REQUIRES: is_global_ is true for this and for "cm"
82   void MergeFromGlobal(const CostModel& cm);
83 
84   // Merges costs from "cm", which has been computed relative to "g".
85   // REQUIRES: is_global_ is true for this, and false for "cm".
86   void MergeFromLocal(const Graph& g, const CostModel& cm);
87 
88   void MergeFromStats(const NodeNameToCostIdMap& map, const StepStats& ss);
89 
90   // Sets the number of outputs of "node".
91   void SetNumOutputs(const Node* node, int num_outputs);
92 
93   // Records that "node" has executed "num_count" more times.
94   void RecordCount(const Node* node, int num_count);
95 
96   // Returns how many times "node" has been executed.
97   int32 TotalCount(const Node* node) const;
98 
99   // Records that "output_slot" of "node" has produced tensors of
100   // aggregated "bytes".
101   void RecordSize(const Node* node, int output_slot, Bytes bytes);
102 
103   // Returns total bytes of tensors produced by "node"s output slot.
104   Bytes TotalBytes(const Node* node, int output_slot) const;
105 
106   // Returns a prediction for the size of the tensor at the
107   // output_slot produced by one execution of "node".
108   Bytes SizeEstimate(const Node* node, int output_slot) const;
109 
110   // Records that Executions of "node" have taken "time" microseconds.
111   void RecordTime(const Node* node, Microseconds time);
112 
113   // Returns the total execution time for "node".
114   Microseconds TotalTime(const Node* node) const;
115 
116   // Returns a prediction for one execution of "node".
117   Microseconds TimeEstimate(const Node* node) const;
118 
119   // Check that an estimate is available for every OP node in graph.
120   void CheckInitialized(const Graph& graph) const;
121 
122   // Records the maximum size in bytes and optionally the corresponding shape of
123   // the tensor generated by "output_slot" of "node". If
124   void RecordMaxMemorySize(const Node* node, int output_slot, Bytes bytes,
125                            const TensorShapeProto& tensor_shape,
126                            const DataType& dtype);
127 
128   // Returns the maximum size in bytes of the tensor generated by "output_slot"
129   // of "node".
130   Bytes MaxMemorySize(const Node* node, int output_slot) const;
131 
132   // Returns the shape corresponding to the largest memory size of the tensor
133   // generated by "output_slot" of "node".
134   const TensorShapeProto& MaxMemoryShape(const Node* node,
135                                          int output_slot) const;
136 
137   // Returns the shape corresponding to the largest memory size of the tensor
138   // generated by "output_slot" of "node".
139   DataType MaxMemoryType(const Node* node, int output_slot) const;
140 
141   // Returns the size in bytes of temporary memory consumed by "node".
142   Bytes TempMemorySize(const Node* node) const;
143 
144   // Returns the size of persistent memory allocated by "node".
145   Bytes PersistentMemorySize(const Node* node) const;
146 
147   // Records memory stats such as temp momory and persistent memory.
148   void RecordMemoryStats(const Node* node, const MemoryStats& memory_stats);
149 
150   // Records the maximum execution time (in microseconds) of "node".
151   void RecordMaxExecutionTime(const Node* node, Microseconds time);
152 
153   // Returns the maximum execution time (in microseconds) of "node".
154   Microseconds MaxExecutionTime(const Node* node) const;
155 
156   // Record the unique id of the tensor generated by "output_slot" of "node".
157   // Any other tensor sharing the same id will be an alias, i.e. it will share
158   // the same underlying memory storage area.
159   void RecordAllocationId(const Node* node, int output_slot, int64 alloc_id);
160 
161   // Return the unique id of the tensor generated by "output_slot" of "node".
162   int64 AllocationId(const Node* node, int output_slot) const;
163 
164   bool IsPersistentTensor(const Node* node, int64 alloc_id) const;
165 
166   // Helper routines to encapsulate static estimation heuristics
167 
168   // Compute an estimate of the time to copy "b" bytes over the network,
169   // given a fixed cost of "network_latency_millis" milliseconds and
170   // an estimated bandwidth of "estimated_gbps" gigabits per second (note that
171   // this value is in gigabits, not gigabytes).
172   static Microseconds CopyTimeEstimate(Bytes b, double network_latency_millis,
173                                        double estimated_gbps);
174   static Microseconds ComputationTimeEstimate(int64 mathops);
175 
176   // Add this CostModel into the CostGraphDef.
177   void AddToCostGraphDef(const Graph* graph, CostGraphDef* cost_graph) const;
178 
179   // Write the contents of the CostModel to the INFO log.
180   void WriteSummaryToLog() const;
181 
182   // Increment the times that the cost model is updated.
183   void IncrementUpdateTimes();
184 
185   // Get the times that the cost model is updated.
186   int32 GetUpdateTimes() const;
187 
188  private:
189   static Bytes MinTensorMemoryUsage(const TensorShapeProto& tensor_shape,
190                                     const DataType& dtype);
191 
192   const bool is_global_;
193 
194   // Resizes vectors so that they are large enough for "id" and id's outputs.
195   void Ensure(int id, int num_outputs);
196 
197   // Nodes and Edges whose count is < this value
198   // get type/byte estimates of 0.
199   int32 min_count_ = 0;
200 
201   // The number of times the cost model is updated.
202   int32 update_times_ = 0;
203 
204   // Number of times each Node has been executed.
205   std::vector<int32> count_;
206   // Cumulative execution time.
207   std::vector<Microseconds> time_;
208   // Cumulative Bytes output on each channel.
209   std::vector<gtl::InlinedVector<Bytes, 2>> slot_bytes_;
210 
211   // Maximum execution time
212   std::vector<Microseconds> max_exec_time_;
213 
214   // Maximum memory usage
215   struct MemUsage {
MemUsageMemUsage216     MemUsage() : temp_memory_size(0), persistent_memory_size(0) {}
217 
218     // TODO(yuefengz): temp_memory_size is not being used, remove it.
219     Bytes temp_memory_size;
220     Bytes persistent_memory_size;
221 
222     gtl::InlinedVector<Bytes, 2> output_port_mem;
223     gtl::InlinedVector<TensorShapeProto, 2> output_port_shape;
224     gtl::InlinedVector<DataType, 2> output_port_type;
225   };
226   std::vector<MemUsage> max_mem_usage_;
227 
228   std::vector<gtl::InlinedVector<int64, 2>> output_port_alloc_ids_;
229 
230   std::set<int64> persistent_alloc_ids_;
231   std::map<string, std::set<int64>> persistent_alloc_ids_by_devices_;
232 
233   TensorShapeProto unknown_shape_;
234 
235   TF_DISALLOW_COPY_AND_ASSIGN(CostModel);
236 };
237 
238 }  // namespace tensorflow
239 
240 #endif  // TENSORFLOW_CORE_GRAPH_COSTMODEL_H_
241